diff --git a/TensorFlow/built-in/cv/image_classification/MobileNetV2_ID0074_for_TensorFlow/test/train_full_8p.sh b/TensorFlow/built-in/cv/image_classification/MobileNetV2_ID0074_for_TensorFlow/test/train_full_8p.sh index 9c8c7ca950985a523e926e84ab90d5a58e3c8285..7002fd4005bbe2c7df9d55c3a25ad00473efb03e 100644 --- a/TensorFlow/built-in/cv/image_classification/MobileNetV2_ID0074_for_TensorFlow/test/train_full_8p.sh +++ b/TensorFlow/built-in/cv/image_classification/MobileNetV2_ID0074_for_TensorFlow/test/train_full_8p.sh @@ -166,13 +166,12 @@ do #--profiling_dump_path=${profiling_dump_path} \ #--autotune=${autotune} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & - +done +wait python3.7 eval_image_classifier_mobilenet.py \ --dataset_dir=${data_path} \ - --checkpoint_path=${data_path}/../MobileNetV2_train/result/8p/2/results/model.ckpt-187500 >> ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & -done + --checkpoint_path=${cur_path}/../results/model.ckpt-187500>> ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & wait - #训练结束时间,不需要修改 end_time=$(date +%s) e2e_time=$(( $end_time - $start_time )) @@ -180,12 +179,12 @@ e2e_time=$(( $end_time - $start_time )) #结果打印,不需要修改 echo "------------------ Final result ------------------" #输出性能FPS,需要模型审视修改 -FPS=`grep 'ips:' $cur_path/output/0/train_0.log|grep -v "logger.py"|awk -F 'ips:' '{print $2}'|awk '{print $1}'` +FPS=`grep 'ips:' $cur_path/output/7/train_7.log|grep -v "logger.py"|awk -F 'ips:' '{print $2}'|awk '{print $1}'|awk '{sum+=$1} END {print sum/NR}'` #打印,不需要修改 echo "Final Performance images/sec : $FPS" #输出训练精度,需要模型审视修改 -train_accuracy=`grep acc: $cur_path/output/0/train_0.log|awk 'END {print $2}'|cut -c 2-6` +train_accuracy=`grep acc: $cur_path/output/7/train_7.log|awk 'END {print $2}'|cut -c 2-6` #打印,不需要修改 echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" @@ -203,7 +202,7 @@ ActualFPS=${FPS} TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'*'${RANK_SIZE}'*1000/'${FPS}'}'` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "loss =" $cur_path/output/0/train_0.log|grep -v basic_session_run_hooks.py|awk '{print $3}'|sed 's/,//g' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +grep "loss =" $cur_path/output/7/train_7.log|grep -v basic_session_run_hooks.py|awk '{print $3}'|sed 's/,//g' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`