diff --git a/debug/__init__.py b/debug/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/debug/accuracy_tools/ci_test/__init__.py b/debug/accuracy_tools/ci_test/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/debug/accuracy_tools/ci_test/main.py b/debug/accuracy_tools/ci_test/main.py new file mode 100644 index 0000000000000000000000000000000000000000..a90aa9ad0d94b5007d98a2310f203dda596ad293 --- /dev/null +++ b/debug/accuracy_tools/ci_test/main.py @@ -0,0 +1,27 @@ +UNUSED_VARIABLE = "unused" + + +def test_eval(eval_str): + """ + 使用危险函数 + Args: + eval_str: + + Returns: + + """ + return eval(eval_str) + + +def test_if_none(): + """ + if none代替 var == none判断 + Returns: + + """ + var = None + + if var == None: + return "a" + else: + return "b" diff --git a/debug/accuracy_tools/grad_tool/test/ut/test_grad_monitor.py b/debug/accuracy_tools/grad_tool/test/ut/test_grad_monitor.py index 174dae2693caba4df23d8a52c448ad42932bbd3e..f0b3870524501d1e7eb6bc5a89823f83435be34a 100644 --- a/debug/accuracy_tools/grad_tool/test/ut/test_grad_monitor.py +++ b/debug/accuracy_tools/grad_tool/test/ut/test_grad_monitor.py @@ -16,6 +16,7 @@ def seed_all(seed=1234, mode=False): torch.manual_seed(seed) torch.use_deterministic_algorithms(mode) + seed_all() base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @@ -36,7 +37,7 @@ class TestModule(nn.Module): return x2 -def test_grad_monitor(): +def get_grad_monitor(): gm = GradientMonitor(os.path.join(base_dir, "resources/test_grad_monitor.yaml")) loss_fun = nn.CrossEntropyLoss() test_module = TestModule() @@ -52,13 +53,15 @@ def test_grad_monitor(): optimizer.step() return gm + class TestGradMonitor(unittest.TestCase): def test_compare(self): - gm = test_grad_monitor() + gm = get_grad_monitor() compare_output_path = os.path.join(os.path.dirname(gm.grad_monitor._output_path), "grad_compare") - GradComparator.compare_distributed(gm.grad_monitor._output_path, gm.grad_monitor._output_path, compare_output_path) + GradComparator.compare_distributed(gm.grad_monitor._output_path, gm.grad_monitor._output_path, + compare_output_path) items = os.listdir(compare_output_path) self.assertEqual(len(items), 1) with open(os.path.join(compare_output_path, items[0], "similarities.csv"), 'r') as f: data = f.read() - self.assertEqual(hashlib.md5(data.encode("utf-8")).hexdigest(), "3762fafc89c805e7863f50aaffaf8161") + self.assertEqual(hashlib.md5(data.encode("utf-8")).hexdigest(), "0e2bd636b48245d387647523c8517982")