From b5e0202a0705f7777f09492003a3bc5db1a27fce Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 07:12:51 +0000
Subject: [PATCH 01/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/test/train_full_1p.sh.
---
.../SSD-VGG_ID1619_for_TensorFlow/test/train_full_1p.sh | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/test/train_full_1p.sh
index fe078086b..978a48725 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/test/train_full_1p.sh
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/test/train_full_1p.sh
@@ -91,7 +91,7 @@ echo "Final Train Accuracy : ${train_accuracy}"
#训练用例信息,不需要修改
BatchSize=${batch_size}
DeviceType=`uname -m`
-CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf'
+CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc'
##获取性能数据,不需要修改
#吞吐量
--
Gitee
From 2a6f192d836181b28ef20575b2866f0b3d045dc7 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 07:21:52 +0000
Subject: [PATCH 02/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index 5cb5099ea..fc1fb726a 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -131,7 +131,9 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
- 数据集准备
1. 模型训练使用Pascal VOC数据集,数据集请用户自行获取。
-
+ ```
+ bash download-data.sh
+ ```
2. 数据集训练前需要做预处理操作
```
./process_dataset.py
--
Gitee
From 653a4b9204e2bf5efa1a5d402de3c5b57f005a25 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 07:37:38 +0000
Subject: [PATCH 03/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../SSD-VGG_ID1619_for_TensorFlow/README.md | 17 +++++++++++++++++
1 file changed, 17 insertions(+)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index fc1fb726a..218cf7e02 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -154,7 +154,24 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
cd test;
bash train_full_1p.sh --data_path=./data/
```
+ 启动训练。
+ 启动单卡训练 (脚本为MUNIT_ID0953_for_TensorFlow/test/train_full_1p.sh)
+
+ ```
+ bash train_full_1p.sh
+ ```
+
+
训练结果
+
+- 精度结果比对
+
+取训练最后1000个steps的loss,计算平均值,进行结果比对。
+
+|精度指标项|GPU实测|NPU实测|
+|---|---|---|
+|d_loss|2.619421507950002|2.7996314894200007|
+|g_loss|4.192780654629998|4.389258856830003|
高级参考
- 脚本和示例代码
--
Gitee
From a030c621c072a7f8bb53b27b14b39c81a638a54a Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 08:09:47 +0000
Subject: [PATCH 04/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md | 5 ++---
1 file changed, 2 insertions(+), 3 deletions(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index 218cf7e02..aa56d32fe 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -166,12 +166,11 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
- 精度结果比对
-取训练最后1000个steps的loss,计算平均值,进行结果比对。
+训练200epoch,去最后一个值,结果如下:
|精度指标项|GPU实测|NPU实测|
|---|---|---|
-|d_loss|2.619421507950002|2.7996314894200007|
-|g_loss|4.192780654629998|4.389258856830003|
+|loss|6.06|6.06|
高级参考
- 脚本和示例代码
--
Gitee
From 989e8b1f44370b35872aab55e2824eb84fa05976 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 12:46:28 +0000
Subject: [PATCH 05/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md | 9 ---------
1 file changed, 9 deletions(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index aa56d32fe..e3e9cb751 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -162,15 +162,6 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
bash train_full_1p.sh
```
-训练结果
-
-- 精度结果比对
-
-训练200epoch,去最后一个值,结果如下:
-
-|精度指标项|GPU实测|NPU实测|
-|---|---|---|
-|loss|6.06|6.06|
高级参考
- 脚本和示例代码
--
Gitee
From 641011e86b467ca85506d308271bf3a2e6561af6 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 12:55:06 +0000
Subject: [PATCH 06/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../SSD-VGG_ID1619_for_TensorFlow/README.md | 14 +++++++++++++-
1 file changed, 13 insertions(+), 1 deletion(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index e3e9cb751..ded3ece5e 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -97,6 +97,11 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
train_full_1p.sh --precision_mode=allow_fp32_to_fp16 --data_path=./
```
+相关代码示例:
+ ```
+ parser.add_argument('--precision_mode', type=str, default='allow_fp32_to_fp16',
+ help='precision mode, default is allow_fp32_to_fp16')
+ ```
训练环境准备
@@ -125,7 +130,11 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
-
+- 运行以下命令安装依赖。
+```
+pip3 install requirements.txt
+```
+说明:依赖配置文件requirements.txt文件位于模型的根目录
快速上手
@@ -212,3 +221,6 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
--dump_path dump path,default='/home/HwHiAiUser/'
```
+## 训练过程
+
+通过“模型训练”中的训练指令启动单卡或者多卡训练。单卡和多卡通过运行不同脚本,支持单卡,8卡网络训练。模型存储路径为${cur_path}/output/$ASCEND_DEVICE_ID,包括训练的log以及checkpoints文件。以单卡训练为例,loss信息在文件${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log中。
\ No newline at end of file
--
Gitee
From 4ab75972a469f3b0d3539e60718138f62fbc8b1e Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 13:14:25 +0000
Subject: [PATCH 07/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../detection/SSD-VGG_ID1619_for_TensorFlow/README.md | 11 +++++------
1 file changed, 5 insertions(+), 6 deletions(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index ded3ece5e..c53a4ac45 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -138,19 +138,18 @@ pip3 install requirements.txt
快速上手
-- 数据集准备
- 1. 模型训练使用Pascal VOC数据集,数据集请用户自行获取。
- ```
+## 数据集准备
+ 1、用户自行准备好数据集,模型训练使用Pascal VOC数据集,数据集请用户自行获取
+ ```
bash download-data.sh
```
2. 数据集训练前需要做预处理操作
```
./process_dataset.py
- ```
-
+ ```
3. 数据集处理后,放入模型目录下,在训练脚本中指定数据集路径,可正常使用。
-- 模型训练
+## 模型训练
1. 单击“立即下载”,并选择合适的下载方式下载源码包。
--
Gitee
From 4e8e55603791b69e50de087fd3d3b653dd8be953 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 13:26:06 +0000
Subject: [PATCH 08/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md | 2 ++
1 file changed, 2 insertions(+)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index c53a4ac45..4b91d3d11 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -25,6 +25,8 @@
概述
+## 简述
+
SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方法。模型主要特点:
1、多尺度特征映射。将卷积特征层添加到截取的基础网络的末端。大尺度的特征图有较多的信息,可以用来检测小物体。而小尺度的特征图用来检测较大的物体。允许在多个尺度上对检测结果进行预测。
2、采用卷积层作为预测器。代替了全连接层,直接采用卷积对不同的特征图进行提取检测结果。
--
Gitee
From 4b7b38c622b0e164f34088c838630f28763e7aba Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 13:27:23 +0000
Subject: [PATCH 09/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md | 7 ++++++-
1 file changed, 6 insertions(+), 1 deletion(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index 4b91d3d11..24974fb28 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -1,4 +1,9 @@
-
+- [基本信息](#基本信息.md)
+- [概述](#概述.md)
+- [训练环境准备](#训练环境准备.md)
+- [快速上手](#快速上手.md)
+- [迁移学习指导](#迁移学习指导.md)
+- [高级参考](#高级参考.md)
基本信息
**发布者(Publisher):Huawei**
--
Gitee
From e0a8c4a15309fc5feec643b2efe0ed926c67ddf8 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Thu, 28 Jul 2022 13:35:50 +0000
Subject: [PATCH 10/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md | 7 +++----
1 file changed, 3 insertions(+), 4 deletions(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index 24974fb28..6b120a5f7 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -59,7 +59,7 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
git reset --hard {commit_id} # 代码设置到对应的commit_id
cd {code_path} # 切换到模型代码所在路径,若仓库下只有该模型,则无需切换
```
-默认配置
+## 默认配置
- 训练数据集预处理(以Pascal VOC训练集为例,仅作为用户参考示例):
@@ -73,7 +73,7 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
- 随机变换图像通道
- 随机变换饱和度
-- 训练超参
+- 训练超参(单卡):
- Batch size: 8
- Momentum: 0.9
@@ -83,8 +83,7 @@ SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方
- Weight decay: 0.0005
- Train epoch: 200
-
-支持特性
+## 支持特性
| 特性列表 | 是否支持 |
|-------|------|
--
Gitee
From b56935555a4f21447094c6cc42b5b35f5041838e Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Fri, 29 Jul 2022 03:39:40 +0000
Subject: [PATCH 11/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../SSD-VGG_ID1619_for_TensorFlow/README.md | 228 ++++++++----------
1 file changed, 103 insertions(+), 125 deletions(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index 6b120a5f7..d6e139047 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -32,110 +32,83 @@
## 简述
-SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方法。模型主要特点:
-1、多尺度特征映射。将卷积特征层添加到截取的基础网络的末端。大尺度的特征图有较多的信息,可以用来检测小物体。而小尺度的特征图用来检测较大的物体。允许在多个尺度上对检测结果进行预测。
-2、采用卷积层作为预测器。代替了全连接层,直接采用卷积对不同的特征图进行提取检测结果。
+SSD-VGG是采用单个深度神经网络模型实现目标检测和识别的方法。模型主要特点:多尺度特征映射。将卷积特征层添加到截取的基础网络的末端。大尺度的特征图有较多的信息,可以用来检测小物体。而小尺度的特征图用来检测较大的物体。允许在多个尺度上对检测结果进行预测。采用卷积层作为预测器。代替了全连接层,直接采用卷积对不同的特征图进行提取检测结果。
- 参考论文:
- https://arxiv.org/pdf/1512.02325.pdf
+ [https://arxiv.org/abs/1810.04805](https://gitee.com/link?target=https%3A%2F%2Farxiv.org%2Fabs%2F1810.04805)
- 参考实现:
- https://github.com/ljanyst/ssd-tensorflow
+ https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/LanguageModeling/BERT
- 适配昇腾 AI 处理器的实现:
-
- https://gitee.com/ascend/modelzoo/tree/master/built-in/TensorFlow/Research/cv/detection/SSD-VGG_ID1619_for_TensorFlow
-
-
+
+ https://gitee.com/ascend/ModelZoo-TensorFlow/blob/master/TensorFlow2/built-in/nlp/BERT_ID2478_for_TensorFlow2.X
- 通过Git获取对应commit\_id的代码方法如下:
+
+ git clone {repository_url} # 克隆仓库的代码
+ cd {repository_name} # 切换到模型的代码仓目录
+ git checkout {branch} # 切换到对应分支
+ git reset --hard {commit_id} # 代码设置到对应的commit_id
+ cd {code_path} # 切换到模型代码所在路径,若仓库下只有该模型,则无需切换
- ```
- git clone {repository_url} # 克隆仓库的代码
- cd {repository_name} # 切换到模型的代码仓目录
- git checkout {branch} # 切换到对应分支
- git reset --hard {commit_id} # 代码设置到对应的commit_id
- cd {code_path} # 切换到模型代码所在路径,若仓库下只有该模型,则无需切换
- ```
-## 默认配置
-- 训练数据集预处理(以Pascal VOC训练集为例,仅作为用户参考示例):
-
- - 图像的输入尺寸为300*300
- - 图像输入格式:pickle
- - 随机排序
- - 随机缩放
- - 随机变换亮度
- - 随机变换对比度
- - 随机变换色调
- - 随机变换图像通道
- - 随机变换饱和度
+## 默认配置
+- 网络结构
+ - 24-layer, 1024-hidden, 16-heads, 340M parameters
- 训练超参(单卡):
+ - Batch size: 8
+ - Momentum: 0.9
+ - LR scheduler: cosine
+ - Learning rate(LR): 0.00075;0.0001;0.0001
+ - Optimizer: MomentumOptimizer
+ - Weight decay: 0.0005
+ - Train epoch: 200
- - Batch size: 8
- - Momentum: 0.9
- - LR scheduler: cosine
- - Learning rate(LR): 0.00075;0.0001;0.0001
- - Optimizer: MomentumOptimizer
- - Weight decay: 0.0005
- - Train epoch: 200
## 支持特性
-| 特性列表 | 是否支持 |
-|-------|------|
-| 分布式训练 | 否 |
-| 混合精度 | 是 |
-| 并行数据 | 是 |
+| 特性列表 | 是否支持 |
+| ---------- | -------- |
+| 分布式训练 | 是 |
+| 混合精度 | 是 |
+| 数据并行 | 是 |
-- 混合精度训练
+
+## 混合精度训练
昇腾910 AI处理器提供自动混合精度功能,可以针对全网中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到float16,从而在精度损失很小的情况下提升系统性能并减少内存使用。
-- 开启混合精度
+## 开启混合精度
-脚本已默认开启混合精度,设置precision_mode参数的命令行参考如下。
+拉起脚本中,传入--precision_mode='allow_mix_precision'
- ```
- train_full_1p.sh --precision_mode=allow_fp32_to_fp16 --data_path=./
- ```
+```
+ ./train_full_1p.sh --help
+
+parameter explain:
+ --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision)
+ --over_dump if or not over detection, default is False
+ --data_dump_flag data dump flag, default is False
+ --data_dump_step data dump step, default is 10
+ --profiling if or not profiling for performance debug, default is False
+ --data_path source data of training
+ -h/--help show help message
+```
相关代码示例:
- ```
- parser.add_argument('--precision_mode', type=str, default='allow_fp32_to_fp16',
+
+```
+parser.add_argument('--precision_mode', type=str, default='allow_fp32_to_fp16',
help='precision mode, default is allow_fp32_to_fp16')
- ```
+```
训练环境准备
-1. 硬件环境准备请参见各硬件产品文档"[驱动和固件安装升级指南]( https://support.huawei.com/enterprise/zh/category/ai-computing-platform-pid-1557196528909)"。需要在硬件设备上安装与CANN版本配套的固件与驱动。
-2. 宿主机上需要安装Docker并登录[Ascend Hub中心](https://ascendhub.huawei.com/#/detail?name=ascend-tensorflow-arm)获取镜像。
-
- 当前模型支持的镜像列表如[表1](#zh-cn_topic_0000001074498056_table1519011227314)所示。
-
- **表 1** 镜像列表
-
-
- 镜像名称
- |
- 镜像版本
- |
- 配套CANN版本
- |
-
-
-
- |
- 21.0.2
- |
- 5.0.2
- |
-
-
-
+- 硬件环境和运行环境准备请参见《[CANN软件安装指南](https://support.huawei.com/enterprise/zh/ascend-computing/cann-pid-251168373?category=installation-update)》
- 运行以下命令安装依赖。
```
pip3 install requirements.txt
@@ -145,24 +118,32 @@ pip3 install requirements.txt
快速上手
## 数据集准备
- 1、用户自行准备好数据集,模型训练使用Pascal VOC数据集,数据集请用户自行获取
+1、用户自行准备好数据集,模型训练使用Pascal VOC数据集,数据集请用户自行获取
```
bash download-data.sh
```
- 2. 数据集训练前需要做预处理操作
+2. 数据集训练前需要做预处理操作
```
./process_dataset.py
```
- 3. 数据集处理后,放入模型目录下,在训练脚本中指定数据集路径,可正常使用。
-
+3. 数据集处理后,放入模型目录下,在训练脚本中指定数据集路径,可正常使用。
+
+
+
## 模型训练
- 1. 单击“立即下载”,并选择合适的下载方式下载源码包。
+- 单击“立即下载”,并选择合适的下载方式下载源码包。
+- 开始训练。
+
+ - 启动训练之前,首先要配置程序运行相关环境变量。
+
+ 环境变量配置信息参见:
- 2. 启动训练之前,首先要配置程序运行相关环境变量。环境变量配置信息参见:
- [Ascend 910训练平台环境变量设置](https://gitee.com/ascend/modelzoo/wikis/Ascend%20910%E8%AE%AD%E7%BB%83%E5%B9%B3%E5%8F%B0%E7%8E%AF%E5%A2%83%E5%8F%98%E9%87%8F%E8%AE%BE%E7%BD%AE?sort_id=3148819)
- 3. 单卡训练
- 以数据集为./data/pascal-voc/train-samples.pkl、./data/pascal-voc/valid-samples.pkl、./data/pascal-voc/training-data.pkl为例,backbone模型为./data/vgg_graph/saved_model.pb、./data/vgg_graph/variables、./data/vgg_graph/vgg为例(vgg参考ssdvgg.py的__download_vgg下载)
+ [Ascend 910训练平台环境变量设置](https://gitee.com/ascend/modelzoo/wikis/Ascend%20910%E8%AE%AD%E7%BB%83%E5%B9%B3%E5%8F%B0%E7%8E%AF%E5%A2%83%E5%8F%98%E9%87%8F%E8%AE%BE%E7%BD%AE?sort_id=3148819)
+
+ - 单卡训练
+
+ 以数据集为./data/pascal-voc/train-samples.pkl、./data/pascal-voc/valid-samples.pkl、./data/pascal-voc/training-data.pkl为例,backbone模型为./data/vgg_graph/saved_model.pb、./data/vgg_graph/variables、./data/vgg_graph/vgg为例(vgg参考ssdvgg.py的__download_vgg下载)
```
cd test;
@@ -176,56 +157,53 @@ pip3 install requirements.txt
bash train_full_1p.sh
```
+
+
+
高级参考
-- 脚本和示例代码
+## 脚本和示例代码
```
- .
- ├── test
- │ ├── train_full_1p.sh // 执行全量训练脚本
- │ └── train_performance_1p.sh
- ├── LICENSE
- ├── README.md
- ├── average_precision.py
- ├── data_queue.py
- ├── detect.py
- ├── download-data.sh
- ├── export_model.py
- ├── infer.py
- ├── modelzoo_level.txt
- ├── pascal_summary.py
- ├── process_dataset.py
- ├── run_1p.sh
- ├── source_pascal_voc.py
- ├── ssdutils.py
- ├── ssdvgg.py
- ├── train.py
- ├── training_data.py
- ├── transforms.py
- └── utils.py
+|--LICENSE
+|--README.md #说明文档
+|--input_pipeline.py
+|--model_saving_utils.py
+|--run_pretraining.py
+|--run_squad.py #训练代码
+|--requirements.txt #所需依赖
+|--squad_lib.py
+|--test #训练脚本目录
+| |--train_performance_bertlarge_8p_512bs_lamb_phase1.sh
+| |--train_performance_bertlarge_8p_96bs_lamb_phase2.sh
+| |--train_performance_bertlarge_8p_128bs_adam.sh
+| |--train_performance_squad1.1_large_bs24_1p.sh
+| |--train_performance_squad2.0_large_bs24_1p.sh
```
-- 脚本参数
+## 脚本参数
```
---data_path data path,default is the path of train.py
---name project name,default='ckpt'
---epochs train epochs,default=200
---batch-size batch size,default=8
---checkpoint-interval checkpoint interval,default=200
---lr-values learning rate values,default='0.00075;0.0001;0.00001'
---lr-boundaries learning rate change boundaries (in batches),default='320000;400000'
---momentum momentum for the optimizer,default=0.9
---weight-decay L2 normalization factor,default=0.0005
---continue-training continue training from the latest checkpoint,default='False'
---num-workers number of parallel generators,default=mp.cpu_count()
---precision_mode precision mode, default is allow_fp32_to_fp16
---over_dump over flow dump, True or False, default is False
---data_dump data dump, True or False, default is False
---dump_path dump path,default='/home/HwHiAiUser/'
-
+--data_path # the path to train data
+--epochs # epochs of training
+--ckpt_save_path # directory to ckpt
+--batch_size # batch size for 1p
+--log_steps # log frequency
+--bert_config_file
+--precision_mode # the path to save over dump data
+--over_dump # if or not over detection, default is False
+--data_dump_flag # data dump flag, default is False
+--data_dump_step # data dump step, default is 10
+--profiling # if or not profiling for performance debug, default is False
+--profiling_dump_path # the path to save profiling data
+--over_dump_path # the path to save over dump data
+--data_dump_path # the path to save dump data
+--use_mixlist # use_mixlist flag, default is False
+--fusion_off_flag # fusion_off flag, default is False
+--mixlist_file # mixlist file name, default is ops_info.json
+--fusion_off_file # fusion_off file name, default is fusion_switch.cfg
```
+
## 训练过程
-通过“模型训练”中的训练指令启动单卡或者多卡训练。单卡和多卡通过运行不同脚本,支持单卡,8卡网络训练。模型存储路径为${cur_path}/output/$ASCEND_DEVICE_ID,包括训练的log以及checkpoints文件。以单卡训练为例,loss信息在文件${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log中。
\ No newline at end of file
+通过“模型训练”中的训练指令启动单卡或者多卡训练。单卡和多卡通过运行不同脚本,支持单卡,8卡网络训练。模型存储路径为${cur_path}/output/$ASCEND_DEVICE_ID,包括训练的log以及checkpoints文件。以8卡训练为例,loss信息在文件${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log中。
\ No newline at end of file
--
Gitee
From 943d7ae809e5c8e92f202c1348cf903fa5007d99 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E5=BC=A0=E6=B4=8B=E6=B4=8B?= <584244991@qq.com>
Date: Fri, 29 Jul 2022 06:11:53 +0000
Subject: [PATCH 12/12] update
TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md.
---
.../SSD-VGG_ID1619_for_TensorFlow/README.md | 71 ++++++++++---------
1 file changed, 38 insertions(+), 33 deletions(-)
diff --git a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
index d6e139047..aefae98b5 100644
--- a/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/detection/SSD-VGG_ID1619_for_TensorFlow/README.md
@@ -165,43 +165,48 @@ pip3 install requirements.txt
## 脚本和示例代码
```
-|--LICENSE
-|--README.md #说明文档
-|--input_pipeline.py
-|--model_saving_utils.py
-|--run_pretraining.py
-|--run_squad.py #训练代码
-|--requirements.txt #所需依赖
-|--squad_lib.py
-|--test #训练脚本目录
-| |--train_performance_bertlarge_8p_512bs_lamb_phase1.sh
-| |--train_performance_bertlarge_8p_96bs_lamb_phase2.sh
-| |--train_performance_bertlarge_8p_128bs_adam.sh
-| |--train_performance_squad1.1_large_bs24_1p.sh
-| |--train_performance_squad2.0_large_bs24_1p.sh
-```
+ ├── test
+ │ ├── train_full_1p.sh // 执行全量训练脚本
+ │ └── train_performance_1p.sh
+ ├── LICENSE
+ ├── README.md
+ ├── average_precision.py
+ ├── data_queue.py
+ ├── detect.py
+ ├── download-data.sh
+ ├── export_model.py
+ ├── infer.py
+ ├── modelzoo_level.txt
+ ├── pascal_summary.py
+ ├── process_dataset.py
+ ├── run_1p.sh
+ ├── source_pascal_voc.py
+ ├── ssdutils.py
+ ├── ssdvgg.py
+ ├── train.py
+ ├── training_data.py
+ ├── transforms.py
+ └── utils.py
## 脚本参数
```
---data_path # the path to train data
---epochs # epochs of training
---ckpt_save_path # directory to ckpt
---batch_size # batch size for 1p
---log_steps # log frequency
---bert_config_file
---precision_mode # the path to save over dump data
---over_dump # if or not over detection, default is False
---data_dump_flag # data dump flag, default is False
---data_dump_step # data dump step, default is 10
---profiling # if or not profiling for performance debug, default is False
---profiling_dump_path # the path to save profiling data
---over_dump_path # the path to save over dump data
---data_dump_path # the path to save dump data
---use_mixlist # use_mixlist flag, default is False
---fusion_off_flag # fusion_off flag, default is False
---mixlist_file # mixlist file name, default is ops_info.json
---fusion_off_file # fusion_off file name, default is fusion_switch.cfg
+--data_path data path,default is the path of train.py
+--name project name,default='ckpt'
+--epochs train epochs,default=200
+--batch-size batch size,default=8
+--checkpoint-interval checkpoint interval,default=200
+--lr-values learning rate values,default='0.00075;0.0001;0.00001'
+--lr-boundaries learning rate change boundaries (in batches),default='320000;400000'
+--momentum momentum for the optimizer,default=0.9
+--weight-decay L2 normalization factor,default=0.0005
+--continue-training continue training from the latest checkpoint,default='False'
+--num-workers number of parallel generators,default=mp.cpu_count()
+--precision_mode precision mode, default is allow_fp32_to_fp16
+--over_dump over flow dump, True or False, default is False
+--data_dump data dump, True or False, default is False
+--dump_path dump path,default='/home/HwHiAiUser/'
+
```
## 训练过程
--
Gitee