diff --git a/debug/accuracy_tools/msprobe/pytorch/monitor/anomaly_detect.py b/debug/accuracy_tools/msprobe/pytorch/monitor/anomaly_detect.py index fbfcac10f506799041a16b5b745573860d7c26ec..128e71d253f311ff3f2bac8528d18a206f9abe00 100644 --- a/debug/accuracy_tools/msprobe/pytorch/monitor/anomaly_detect.py +++ b/debug/accuracy_tools/msprobe/pytorch/monitor/anomaly_detect.py @@ -379,7 +379,7 @@ class CSVWriterWithAD(BaseWriterWithAD): input_and_output = [MonitorConst.ACTV_IN, MonitorConst.ACTV_OUT] else: input_and_output = [MonitorConst.ACTVGRAD_IN, MonitorConst.ACTVGRAD_OUT] - ops_ = [MonitorConst.DOT.join(i[::-1]) for i in itertools.product(ops, input_and_output)] + ops_ = [MonitorConst.DOT.join(i) for i in itertools.product(input_and_output, ops)] csv_header = ["module_name", "step", *ops_] else: csv_header = ["param_name", "step", *ops] diff --git a/debug/accuracy_tools/msprobe/test/pytorch_ut/monitor/config/xy_config.json b/debug/accuracy_tools/msprobe/test/pytorch_ut/monitor/config/xy_config.json index d299be07870f58199185ad19cff7cb086fba6827..8540929ad2d4163f0064d165b5b9cb2da4261ab0 100644 --- a/debug/accuracy_tools/msprobe/test/pytorch_ut/monitor/config/xy_config.json +++ b/debug/accuracy_tools/msprobe/test/pytorch_ut/monitor/config/xy_config.json @@ -4,5 +4,5 @@ "xy_distribution": true, "all_xy": true, "format": "csv", - "ops": ["norm"] + "ops": ["norm", "nans"] } \ No newline at end of file diff --git a/debug/accuracy_tools/msprobe/test/pytorch_ut/monitor/test_module_hook.py b/debug/accuracy_tools/msprobe/test/pytorch_ut/monitor/test_module_hook.py index 6bf8582c02f5a31eb29e71e19462b11419f4782d..e31e4829c8395fb5736dde76795a971d732ac34a 100644 --- a/debug/accuracy_tools/msprobe/test/pytorch_ut/monitor/test_module_hook.py +++ b/debug/accuracy_tools/msprobe/test/pytorch_ut/monitor/test_module_hook.py @@ -73,13 +73,13 @@ class TestModuleHook(unittest.TestCase): self.assertTrue(os.path.exists(actv_grad_0_csv)) # validate columns and lines actv_0 = pd.read_csv(actv_0_csv) - expect_columns = ['vpp_stage', 'module_name', 'step', 'input.norm', 'output.norm'] + expect_columns = ['vpp_stage', 'module_name', 'step', 'input.norm', 'input.nans', 'output.norm', 'output.nans'] self.assertListEqual(list(actv_0.columns), expect_columns) - self.assertEqual(actv_0.shape, tuple([2, 5])) + self.assertEqual(actv_0.shape, tuple([2, 7])) actv_grad_0 = pd.read_csv(actv_grad_0_csv) - expect_columns = ['vpp_stage', 'module_name', 'step', 'input_grad.norm', 'output_grad.norm'] + expect_columns = ['vpp_stage', 'module_name', 'step', 'input_grad.norm', 'input_grad.nans', 'output_grad.norm', 'output_grad.nans'] self.assertListEqual(list(actv_grad_0.columns), expect_columns) - self.assertEqual(actv_0.shape, tuple([2, 5])) + self.assertEqual(actv_0.shape, tuple([2, 7])) def test_wg_distribution(self): self.get_dist_mock(False)