diff --git a/TensorFlow/built-in/cv/image_classification/Resnet50v1.5_ID1721_for_TensorFlow/test/train_and_eval_8p.sh b/TensorFlow/built-in/cv/image_classification/Resnet50v1.5_ID1721_for_TensorFlow/test/train_and_eval_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..73206a163cff392290143dfd3048ccc388876d69 --- /dev/null +++ b/TensorFlow/built-in/cv/image_classification/Resnet50v1.5_ID1721_for_TensorFlow/test/train_and_eval_8p.sh @@ -0,0 +1,178 @@ +#!/bin/bash +#当前路径,不需要修改 +cur_path=`pwd` +#集合通信参数,不需要修改 + +#export ASCEND_SLOG_PRINT_TO_STDOUT=1 +export RANK_SIZE=8 +export JOB_ID=10087 +export RANK_TABLE_FILE=$cur_path/../official/r1/resnet/scripts/8p.json +RANK_ID_START=0 + + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#设置默认日志级别,不需要修改 +#export ASCEND_GLOBAL_LOG_LEVEL_ETP_ETP=3 + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="Resnet50v1.5_ID1721_for_TensorFlow" +#训练epochs +train_epochs=90 +#训练steps +train_steps=1250 +#训练batch_size +batch_size=128 + +#维测参数,precision_mode需要模型审视修改 +#precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False +autotune=False + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1p.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --autotune* ]];then + autotune=`echo ${para#*=}` + mv $install_path/fwkacllib/data/rl/Ascend910/custom $install_path/fwkacllib/data/rl/Ascend910/custom_bak + mv $install_path/fwkacllib/data/tiling/Ascend910/custom $install_path/fwkacllib/data/tiling/Ascend910/custom_bak + autotune_dump_path=${cur_path}/output/autotune_dump + mkdir -p ${autotune_dump_path}/GA + mkdir -p ${autotune_dump_path}/rl + cp -rf $install_path/fwkacllib/data/tiling/Ascend910/custom ${autotune_dump_path}/GA/ + cp -rf $install_path/fwkacllib/data/rl/Ascend910/custom ${autotune_dump_path}/RL/ + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + + +#data_path='../' +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +cd $cur_path/../official/r1/resnet + +#训练开始时间,不需要修改 +start_time=$(date +%s) + +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + ASCEND_DEVICE_ID=$RANK_ID + + export DEVICE_ID=$RANK_ID + DEVICE_INDEX=$RANK_ID + export DEVICE_INDEX=${DEVICE_INDEX} + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + fi + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + + nohup python3 imagenet_main.py \ + --resnet_size=50 \ + --resnet_version=1 \ + --max_train_steps=$train_steps \ + --hooks=ExamplesPerSecondHook \ + --data_dir=$data_path \ + --train_epochs=$train_epochs \ + --batch_size=$batch_size \ + --epochs_between_evals 1 \ + --data_dir=$data_path \ + --model_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + + +#结果打印,不需要修改 +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:steps" $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk -F 'FPS:' '{print $2}'|cut -c 1-7|awk 'NR>2'|awk '{sum+=$1} END {print sum/NR}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" +echo "E2E Training Duration sec : $e2e_time" + +#精度计算,需要根据网络修改 +train_accuracy=`grep "name': 'accuracy'" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print $6}'|tr -d ','|tail -1` + +#性能看护结果汇总 +#训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc'_train_and_eval + +#获取性能数据,不需要修改 +#吞吐量 +ActualFPS=${FPS} +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${batch_size}'*1000/'${ActualFPS}'}'` + + +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep 'loss =' $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk -F 'loss =' '{print $2}'|tr -d ',' |awk '{print $1}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "trainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log