From 894bb91c8b0b8c415668b2417eac2f44424633e7 Mon Sep 17 00:00:00 2001 From: "linda.liuping" <121377674@qq.com> Date: Fri, 1 Apr 2022 08:27:04 +0000 Subject: [PATCH 1/7] update TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md. --- .../OSMN_ID1103_for_TensorFlow/README.md | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) diff --git a/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md b/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md index d36bdab4a..c68834708 100644 --- a/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md +++ b/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md @@ -36,16 +36,13 @@ OSMN是利用modulators模块快速地调整分割网络使其可以适应特定的物体,而不需要执行数百次的梯度下降;同时不需要调整所有的参数。在视频目标分割上有两个关键的点:视觉外观和空间中持续的移动。为了同时使用视觉和空间信息,将视觉modulator和空间modulator进行合并,在第一帧的标注信息和目标空间位置的基础上分别学习如何调整主体分割网络。 - 参考论文: - https://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Efficient_Video_Object_CVPR_2018_paper.pdf - 参考实现: - https://github.com/linjieyangsc/video_seg -- 适配昇腾 AI 处理器的实现: - - https://gitee.com/ascend/modelzoo/tree/master/built-in/TensorFlow/Research/cv/image_segmentation/OSMN_ID1103_for_TensorFlow +- 适配昇腾 AI 处理器的实现: + https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow ## 训练环境准备 -- Gitee From 5104b8d49808e303e4191c809f9a8ea54ffc1953 Mon Sep 17 00:00:00 2001 From: "linda.liuping" <121377674@qq.com> Date: Fri, 1 Apr 2022 08:35:05 +0000 Subject: [PATCH 2/7] update TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md. --- .../cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md b/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md index c68834708..ddd7c08a6 100644 --- a/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md +++ b/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md @@ -73,7 +73,7 @@ ## 安装依赖 -参照:requirements.txt +pip3 install requirements.txt ## 快速上手 -- Gitee From 1e01be1fcdad533eb511dcbe9ae697b7bac71379 Mon Sep 17 00:00:00 2001 From: "linda.liuping" <121377674@qq.com> Date: Fri, 1 Apr 2022 08:37:28 +0000 Subject: [PATCH 3/7] update TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/requirements.txt. --- .../OSMN_ID1103_for_TensorFlow/requirements.txt | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/requirements.txt b/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/requirements.txt index 2a1bb5b6a..99dd50536 100644 --- a/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/requirements.txt +++ b/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/requirements.txt @@ -1,4 +1,3 @@ -Python 2.7 -Tensorflow r1.0 or higher (pip install tensorflow-gpu) along with standard dependencies -Densecrf by Philipp Krähenbühl and Vladlen Koltun -Other python dependencies: PIL (Pillow version), numpy, scipy \ No newline at end of file +Pillow ==7.2.0 +numpy==1.19.5 +scipy==1.2.1 \ No newline at end of file -- Gitee From f387cbffec6a4844801042f3fb233ef7af924aa9 Mon Sep 17 00:00:00 2001 From: "linda.liuping" <121377674@qq.com> Date: Fri, 1 Apr 2022 08:42:31 +0000 Subject: [PATCH 4/7] update TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md. --- .../README.md | 69 +------------------ 1 file changed, 2 insertions(+), 67 deletions(-) diff --git a/TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md b/TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md index 31c8db595..895a09107 100644 --- a/TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md +++ b/TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md @@ -31,22 +31,17 @@ 在预训练自然语言表示时增加模型大小通常会提高下游任务的性能。 但是,由于GPU / TPU内存的限制和更长的训练时间,在某些时候,进一步的模型增加变得更加困难。 为了解决这些问题,我们提出了两种参数减少技术,以降低内存消耗并提高BERT的训练速度。 全面的经验证据表明,与原始BERT相比,我们提出的方法所导致的模型可扩展性更好。 我们还使用了一个自我监督的损失,该损失集中于对句子之间的连贯性进行建模,并表明它始终可以通过多句子输入来帮助下游任务。 因此,我们的最佳模型在GLUE,RACE和\ squad基准上建立了最新的技术成果,而与BERT-large相比,参数更少。 - 参考论文: - https://paperswithcode.com/paper/albert-a-lite-bert-for-self-supervised -- 参考实现: - +- 参考实现: https://github.com/brightmart/albert_zh - 适配昇腾 AI 处理器的实现: - - https://gitee.com/ascend/modelzoo/tree/master/built-in/TensorFlow/Official/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow + https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow - 通过Git获取对应commit\_id的代码方法如下: - - ``` git clone {repository_url} # 克隆仓库的代码 cd {repository_name} # 切换到模型的代码仓目录 @@ -319,64 +314,4 @@ run_config = NPURunConfig( --use_fp16 Whether to use fp16, default is True. ``` -## 训练过程 - -训练脚本会在训练过程中,每隔2500个训练步骤保存checkpoint,结果存储在model_dir目录中。 - -训练脚本同时会每个step打印一次当前loss值,以方便查看loss收敛情况,如下: - - -``` -INFO:tensorflow:words/sec: 43.81k -I0928 11:44:46.900814 281473395838992 wps_hook.py:60] words/sec: 43.81k -INFO:tensorflow:loss = 10.8089695, step = 36 (0.219 sec) -I0928 11:44:46.901059 281473395838992 basic_session_run_hooks.py:260] loss = 10.8089695, step = 36 (0.219 sec) -2020-09-28 11:44:46.901399: I tf_adapter/kernels/geop_npu.cc:393] [GEOP] Begin GeOp::ComputeAsync, kernel_name:GeOp9_0, num_inputs:0, num_outputs:1 2020-09-28 11:44:46.901443: I tf_adapter/kernels/geop_npu.cc:258] [GEOP] tf session directb287e87e429467f3, graph id: 31 no need to rebuild -2020-09-28 11:44:46.901453: I tf_adapter/kernels/geop_npu.cc:602] [GEOP] Call ge session RunGraphAsync, kernel_name:GeOp9_0 ,tf session: directb287e87e429467f3 ,graph id: 31 -2020-09-28 11:44:46.901727: I tf_adapter/kernels/geop_npu.cc:615] [GEOP] End GeOp::ComputeAsync, kernel_name:GeOp9_0, ret_status:success ,tf session: directb287e87e429467f3 ,graph id: 31 [0 ms] -2020-09-28 11:44:46.904749: I tf_adapter/kernels/geop_npu.cc:76] BuildOutputTensorInfo, num_outputs:1 -2020-09-28 11:44:46.904783: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:0, total_bytes:8, shape:, tensor_ptr:281462830504320, output281453257618064 -2020-09-28 11:44:46.904805: I tf_adapter/kernels/geop_npu.cc:595] [GEOP] RunGraphAsync callback, status:0, kernel_name:GeOp9_0[ 3352us] -INFO:tensorflow:global_step...36 -I0928 11:44:46.904968 281473395838992 npu_hook.py:114] global_step...36 -2020-09-28 11:44:46.906018: I tf_adapter/kernels/geop_npu.cc:393] [GEOP] Begin GeOp::ComputeAsync, kernel_name:GeOp21_0, num_inputs:10, num_outputs:8 2020-09-28 11:44:46.906123: I tf_adapter/kernels/geop_npu.cc:258] [GEOP] tf session directb287e87e429467f3, graph id: 71 no need to rebuild -2020-09-28 11:44:46.906304: I tf_adapter/kernels/geop_npu.cc:602] [GEOP] Call ge session RunGraphAsync, kernel_name:GeOp21_0 ,tf session: directb287e87e429467f3 ,graph id: 71 -2020-09-28 11:44:46.906606: I tf_adapter/kernels/geop_npu.cc:615] [GEOP] End GeOp::ComputeAsync, kernel_name:GeOp21_0, ret_status:success ,tf session: directb287e87e429467f3 ,graph id: 71 [0 ms] -2020-09-28 11:44:47.100919: I tf_adapter/kernels/geop_npu.cc:76] BuildOutputTensorInfo, num_outputs:8 -2020-09-28 11:44:47.100972: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:0, total_bytes:4, shape:, tensor_ptr:281454044286272, output281454046025984 -2020-09-28 11:44:47.100988: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:1, total_bytes:4, shape:, tensor_ptr:281454044286400, output281454043978208 -2020-09-28 11:44:47.100996: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:2, total_bytes:4, shape:, tensor_ptr:281454044286592, output281454046026240 -2020-09-28 11:44:47.101005: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:3, total_bytes:4, shape:, tensor_ptr:281454045161664, output281454045699456 -2020-09-28 11:44:47.101013: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:4, total_bytes:4, shape:, tensor_ptr:281454045161856, output281454045182336 -2020-09-28 11:44:47.101020: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:5, total_bytes:4, shape:, tensor_ptr:281454045161984, output281454045182208 -2020-09-28 11:44:47.101028: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:6, total_bytes:8, shape:, tensor_ptr:281454045266560, output281454043539264 -2020-09-28 11:44:47.101036: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:7, total_bytes:8, shape:, tensor_ptr:281454045266752, output281454043539552 -2020-09-28 11:44:47.101045: I tf_adapter/kernels/geop_npu.cc:595] [GEOP] RunGraphAsync callback, status:0, kernel_name:GeOp21_0[ 194908us] -2020-09-28 11:44:47.102274: I tf_adapter/kernels/geop_npu.cc:393] [GEOP] Begin GeOp::ComputeAsync, kernel_name:GeOp9_0, num_inputs:0, num_outputs:1 2020-09-28 11:44:47.102332: I tf_adapter/kernels/geop_npu.cc:258] [GEOP] tf session directb287e87e429467f3, graph id: 31 no need to rebuild -2020-09-28 11:44:47.102343: I tf_adapter/kernels/geop_npu.cc:602] [GEOP] Call ge session RunGraphAsync, kernel_name:GeOp9_0 ,tf session: directb287e87e429467f3 ,graph id: 31 -2020-09-28 11:44:47.102605: I tf_adapter/kernels/geop_npu.cc:615] [GEOP] End GeOp::ComputeAsync, kernel_name:GeOp9_0, ret_status:success ,tf session: directb287e87e429467f3 ,graph id: 31 [0 ms] -2020-09-28 11:44:47.105650: I tf_adapter/kernels/geop_npu.cc:76] BuildOutputTensorInfo, num_outputs:1 -2020-09-28 11:44:47.105681: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:0, total_bytes:8, shape:, tensor_ptr:281462830504512, output281453176492864 -2020-09-28 11:44:47.105695: I tf_adapter/kernels/geop_npu.cc:595] [GEOP] RunGraphAsync callback, status:0, kernel_name:GeOp9_0[ 3351us] -INFO:tensorflow:global_step/sec: 4.64619 -I0928 11:44:47.106539 281473395838992 basic_session_run_hooks.py:692] global_step/sec: 4.64619 -2020-09-28 11:44:47.107284: I tf_adapter/kernels/geop_npu.cc:393] [GEOP] Begin GeOp::ComputeAsync, kernel_name:GeOp9_0, num_inputs:0, num_outputs:1 2020-09-28 11:44:47.107373: I tf_adapter/kernels/geop_npu.cc:258] [GEOP] tf session directb287e87e429467f3, graph id: 31 no need to rebuild -2020-09-28 11:44:47.107391: I tf_adapter/kernels/geop_npu.cc:602] [GEOP] Call ge session RunGraphAsync, kernel_name:GeOp9_0 ,tf session: directb287e87e429467f3 ,graph id: 31 -2020-09-28 11:44:47.107602: I tf_adapter/kernels/geop_npu.cc:615] [GEOP] End GeOp::ComputeAsync, kernel_name:GeOp9_0, ret_status:success ,tf session: directb287e87e429467f3 ,graph id: 31 [0 ms] -2020-09-28 11:44:47.110194: I tf_adapter/kernels/geop_npu.cc:76] BuildOutputTensorInfo, num_outputs:1 -2020-09-28 11:44:47.110217: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:0, total_bytes:8, shape:, tensor_ptr:281462830977792, output281453202209616 -2020-09-28 11:44:47.110232: I tf_adapter/kernels/geop_npu.cc:595] [GEOP] RunGraphAsync callback, status:0, kernel_name:GeOp9_0[ 2841us] -2020-09-28 11:44:47.111610: I tf_adapter/kernels/geop_npu.cc:393] [GEOP] Begin GeOp::ComputeAsync, kernel_name:GeOp19_0, num_inputs:0, num_outputs:1 2020-09-28 11:44:47.111668: I tf_adapter/kernels/geop_npu.cc:258] [GEOP] tf session directb287e87e429467f3, graph id: 61 no need to rebuild -2020-09-28 11:44:47.111685: I tf_adapter/kernels/geop_npu.cc:602] [GEOP] Call ge session RunGraphAsync, kernel_name:GeOp19_0 ,tf session: directb287e87e429467f3 ,graph id: 61 -2020-09-28 11:44:47.111890: I tf_adapter/kernels/geop_npu.cc:615] [GEOP] End GeOp::ComputeAsync, kernel_name:GeOp19_0, ret_status:success ,tf session: directb287e87e429467f3 ,graph id: 61 [0 ms] -2020-09-28 11:44:47.114397: I tf_adapter/kernels/geop_npu.cc:76] BuildOutputTensorInfo, num_outputs:1 -2020-09-28 11:44:47.114428: I tf_adapter/kernels/geop_npu.cc:103] BuildOutputTensorInfo, output index:0, total_bytes:8, shape:, tensor_ptr:281463707345344, output281453333853216 -2020-09-28 11:44:47.114442: I tf_adapter/kernels/geop_npu.cc:595] [GEOP] RunGraphAsync callback, status:0, kernel_name:GeOp19_0[ 2756us] -``` - -## 推理/验证过程 - -通过“快速上手”中的测试指令启动单卡或者多卡测试。单卡和多卡的配置与训练过程一致。 - -BLEU = 28.74, 59.5/34.3/22.2/15.0 (BP=1.000, ratio=1.029, hyp_len=66369, ref_len=64504) -- Gitee From 2de27e529164300b19ba8cab80b4c34a59454592 Mon Sep 17 00:00:00 2001 From: "linda.liuping" <121377674@qq.com> Date: Fri, 1 Apr 2022 08:45:39 +0000 Subject: [PATCH 5/7] update TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md. --- .../nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md b/TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md index 895a09107..1694845a0 100644 --- a/TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md +++ b/TensorFlow/built-in/nlp/ALBERT-lcqmc-ZH_ID1461_for_TensorFlow/README.md @@ -104,7 +104,8 @@ run_config = NPURunConfig(