diff --git a/TensorFlow/built-in/cv/image_classification/EfficientNet-B4_ID0162_for_TensorFlow/main_npu.py b/TensorFlow/built-in/cv/image_classification/EfficientNet-B4_ID0162_for_TensorFlow/main_npu.py index df5bad95c11dd24fc24649d86dd680cc9f6ced4c..3f97d3f13c07f33ef1ff8811e48e0d7dbc344b85 100644 --- a/TensorFlow/built-in/cv/image_classification/EfficientNet-B4_ID0162_for_TensorFlow/main_npu.py +++ b/TensorFlow/built-in/cv/image_classification/EfficientNet-B4_ID0162_for_TensorFlow/main_npu.py @@ -714,7 +714,7 @@ def main(unused_argv): os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1' config = NPURunConfig( - #precision_mode="allow_fp32_to_fp16", + precision_mode="allow_mix_precision", #enable_data_pre_proc=True, save_checkpoints_steps=FLAGS.num_train_images // (FLAGS.train_batch_size * int(os.getenv('RANK_SIZE'))), session_config=estimator_config, diff --git a/TensorFlow/built-in/cv/image_classification/EfficientNet-B4_ID0162_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/built-in/cv/image_classification/EfficientNet-B4_ID0162_for_TensorFlow/test/train_full_1p.sh index 3687cc45f8f224575d782bcf067b2eb58da705e3..2be1f7a2dc0a31372d285376d8b8003faec17f1a 100644 --- a/TensorFlow/built-in/cv/image_classification/EfficientNet-B4_ID0162_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/built-in/cv/image_classification/EfficientNet-B4_ID0162_for_TensorFlow/test/train_full_1p.sh @@ -26,7 +26,7 @@ train_epochs=350 #训练batch_size batch_size=32 #训练step -train_steps=1000 +train_steps=218949 #学习率 learning_rate=0.016 diff --git a/TensorFlow/contrib/cv/NOISE2NOISE_ID0800_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/contrib/cv/NOISE2NOISE_ID0800_for_TensorFlow/test/train_performance_1p.sh index 4aabf10e9e25ac09c9dd2095cb0fbdc0c1f0b807..a344e1d063df84bd444f8b9a35bf99bc29ebcff1 100644 --- a/TensorFlow/contrib/cv/NOISE2NOISE_ID0800_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/contrib/cv/NOISE2NOISE_ID0800_for_TensorFlow/test/train_performance_1p.sh @@ -111,7 +111,7 @@ nohup python3.7 config.py --graph-run-mode="${graph_run_mode}" \ --is-loss-scale="${is_loss_scale}" > ${test_path_dir}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & wait -sed -i "s@'${data_path}/datasets/kodak'@datasets/kodak@g" config.py +sed -i "s@'${data_path}/datasets/kodak'@'datasets/kodak'@g" config.py ##################获取训练数据################ # 训练结束时间,不需要修改