From 7b2bfcf3adb713579840695befe4803a6d8598f9 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Tue, 17 Jun 2025 15:35:42 +0800 Subject: [PATCH 01/22] =?UTF-8?q?=F0=9F=A7=AA=20test:=20=E8=A1=A5=E5=85=85?= =?UTF-8?q?=E6=B5=8B=E8=AF=95=E7=94=A8=E4=BE=8B?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../app/controllers/match_nodes_controller.py | 3 +- .../test/data/test_case_factory.py | 8 + .../process_task_add_child_layer.json | 469 ++++++++++++ .../process_task_delete_case.json | 164 +++++ .../process_task_delete_child_layer.json | 666 ++++++++++++++++++ .../test_match_nodes_controller.py | 28 +- 6 files changed, 1335 insertions(+), 3 deletions(-) create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer.json create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_child_layer.json diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py index 5251bb118..07e4cf759 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py @@ -125,7 +125,6 @@ class MatchNodesController: for key in common_keys: npu_subnode_list = npu_match_names.get(key, []) bench_subnode_list = bench_match_names.get(key, []) - # 多个节点可能有一个module name for npu_subnode_name, bench_subnode_name in zip(npu_subnode_list, bench_subnode_list): result = MatchNodesController.process_task_add(graph_data, npu_subnode_name, bench_subnode_name, @@ -177,6 +176,7 @@ class MatchNodesController: # 2. 目标节点的子节点和标杆侧的子节点添加匹配关系 def process_child_layer(npu_child_nodes): + print("process_child_layer", npu_child_nodes) for npu_subnode_name in npu_child_nodes: npu_subnode_info = npu_nodes.get(npu_subnode_name, {}) matched_node_link = npu_subnode_info.get('matched_node_link', []) @@ -193,6 +193,7 @@ class MatchNodesController: npu_subnodes = npu_nodes.get(npu_node_name, {}).get('subnodes', []) bench_subnodes = bench_nodes.get(bench_node_name, {}).get('subnodes', []) + if result.get('success') and npu_subnodes and bench_subnodes: process_child_layer(npu_subnodes) if result.get('success'): diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py index afdcb1b07..877bb2c42 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py @@ -30,6 +30,14 @@ class TestCaseFactory: def get_process_task_delete_cases(cls): return cls._load_cases('test_match_node_controller\\process_task_delete_case.json') + @classmethod + def get_process_task_add_child_layer_cases(cls): + return cls._load_cases('test_match_node_controller\\process_task_add_child_layer.json') + + @classmethod + def get_process_task_delete_child_layer_cases(cls): + return cls._load_cases('test_match_node_controller\\process_task_delete_child_layer.json') + @classmethod def _load_cases(cls, filename): """从JSON文件加载测试用例""" diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer.json new file mode 100644 index 000000000..d03b9fd26 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer.json @@ -0,0 +1,469 @@ +[ + { + "case_id": 1, + "description": "测试参数不全", + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node": { + "node_type": "Module", + "subnodes": [ + "npu_child1" + ] + } + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "Module", + "subnodes": [ + "bench_child1" + ] + } + } + } + }, + "npu_node_name": "", + "bench_node_name": "bench_node", + "task": "md5" + }, + "expected": { + "success": false, + "error": "参数错误" + } + }, + { + "case_id": 2, + "description": "测试节点类型不一致", + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node": { + "node_type": "Module", + "subnodes": [ + "npu_child1" + ] + } + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "API", + "subnodes": [ + "bench_child1" + ] + } + } + } + }, + "npu_node_name": "npu_node", + "bench_node_name": "bench_node", + "task": "md5" + }, + "expected": { + "success": false, + "error": "节点类型不一致,无法添加匹配关系" + } + }, + { + "case_id": 3, + "description": "测试无子节点", + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node": { + "node_type": "Module", + "input_data": { + "input1": { + "md5": "abcd1234" + } + }, + "output_data": { + "output1": { + "md5": "efgh5678" + } + }, + "subnodes": [] + } + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "Module", + "input_data": { + "input1": { + "md5": "abcd1234" + } + }, + "output_data": { + "output1": { + "md5": "efgh5678" + } + }, + "subnodes": [] + } + } + } + }, + "npu_node_name": "npu_node", + "bench_node_name": "bench_node", + "task": "md5" + }, + "expected": { + "success": true, + "data": { + "npuMatchNodes": { + "npu_node": "bench_node" + }, + "benchMatchNodes": { + "bench_node": "npu_node" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + }, + { + "case_id": 4, + "description": "测试多层递归子节点匹配(符合命名规则)", + "type": "process_task_add_child_layer", + "input": { + "graph_data": { + "NPU": { + "node": { + "model.npu_node": { + "node_type": "Module", + "input_data": { + "input1": { + "md5": "abcd1234" + } + }, + "output_data": { + "output1": { + "md5": "efgh5678" + } + }, + "subnodes": [ + "model.layer1.npu_child_module", + "model.layer1.npu_child_api" + ] + }, + "model.layer1.npu_child_module": { + "node_type": "Module", + "matched_node_link": [], + "subnodes": [ + "model.layer1.sub.npu_grandchild_module", + "model.layer1.sub.npu_grandchild_api" + ] + }, + "model.layer1.npu_child_api": { + "node_type": "API", + "matched_node_link": [] + }, + "model.layer1.sub.npu_grandchild_module": { + "node_type": "Module", + "matched_node_link": [] + }, + "model.layer1.sub.npu_grandchild_api": { + "node_type": "API", + "matched_node_link": [] + } + } + }, + "Bench": { + "node": { + "model.bench_node": { + "node_type": "Module", + "input_data": { + "input1": { + "md5": "abcd1234" + } + }, + "output_data": { + "output1": { + "md5": "efgh5678" + } + }, + "subnodes": [ + "model.layer1.bench_child_module", + "model.layer1.bench_child_api" + ] + }, + "model.layer1.bench_child_module": { + "node_type": "Module", + "matched_node_link": [], + "subnodes": [ + "model.layer1.sub.bench_grandchild_module", + "model.layer1.sub.bench_grandchild_api" + ] + }, + "model.layer1.bench_child_api": { + "node_type": "API", + "matched_node_link": [] + }, + "model.layer1.sub.bench_grandchild_module": { + "node_type": "Module", + "matched_node_link": [] + }, + "model.layer1.sub.bench_grandchild_api": { + "node_type": "API", + "matched_node_link": [] + } + } + } + }, + "npu_node_name": "model.npu_node", + "bench_node_name": "model.bench_node", + "task": "md5" + }, + "expected": { + "success": true, + "data": { + "npuMatchNodes": { + "model.npu_node": "model.bench_node", + "model.layer1.npu_child_api": "model.layer1.bench_child_api", + "model.layer1.npu_child_module": "model.layer1.bench_child_module", + "model.layer1.sub.npu_grandchild_api": "model.layer1.sub.bench_grandchild_api", + "model.layer1.sub.npu_grandchild_module": "model.layer1.sub.bench_grandchild_module" + }, + "benchMatchNodes": { + "model.bench_node": "model.npu_node", + "model.layer1.bench_child_api": "model.layer1.npu_child_api", + "model.layer1.bench_child_module": "model.layer1.npu_child_module", + "model.layer1.sub.bench_grandchild_api": "model.layer1.sub.npu_grandchild_api", + "model.layer1.sub.bench_grandchild_module": "model.layer1.sub.npu_grandchild_module" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + }, + { + "case_id": 5, + "description": "测试部分子节点匹配(不符合命名规则)", + "type": "process_task_add_child_layer", + "input": { + "graph_data": { + "NPU": { + "node": { + "model.npu_node": { + "node_type": "Module", + "input_data": { + "input1": { + "md5": "abcd1234" + } + }, + "output_data": { + "output1": { + "md5": "efgh5678" + } + }, + "subnodes": [ + "model.layer1.sub.npu_child1", + "model.layer1.npu_short_child" + ] + }, + "model.layer1.sub.npu_child1": { + "node_type": "Module", + "matched_node_link": [] + }, + "model.layer1.npu_short_child": { + "node_type": "API", + "matched_node_link": [] + } + } + }, + "Bench": { + "node": { + "model.bench_node": { + "node_type": "Module", + "input_data": { + "input1": { + "md5": "abcd1234" + } + }, + "output_data": { + "output1": { + "md5": "efgh5678" + } + }, + "subnodes": [ + "model.layer1.sub.bench_child1" + ] + }, + "model.layer1.sub.bench_child1": { + "node_type": "Module", + "matched_node_link": [] + } + } + } + }, + "npu_node_name": "model.npu_node", + "bench_node_name": "model.bench_node", + "task": "md5" + }, + "expected": { + "success": true, + "data": { + "npuMatchNodes": { + "model.npu_node": "model.bench_node", + "model.layer1.sub.npu_child1": "model.layer1.sub.bench_child1" + }, + "benchMatchNodes": { + "model.bench_node": "model.npu_node", + "model.layer1.sub.bench_child1": "model.layer1.sub.npu_child1" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + }, + { + "case_id": 6, + "description": "测试SUMMARY任务类型递归(符合命名规则)", + "input": { + "graph_data": { + "NPU": { + "node": { + "model.npu_node": { + "node_type": "Module", + "input_data": { + "input1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "output_data": { + "output1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "subnodes": [ + "model.layer1.sub.npu_child" + ] + }, + "model.layer1.sub.npu_child": { + "node_type": "API", + "matched_node_link": [], + "input_data": { + "input1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "output_data": { + "output1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "subnodes": [ + "model.layer1.sub.deep.npu_grandchild" + ] + }, + "model.layer1.sub.deep.npu_grandchild": { + "node_type": "Module", + "matched_node_link": [], + "input_data": { + "input1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "output_data": { + "output1": { + "Max": "1.0", + "Min": "0.1" + } + } + } + } + }, + "Bench": { + "node": { + "model.bench_node": { + "node_type": "Module", + "input_data": { + "input1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "output_data": { + "output1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "subnodes": [ + "model.layer1.sub.bench_child" + ] + }, + "model.layer1.sub.bench_child": { + "node_type": "API", + "matched_node_link": [], + "input_data": { + "input1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "output_data": { + "output1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "subnodes": [ + "model.layer1.sub.deep.bench_grandchild" + ] + }, + "model.layer1.sub.deep.bench_grandchild": { + "node_type": "Module", + "matched_node_link": [], + "input_data": { + "input1": { + "Max": "1.0", + "Min": "0.1" + } + }, + "output_data": { + "output1": { + "Max": "1.0", + "Min": "0.1" + } + } + } + } + } + }, + "npu_node_name": "model.npu_node", + "bench_node_name": "model.bench_node", + "task": "summary" + }, + "expected": { + "success": true, + "data": { + "npuMatchNodes": { + "model.npu_node": "model.bench_node", + "model.layer1.sub.npu_child": "model.layer1.sub.bench_child", + "model.layer1.sub.deep.npu_grandchild": "model.layer1.sub.deep.bench_grandchild" + }, + "benchMatchNodes": { + "model.bench_node": "model.npu_node", + "model.layer1.sub.bench_child": "model.layer1.sub.npu_child", + "model.layer1.sub.deep.bench_grandchild": "model.layer1.sub.deep.npu_grandchild" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_case.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_case.json index 802d474fe..0a74fbded 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_case.json +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_case.json @@ -37,6 +37,52 @@ "error": "task类型错误" } }, + { + "case_id": 2, + "description": "测试MD5任务删除成功", + "config": { + "npuMatchNodes": { + "npu_node": "bench_node" + }, + "benchMatchNodes": { + "bench_node": "npu_node" + } + }, + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node": { + "node_type": "Module", + "matched_node_link": [ + "bench_node" + ], + "data": { + "precision_index": 0.95 + } + } + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "Module", + "matched_node_link": [ + "npu_node" + ] + } + } + } + }, + "npu_node_name": "npu_node", + "bench_node_name": "bench_node", + "task": "md5" + }, + "expected": { + "success": true, + "data": {} + } + }, { "case_id": 3, "description": "测试MD5任务删除失败(节点未匹配)", @@ -70,5 +116,123 @@ "success": false, "error": "操作失败:节点未匹配,请先匹配节点" } + }, + { + "case_id": 4, + "description": "测试SUMMARY任务删除成功(节点已匹配)", + "config": { + "npuMatchNodes": { + "npu_node_summary": "bench_node_summary" + }, + "benchMatchNodes": { + "bench_node_summary": "npu_node_summary" + } + }, + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node_summary": { + "node_type": "Module", + "input_data": { + "input1": { + "Max": 1.0, + "Min": 0.1, + "Mean": 0.5, + "Norm": 0.7, + "MaxAbsErr": 0.1, + "MinAbsErr": 0.05, + "MeanAbsErr": 0.1, + "NormAbsErr": 0.1 + }, + "input2": { + "Max": 1.0, + "Min": 0.1, + "Mean": 0.5, + "Norm": 0.7, + "MaxAbsErr": 0.1, + "MinAbsErr": 0.05, + "MeanAbsErr": 0.1, + "NormAbsErr": 0.1 + } + }, + "output_data": { + "output1": { + "Max": 2.0, + "Min": 0.2, + "Mean": 1.0, + "Norm": 1.4, + "MaxAbsErr": 0.1, + "MinAbsErr": 0.05, + "MeanAbsErr": 0.1, + "NormAbsErr": 0.1 + }, + "output2": { + "Max": 2.0, + "Min": 0.2, + "Mean": 1.0, + "Norm": 1.4, + "MaxAbsErr": 0.1, + "MinAbsErr": 0.05, + "MeanAbsErr": 0.1, + "NormAbsErr": 0.1 + } + }, + "matched_node_link": [ + "bench_node_summary" + ], + "data": { + "precision_index": 0.95 + } + } + } + }, + "Bench": { + "node": { + "bench_node_summary": { + "node_type": "Module", + "input_data": { + "input1": { + "Max": 1.0, + "Min": 0.1, + "Mean": 0.5, + "Norm": 0.7 + }, + "input2": { + "Max": 1.0, + "Min": 0.1, + "Mean": 0.5, + "Norm": 0.7 + } + }, + "output_data": { + "output1": { + "Max": 2.0, + "Min": 0.2, + "Mean": 1.0, + "Norm": 1.4 + }, + "output2": { + "Max": 2.0, + "Min": 0.2, + "Mean": 1.0, + "Norm": 1.4 + } + }, + "matched_node_link": [ + "npu_node_summary" + ] + } + } + } + }, + "npu_node_name": "npu_node_summary", + "bench_node_name": "bench_node_summary", + "task": "summary" + }, + "expected": { + "success": true, + "data": {} + } } ] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_child_layer.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_child_layer.json new file mode 100644 index 000000000..a595cd4c3 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_child_layer.json @@ -0,0 +1,666 @@ +[ + { + "case_id": 1, + "description": "参数错误(缺少graph_data)", + "input": { + "graph_data": null, + "npu_node_name": "npu_node", + "bench_node_name": "bench_node", + "task": "summary" + }, + "expected": { + "success": false, + "error": "参数错误" + } + }, + { + "case_id": 2, + "description": "节点未匹配(配置中无匹配关系)", + "config": { + "npuMatchNodes": {}, + "benchMatchNodes": {} + }, + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node": { + "node_type": "Module", + "matched_node_link": [ + "bench_node" + ], + "data": { + "precision_index": 0.95 + } + } + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "Module", + "matched_node_link": [ + "npu_node" + ] + } + } + } + }, + "npu_node_name": "npu_node", + "bench_node_name": "bench_node", + "task": "summary" + }, + "expected": { + "success": false, + "error": "操作失败:节点未匹配,请先匹配节点" + } + }, + { + "case_id": 3, + "description": "SUMMARY任务删除成功(无子节点)", + "config": { + "npuMatchNodes": { + "npu_node": "bench_node" + }, + "benchMatchNodes": { + "bench_node": "npu_node" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + }, + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node": { + "node_type": "Module", + "input_data": { + "input1": { + "Max": 1.0, + "MaxAbsErr": 0.1 + } + }, + "output_data": { + "output1": { + "Max": 2.0, + "MaxAbsErr": 0.1 + } + }, + "matched_node_link": [ + "bench_node" + ], + "data": { + "precision_index": 0.95 + } + } + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "Module", + "input_data": { + "input1": { + "Max": 1.0 + } + }, + "output_data": { + "output1": { + "Max": 2.0 + } + }, + "matched_node_link": [ + "npu_node" + ] + } + } + } + }, + "npu_node_name": "npu_node", + "bench_node_name": "bench_node", + "task": "summary" + }, + "expected": { + "success": true, + "data": { + "npuMatchNodes": {}, + "benchMatchNodes": {}, + "npuUnMatchNodes": [ + "npu_node" + ], + "benchUnMatchNodes": [ + "bench_node" + ] + } + } + }, + { + "case_id": 4, + "description": "SUMMARY任务递归删除子节点", + "config": { + "npuMatchNodes": { + "npu_parent": "bench_parent", + "npu_child1": "bench_child1", + "npu_child2": "bench_child2" + }, + "benchMatchNodes": { + "bench_parent": "npu_parent", + "bench_child1": "npu_child1", + "bench_child2": "npu_child2" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + }, + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_parent": { + "node_type": "Module", + "subnodes": [ + "npu_child1", + "npu_child2" + ], + "input_data": { + "parent_input": { + "Max": 1.0, + "Min": 0.1, + "Mean": 0.5, + "Norm": 0.7, + "MaxAbsErr": 0.1, + "MinAbsErr": 0.05, + "MeanAbsErr": 0.1, + "NormAbsErr": 0.1 + } + }, + "output_data": { + "parent_output": { + "Max": 2.0, + "Min": 0.2, + "Mean": 1.0, + "Norm": 1.4, + "MaxAbsErr": 0.1, + "MinAbsErr": 0.05, + "MeanAbsErr": 0.1, + "NormAbsErr": 0.1 + } + }, + "matched_node_link": [ + "bench_parent" + ], + "data": { + "precision_index": 0.95 + } + }, + "npu_child1": { + "node_type": "Module", + "subnodes": [], + "input_data": { + "child1_input": { + "Max": 0.8, + "Min": 0.08, + "Mean": 0.4, + "Norm": 0.56, + "MaxAbsErr": 0.08, + "MinAbsErr": 0.04, + "MeanAbsErr": 0.08, + "NormAbsErr": 0.08 + } + }, + "output_data": { + "child1_output": { + "Max": 1.8, + "Min": 0.18, + "Mean": 0.9, + "Norm": 1.26, + "MaxAbsErr": 0.09, + "MinAbsErr": 0.045, + "MeanAbsErr": 0.09, + "NormAbsErr": 0.09 + } + }, + "matched_node_link": [ + "bench_child1" + ], + "data": { + "precision_index": 0.97 + } + }, + "npu_child2": { + "node_type": "Module", + "subnodes": [], + "input_data": { + "child2_input": { + "Max": 0.9, + "Min": 0.09, + "Mean": 0.45, + "Norm": 0.63, + "MaxAbsErr": 0.09, + "MinAbsErr": 0.045, + "MeanAbsErr": 0.09, + "NormAbsErr": 0.09 + } + }, + "output_data": { + "child2_output": { + "Max": 1.9, + "Min": 0.19, + "Mean": 0.95, + "Norm": 1.33, + "MaxAbsErr": 0.095, + "MinAbsErr": 0.0475, + "MeanAbsErr": 0.095, + "NormAbsErr": 0.095 + } + }, + "matched_node_link": [ + "bench_child2" + ], + "data": { + "precision_index": 0.96 + } + } + } + }, + "Bench": { + "node": { + "bench_parent": { + "node_type": "Module", + "subnodes": [ + "bench_child1", + "bench_child2" + ], + "input_data": { + "parent_input": { + "Max": 1.0, + "Min": 0.1, + "Mean": 0.5, + "Norm": 0.7 + } + }, + "output_data": { + "parent_output": { + "Max": 2.0, + "Min": 0.2, + "Mean": 1.0, + "Norm": 1.4 + } + }, + "matched_node_link": [ + "npu_parent" + ] + }, + "bench_child1": { + "node_type": "Module", + "subnodes": [], + "input_data": { + "child1_input": { + "Max": 0.8, + "Min": 0.08, + "Mean": 0.4, + "Norm": 0.56 + } + }, + "output_data": { + "child1_output": { + "Max": 1.8, + "Min": 0.18, + "Mean": 0.9, + "Norm": 1.26 + } + }, + "matched_node_link": [ + "npu_child1" + ] + }, + "bench_child2": { + "node_type": "Module", + "subnodes": [], + "input_data": { + "child2_input": { + "Max": 0.9, + "Min": 0.09, + "Mean": 0.45, + "Norm": 0.63 + } + }, + "output_data": { + "child2_output": { + "Max": 1.9, + "Min": 0.19, + "Mean": 0.95, + "Norm": 1.33 + } + }, + "matched_node_link": [ + "npu_child2" + ] + } + } + } + }, + "npu_node_name": "npu_parent", + "bench_node_name": "bench_parent", + "task": "summary" + }, + "expected": { + "success": true, + "data": { + "npuMatchNodes": {}, + "benchMatchNodes": {}, + "npuUnMatchNodes": [ + "npu_parent", + "npu_child1", + "npu_child2" + ], + "benchUnMatchNodes": [ + "bench_parent", + "bench_child1", + "bench_child2" + ] + } + } + }, + { + "case_id": 5, + "description": "MD5任务删除成功", + "config": { + "npuMatchNodes": { + "npu_node_md5": "bench_node_md5" + }, + "benchMatchNodes": { + "bench_node_md5": "npu_node_md5" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + }, + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node_md5": { + "node_type": "Module", + "input_data": { + "input1": { + "md5": "abc123", + "shape": [ + 1, + 3, + 224, + 224 + ] + } + }, + "output_data": { + "output1": { + "md5": "def456", + "shape": [ + 1, + 1000 + ] + } + }, + "matched_node_link": [ + "bench_node_md5" + ], + "data": { + "precision_index": 1 + } + } + } + }, + "Bench": { + "node": { + "bench_node_md5": { + "node_type": "Module", + "input_data": { + "input1": { + "md5": "abc123", + "shape": [ + 1, + 3, + 224, + 224 + ] + } + }, + "output_data": { + "output1": { + "md5": "def456", + "shape": [ + 1, + 1000 + ] + } + }, + "matched_node_link": [ + "npu_node_md5" + ] + } + } + } + }, + "npu_node_name": "npu_node_md5", + "bench_node_name": "bench_node_md5", + "task": "md5" + }, + "expected": { + "success": true, + "data": { + "npuMatchNodes": {}, + "benchMatchNodes": {}, + "npuUnMatchNodes": [ + "npu_node_md5" + ], + "benchUnMatchNodes": [ + "bench_node_md5" + ] + } + } + }, + { + "case_id": 6, + "description": "MD5任务递归删除多层子节点", + "config": { + "npuMatchNodes": { + "npu_parent": "bench_parent", + "npu_child": "bench_child", + "npu_grandchild": "bench_grandchild" + }, + "benchMatchNodes": { + "bench_parent": "npu_parent", + "bench_child": "npu_child", + "bench_grandchild": "npu_grandchild" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + }, + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_parent": { + "node_type": "Module", + "subnodes": [ + "npu_child" + ], + "input_data": { + "parent_input": { + "md5": "parent_in", + "shape": [ + 10 + ] + } + }, + "output_data": { + "parent_output": { + "md5": "parent_out", + "shape": [ + 10 + ] + } + }, + "matched_node_link": [ + "bench_parent" + ], + "data": { + "precision_index": 1 + } + }, + "npu_child": { + "node_type": "Module", + "subnodes": [ + "npu_grandchild" + ], + "input_data": { + "child_input": { + "md5": "child_in", + "shape": [ + 20 + ] + } + }, + "output_data": { + "child_output": { + "md5": "child_out", + "shape": [ + 20 + ] + } + }, + "matched_node_link": [ + "bench_child" + ], + "data": { + "precision_index": 1 + } + }, + "npu_grandchild": { + "node_type": "API", + "subnodes": [], + "input_data": { + "grandchild_input": { + "md5": "grand_in", + "shape": [ + 30 + ] + } + }, + "output_data": { + "grandchild_output": { + "md5": "grand_out", + "shape": [ + 30 + ] + } + }, + "matched_node_link": [ + "bench_grandchild" + ], + "data": { + "precision_index": 1 + } + } + } + }, + "Bench": { + "node": { + "bench_parent": { + "node_type": "Module", + "subnodes": [ + "bench_child" + ], + "input_data": { + "parent_input": { + "md5": "parent_in", + "shape": [ + 10 + ] + } + }, + "output_data": { + "parent_output": { + "md5": "parent_out", + "shape": [ + 10 + ] + } + }, + "matched_node_link": [ + "npu_parent" + ] + }, + "bench_child": { + "node_type": "Module", + "subnodes": [ + "bench_grandchild" + ], + "input_data": { + "child_input": { + "md5": "child_in", + "shape": [ + 20 + ] + } + }, + "output_data": { + "child_output": { + "md5": "child_out", + "shape": [ + 20 + ] + } + }, + "matched_node_link": [ + "npu_child" + ] + }, + "bench_grandchild": { + "node_type": "API", + "subnodes": [], + "input_data": { + "grandchild_input": { + "md5": "grand_in", + "shape": [ + 30 + ] + } + }, + "output_data": { + "grandchild_output": { + "md5": "grand_out", + "shape": [ + 30 + ] + } + }, + "matched_node_link": [ + "npu_grandchild" + ] + } + } + } + }, + "npu_node_name": "npu_parent", + "bench_node_name": "bench_parent", + "task": "md5" + }, + "expected": { + "success": true, + "data": { + "npuMatchNodes": {}, + "benchMatchNodes": {}, + "npuUnMatchNodes": [ + "npu_parent", + "npu_child", + "npu_grandchild" + ], + "benchUnMatchNodes": [ + "bench_parent", + "bench_child", + "bench_grandchild" + ] + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py index 0f2d04142..e70734d3e 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py @@ -17,6 +17,7 @@ import pytest from server.app.controllers.match_nodes_controller import MatchNodesController +from server.app.utils.global_state import GraphState from data.test_case_factory import TestCaseFactory @@ -27,7 +28,7 @@ class TestMatchNodesController: @pytest.mark.parametrize("test_case", TestCaseFactory.get_process_task_add_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_process_task_add(self, test_case): - """测试添加子节点层功能""" + """测试添加节点功能""" graph_data, npu_node_name, bench_node_name, task = test_case['input'].values() expected = test_case['expected'] actual = MatchNodesController.process_task_add(graph_data, npu_node_name, bench_node_name, task) @@ -36,9 +37,32 @@ class TestMatchNodesController: @pytest.mark.parametrize("test_case", TestCaseFactory.get_process_task_delete_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_process_task_delete(self, test_case): - """测试删除子节点层功能""" + """测试删除节点功能""" + if(test_case.get('config', None)): + GraphState.set_global_value("config_data", test_case['config']) graph_data, npu_node_name, bench_node_name, task = test_case['input'].values() expected = test_case['expected'] actual = MatchNodesController.process_task_delete(graph_data, npu_node_name, bench_node_name, task) assert actual == expected + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_process_task_add_child_layer_cases(), + ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_process_task_add_child_layer(self, test_case): + """测试添加子节点层功能""" + graph_data, npu_node_name, bench_node_name, task = test_case['input'].values() + excepted = test_case['expected'] + actual = MatchNodesController.process_task_add_child_layer(graph_data, npu_node_name, bench_node_name, task) + print(actual) + assert actual == excepted + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_process_task_delete_child_layer_cases(), + ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_process_task_delete_child_layer(self, test_case): + """测试删除子节点层功能""" + if(test_case.get('config', None)): + GraphState.set_global_value("config_data", test_case['config']) + graph_data, npu_node_name, bench_node_name, task = test_case['input'].values() + excepted = test_case['expected'] + actual = MatchNodesController.process_task_delete_child_layer(graph_data, npu_node_name, bench_node_name, task) + assert actual == excepted -- Gitee From 9a83061a1e546cd69dd30833337d795754034cd0 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Wed, 18 Jun 2025 10:18:49 +0800 Subject: [PATCH 02/22] =?UTF-8?q?=E2=9C=A8=20feat:=20=E6=B7=BB=E5=8A=A0tes?= =?UTF-8?q?t=5Fprocess=5Ftask=5Fadd=5Fchild=5Flayer=5Fby=5Fconfig=20?= =?UTF-8?q?=E6=B5=8B=E8=AF=95=E7=94=A8=E4=BE=8B?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../app/controllers/match_nodes_controller.py | 13 +- .../server/app/service/graph_service.py | 4 +- .../test/data/test_case_factory.py | 4 + .../process_task_add_case.json | 39 +- ...rocess_task_add_child_layer_by_config.json | 448 ++++++++++++++++++ .../test_match_nodes_controller.py | 9 + 6 files changed, 493 insertions(+), 24 deletions(-) create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer_by_config.json diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py index 89d27907d..c1864e367 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py @@ -25,12 +25,19 @@ class MatchNodesController: def is_same_node_type(graph_data, npu_node_name, bench_node_name): npu_node_type = graph_data.get('NPU', {}).get('node', {}).get(npu_node_name, {}).get('node_type') bench_node_type = graph_data.get('Bench', {}).get('node', {}).get(bench_node_name, {}).get('node_type') + if npu_node_type is None or bench_node_type is None or npu_node_type != bench_node_type: return False return True @staticmethod def process_task_add(graph_data, npu_node_name, bench_node_name, task): + if not MatchNodesController.is_same_node_type(graph_data, npu_node_name, bench_node_name): + return { + 'success': False, + 'error': '节点类型不一致,无法添加匹配关系' + } + result = {} if task == 'md5': result = MatchNodesController.process_md5_task_add(graph_data, npu_node_name, bench_node_name) @@ -45,7 +52,7 @@ class MatchNodesController: @staticmethod def process_task_delete(graph_data, npu_node_name, bench_node_name, task): - result = {} + if task == 'md5': result = MatchNodesController.process_md5_task_delete(graph_data, npu_node_name, bench_node_name) elif task == 'summary': @@ -234,8 +241,8 @@ class MatchNodesController: @staticmethod def process_summary_task_add(graph_data, npu_node_name, bench_node_name): # 节点信息提取 - npu_node_data = graph_data.get('NPU', {}).get('node', {}).get(npu_node_name) - bench_node_data = graph_data.get('Bench', {}).get('node', {}).get(bench_node_name) + npu_node_data = graph_data.get('NPU', {}).get('node', {}).get(npu_node_name, {}) + bench_node_data = graph_data.get('Bench', {}).get('node', {}).get(bench_node_name, {}) # 计算统计误差 intput_statistical_diff = MatchNodesController.calculate_statistical_diff( npu_node_data.get('input_data'), bench_node_data.get('input_data'), npu_node_name, bench_node_name diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py index 014b54699..2e218519e 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py @@ -114,8 +114,8 @@ class GraphService: # 读取全局信息,tag层面 if graph_data.get('MicroSteps', {}): config['microSteps'] = graph_data.get('MicroSteps') - if config.get('Tooltips', {}): - config['tooltips'] = graph_data.get('Tooltips') + if graph_data.get('ToolTip', {}): + config['tooltips'] = graph_data.get('ToolTip') config['overflowCheck'] = bool(graph_data.get('OverflowCheck')) if 'OverflowCheck' in graph_data else True config['isSingleGraph'] = False if graph_data.get(NPU) else True # 读取配置信息,run层面 diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py index 877bb2c42..b3b22b2e1 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py @@ -38,6 +38,10 @@ class TestCaseFactory: def get_process_task_delete_child_layer_cases(cls): return cls._load_cases('test_match_node_controller\\process_task_delete_child_layer.json') + @classmethod + def get_process_task_add_child_layer_by_config_cases(cls): + return cls._load_cases('test_match_node_controller\\process_task_add_child_layer_by_config.json') + @classmethod def _load_cases(cls, filename): """从JSON文件加载测试用例""" diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_case.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_case.json index d4f298919..5590aca05 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_case.json +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_case.json @@ -76,26 +76,26 @@ } } } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "matched_node_link": [], - "input_data": { - "input_arg0": { + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "Module", + "matched_node_link": [], + "input_data": { + "input_arg0": { + "md5": "1234567890abcdef" + }, + "input_arg1": { + "md5": "abcdef1234567890" + }, + "output_data": { + "output_arg0": { "md5": "1234567890abcdef" }, - "input_arg1": { - "md5": "abcdef1234567890" - }, - "output_data": { - "output_arg0": { - "md5": "1234567890abcdef" - }, - "output_arg1": { - "md5": "1234567890abcdef" - } + "output_arg1": { + "md5": "1234567890abcdef" } } } @@ -142,7 +142,8 @@ "task": "md5" }, "expected": { - "success": true + "success": false, + "error": "节点类型不一致,无法添加匹配关系" } }, { diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer_by_config.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer_by_config.json new file mode 100644 index 000000000..934d1b3b9 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer_by_config.json @@ -0,0 +1,448 @@ +[ + { + "case_id": 1, + "description": "批量添加成功 - 所有节点匹配成功", + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node1": { + "node_type": "Module", + "input_data": { + "in1": { + "md5": "abc123" + } + }, + "output_data": { + "out1": { + "md5": "def456" + } + } + }, + "npu_node2": { + "node_type": "API", + "input_data": { + "in2": { + "md5": "ghij789" + } + }, + "output_data": { + "out2": { + "md5": "klm012" + } + } + } + } + }, + "Bench": { + "node": { + "bench_node1": { + "node_type": "Module", + "input_data": { + "in1": { + "md5": "abc123" + } + }, + "output_data": { + "out1": { + "md5": "def456" + } + } + }, + "bench_node2": { + "node_type": "API", + "input_data": { + "in2": { + "md5": "ghij789" + } + }, + "output_data": { + "out2": { + "md5": "klm012" + } + } + } + } + } + }, + "match_node_links": { + "npu_node1": "bench_node1", + "npu_node2": "bench_node2" + }, + "task": "md5" + }, + "expected": { + "success": true, + "data": { + "matchReslut": [ + true, + true + ], + "npuMatchNodes": { + "npu_node1": "bench_node1", + "npu_node2": "bench_node2" + }, + "benchMatchNodes": { + "bench_node1": "npu_node1", + "bench_node2": "npu_node2" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + }, + { + "case_id": 2, + "description": "批量添加成功 - md值不同", + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node1": { + "node_type": "Module", + "input_data": { + "in1": { + "md5": "abc123" + } + }, + "output_data": { + "out1": { + "md5": "def456" + } + } + }, + "npu_node2": { + "node_type": "API", + "input_data": { + "in2": { + "md5": "ghij789" + } + }, + "output_data": { + "out2": { + "md5": "klm012" + } + } + } + } + }, + "Bench": { + "node": { + "bench_node1": { + "node_type": "Module", + "input_data": { + "in1": { + "md5": "abc123" + } + }, + "output_data": { + "out1": { + "md5": "def456" + } + } + }, + "bench_node2": { + "node_type": "API", + "input_data": { + "in2": { + "md5": "different" + } + }, + "output_data": { + "out2": { + "md5": "klm012" + } + } + } + } + } + }, + "match_node_links": { + "npu_node1": "bench_node1", + "npu_node2": "bench_node2" + }, + "task": "md5" + }, + "expected": { + "success": true, + "data": { + "matchReslut": [ + true, + true + ], + "benchMatchNodes": { + "bench_node1": "npu_node1", + "bench_node2": "npu_node2" + }, + "npuMatchNodes": { + "npu_node1": "bench_node1", + "npu_node2": "bench_node2" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + }, + { + "case_id": 3, + "description": "部分失败 - 节点不存在导致失败", + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node1": { + "node_type": "Module", + "input_data": { + "in1": { + "Max": 1.0, + "Min": 0.1 + } + }, + "output_data": { + "out1": { + "Max": 2.0, + "Min": 0.2 + } + } + } + } + }, + "Bench": { + "node": { + "bench_node1": { + "node_type": "Module", + "input_data": { + "in1": { + "Max": 1.0, + "Min": 0.1 + } + }, + "output_data": { + "out1": { + "Max": 2.0, + "Min": 0.2 + } + } + }, + "bench_node2": { + "node_type": "API", + "input_data": { + "in2": { + "Max": 3.0, + "Min": 0.3 + } + }, + "output_data": { + "out2": { + "Max": 4.0, + "Min": 0.4 + } + } + } + } + } + }, + "match_node_links": { + "npu_node1": "bench_node1", + "invalid_node": "bench_node2", + "npu_node2": "invalid_node" + }, + "task": "summary" + }, + "expected": { + "success": true, + "data": { + "matchReslut": [ + true, + false, + false + ], + "npuMatchNodes": { + "npu_node1": "bench_node1" + }, + "benchMatchNodes": { + "bench_node1": "npu_node1" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + }, + { + "case_id": 4, + "description": "统计计算失败 - 输入数据不匹配", + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node": { + "node_type": "Module", + "input_data": { + "in1": { + "Max": 1.0, + "Min": 0.1 + } + }, + "output_data": { + "out1": { + "Max": 2.0, + "Min": 0.2 + } + } + } + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "Module", + "input_data": null, + "output_data": { + "out1": { + "Max": 2.0, + "Min": 0.2 + } + } + } + } + } + }, + "match_node_links": { + "npu_node": "bench_node" + }, + "task": "summary" + }, + "expected": { + "success": true, + "data": { + "matchReslut": [ + false + ], + "npuMatchNodes": {}, + "benchMatchNodes": {}, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + }, + { + "case_id": 5, + "description": "节点类型不匹配导致失败", + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node": { + "node_type": "Module", + "input_data": { + "in1": { + "md5": "abc123" + } + }, + "output_data": { + "out1": { + "md5": "def456" + } + } + } + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "API", + "input_data": { + "in1": { + "md5": "abc123" + } + }, + "output_data": { + "out1": { + "md5": "def456" + } + } + } + } + } + }, + "match_node_links": { + "npu_node": "bench_node" + }, + "task": "md5" + }, + "expected": { + "success": true, + "data": { + "matchReslut": [ + false + ], + "npuMatchNodes": {}, + "benchMatchNodes": {}, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + }, + { + "case_id": 7, + "description": "计算精度错误 - 统计计算失败", + "input": { + "graph_data": { + "NPU": { + "node": { + "npu_node": { + "node_type": "Module", + "input_data": { + "in1": { + "Max": 1.0, + "Min": 0.1 + } + }, + "output_data": { + "out1": { + "Max": "invalid", + "Min": "value" + } + } + } + } + }, + "Bench": { + "node": { + "bench_node": { + "node_type": "Module", + "input_data": { + "in1": { + "Max": 1.0, + "Min": 0.1 + } + }, + "output_data": { + "out1": { + "Max": 2.0, + "Min": 0.2 + } + } + } + } + } + }, + "match_node_links": { + "npu_node": "bench_node" + }, + "task": "summary" + }, + "expected": { + "success": true, + "data": { + "matchReslut": [ + false + ], + "npuMatchNodes": {}, + "benchMatchNodes": {}, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py index e70734d3e..f007fb0e2 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py @@ -65,4 +65,13 @@ class TestMatchNodesController: excepted = test_case['expected'] actual = MatchNodesController.process_task_delete_child_layer(graph_data, npu_node_name, bench_node_name, task) assert actual == excepted + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_process_task_add_child_layer_by_config_cases(), + ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_process_task_add_child_layer_by_config(self, test_case): + """测试根据配置文件添加子节点层功能""" + graph_data, match_node_links, task = test_case['input'].values() + excepted = test_case['expected'] + actual = MatchNodesController.process_task_add_child_layer_by_config(graph_data, match_node_links, task) + assert actual == excepted -- Gitee From bc28e98ebed8817ee244d4f0cba528588b286668 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Wed, 18 Jun 2025 17:30:06 +0800 Subject: [PATCH 03/22] =?UTF-8?q?=F0=9F=A7=AA=20test:=E5=88=86=E6=94=AF?= =?UTF-8?q?=E8=A6=86=E7=9B=96=E7=8E=8742%?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../server/app/controllers/hierarchy.py | 1 - .../layout_hierarchy_controller.py | 6 +- .../tb_graph_ascend/test/conftest.py | 4 +- .../test/data/test_case_factory.py | 16 + .../change_expand_state_case.json | 815 +++++++++++++++ .../test_compare_statis_graph.vis | 945 ++++++++++++++++++ .../test_single_statis_graph.vis | 523 ++++++++++ .../update_hierarchy_data_case.json | 245 +++++ .../test_layout_hierarchy_controller.py | 31 + 9 files changed, 2579 insertions(+), 7 deletions(-) create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_compare_statis_graph.vis create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_single_statis_graph.vis diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/hierarchy.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/hierarchy.py index 753f8e50f..cebe26a70 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/hierarchy.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/hierarchy.py @@ -290,7 +290,6 @@ class Hierarchy: for node_name, node_info in self.current_hierarchy.items(): graph_node_info = self.graph.get('node', {}).get(node_name, {}) node_info['matchedNodeLink'] = graph_node_info.get('matched_node_link', []) - node_info['precisionIndex'] = graph_node_info.get('data', {}).get('precision_index', "NaN"), # 精度 return self.current_hierarchy def get_hierarchy(self): diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/layout_hierarchy_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/layout_hierarchy_controller.py index 126119f7c..8d6fa8389 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/layout_hierarchy_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/layout_hierarchy_controller.py @@ -13,7 +13,6 @@ # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== -import time from .hierarchy import Hierarchy @@ -30,9 +29,10 @@ class LayoutHierarchyController: @staticmethod def change_expand_state(node_name, graph_type, graph, micro_step): + print("change_expand_state", node_name, graph_type, micro_step) if node_name == 'root': LayoutHierarchyController.hierarchy[graph_type] = Hierarchy(graph_type, graph, micro_step) - elif LayoutHierarchyController.hierarchy[graph_type]: + elif LayoutHierarchyController.hierarchy.get(graph_type, None): LayoutHierarchyController.hierarchy[graph_type].update_graph_data(node_name, graph) LayoutHierarchyController.hierarchy[graph_type].update_graph_shape() LayoutHierarchyController.hierarchy[graph_type].update_graph_position() @@ -42,7 +42,7 @@ class LayoutHierarchyController: @staticmethod def update_hierarchy_data(graph_type): - if LayoutHierarchyController.hierarchy[graph_type]: + if LayoutHierarchyController.hierarchy.get(graph_type, None): return LayoutHierarchyController.hierarchy[graph_type].update_hierarchy_data() else: return {} diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py index 4c582b816..e2af65460 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py @@ -20,12 +20,10 @@ from data.test_case_factory import TestCaseFactory @pytest.fixture(scope="function", autouse=True) -def reset_global_state(): +def reset_global_state(request): """每个测试后重置全局状态""" - # 执行测试 yield - # 恢复原始状态 GraphState.init_defaults() diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py index b3b22b2e1..2f1a79085 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py @@ -41,6 +41,22 @@ class TestCaseFactory: @classmethod def get_process_task_add_child_layer_by_config_cases(cls): return cls._load_cases('test_match_node_controller\\process_task_add_child_layer_by_config.json') + + @classmethod + def get_change_expand_state_cases(cls): + return cls._load_cases('test_layout_hierarchy_controller\\change_expand_state_case.json') + + @classmethod + def get_update_hierarchy_data_cases(cls): + return cls._load_cases('test_layout_hierarchy_controller\\update_hierarchy_data_case.json') + + @classmethod + def load_single_graph_test_data(cls): + return cls._load_cases('test_layout_hierarchy_controller\\test_single_statis_graph.vis') + + @classmethod + def load_compare_graph_test_data(cls): + return cls._load_cases('test_layout_hierarchy_controller\\test_compare_statis_graph.vis') @classmethod def _load_cases(cls, filename): diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/change_expand_state_case.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/change_expand_state_case.json index e69de29bb..5536e45f2 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/change_expand_state_case.json +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/change_expand_state_case.json @@ -0,0 +1,815 @@ +[ + { + "case_id": "0", + "description": "测试无效graph_type", + "input": { + "node_name": "invalid", + "graph_type": "invalid", + "graph": {}, + "micro_step": -1 + }, + "expected": {} + }, + { + "case_id": "1", + "description": "测试展开NPU根节点", + "input": { + "node_name": "root", + "graph_type": "NPU", + "graph": {}, + "micro_step": -1 + }, + "expected": { + "AddThree_0": { + "x": 0, + "y": 0, + "width": 386, + "height": 125, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "AddThree_0", + "name": "N___AddThree_0", + "nodeType": 0, + "matchedNodeLink": [ + "B___AddThree_0" + ], + "precisionIndex": 0.5, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "arg0_1_0": { + "x": 168, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "arg0_1_0", + "name": "N___arg0_1_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": { + "communications_type": "send", + "nodes_info": { + "0": [ + "0.3", + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + ], + "1": [ + "Nan", + "Tensor.__api__0.forward" + ], + "2": [ + "0.3", + "arg0_1_0" + ], + "3": [ + "0.3", + "arg0_1_0" + ], + "4": [ + "0.3", + "arg0_1_0" + ] + } + } + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "x": 80, + "y": 50, + "width": 226, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "name": "N___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "nodeType": 9, + "matchedNodeLink": [ + "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + ], + "precisionIndex": "NaN", + "overflowLevel": "medium", + "matchedDistributed": {} + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "x": 5, + "y": 75, + "width": 376, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "name": "N___Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "nodeType": 8, + "matchedNodeLink": [], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "output_0": { + "x": 168, + "y": 100, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "output_0", + "name": "N___output_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + }, + { + "case_id": "2", + "description": "测试展开Bench根节点", + "input": { + "node_name": "root", + "graph_type": "Bench", + "graph": {}, + "micro_step": -1 + }, + "expected": { + "AddThree_0": { + "x": 0, + "y": 0, + "width": 386, + "height": 125, + "expand": true, + "isRoot": true, + "parentNode": "root", + "label": "AddThree_0", + "name": "B___AddThree_0", + "nodeType": 0, + "matchedNodeLink": [ + "N___AddThree_0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "arg0_1_0": { + "x": 168, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "arg0_1_0", + "name": "B___arg0_1_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "x": 80, + "y": 50, + "width": 226, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "name": "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "nodeType": 0, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "x": 5, + "y": 75, + "width": 376, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "name": "B___Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "nodeType": 0, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "output_0": { + "x": 168, + "y": 100, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "output_0", + "name": "B___output_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + }, + { + "case_id": "3", + "description": "测试展开单图根节点", + "input": { + "node_name": "root", + "graph_type": "Single", + "graph": {}, + "micro_step": -1 + }, + "expected": { + "AddThree_0": { + "x": 0, + "y": 0, + "width": 386, + "height": 150, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "AddThree_0", + "name": "AddThree_0", + "nodeType": 0, + "matchedNodeLink": [ + "B___AddThree_0" + ], + "precisionIndex": 0.5, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "arg0_1_0": { + "x": 168, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "arg0_1_0", + "name": "arg0_1_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Apis_Between_Modules.0": { + "x": 122, + "y": 50, + "width": 142, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Apis_Between_Modules.0", + "name": "Apis_Between_Modules.0", + "nodeType": 9, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "x": 80, + "y": 75, + "width": 226, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "name": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "nodeType": 9, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "medium", + "matchedDistributed": {} + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "x": 5, + "y": 100, + "width": 376, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "name": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "nodeType": 0, + "matchedNodeLink": [], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "output_0": { + "x": 168, + "y": 125, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "output_0", + "name": "output_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + }, + { + "case_id": "4", + "description": "测试点击展开多图NPU节点", + "input": { + "node_name": "AddThree_0", + "graph_type": "NPU", + "graph": {}, + "micro_step": -1 + }, + "expected": { + "AddThree_0": { + "x": 0, + "y": 0, + "width": 386, + "height": 125, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "AddThree_0", + "name": "N___AddThree_0", + "nodeType": 0, + "matchedNodeLink": [ + "B___AddThree_0" + ], + "precisionIndex": 0.5, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "arg0_1_0": { + "x": 168, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "arg0_1_0", + "name": "N___arg0_1_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": { + "communications_type": "send", + "nodes_info": { + "0": [ + "0.3", + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + ], + "1": [ + "Nan", + "Tensor.__api__0.forward" + ], + "2": [ + "0.3", + "arg0_1_0" + ], + "3": [ + "0.3", + "arg0_1_0" + ], + "4": [ + "0.3", + "arg0_1_0" + ] + } + } + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "x": 80, + "y": 50, + "width": 226, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "name": "N___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "nodeType": 9, + "matchedNodeLink": [ + "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + ], + "precisionIndex": "NaN", + "overflowLevel": "medium", + "matchedDistributed": {} + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "x": 5, + "y": 75, + "width": 376, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "name": "N___Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "nodeType": 8, + "matchedNodeLink": [], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "output_0": { + "x": 168, + "y": 100, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "output_0", + "name": "N___output_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + }, + { + "case_id": "5", + "description": "测试选择展开多图NPU节点", + "input": { + "node_name": "add_1", + "graph_type": "NPU", + "graph": {}, + "micro_step": -1 + }, + "expected": { + "AddThree_0": { + "x": 0, + "y": 0, + "width": 386, + "height": 220, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "AddThree_0", + "name": "N___AddThree_0", + "nodeType": 0, + "matchedNodeLink": [ + "B___AddThree_0" + ], + "precisionIndex": 0.5, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "arg0_1_0": { + "x": 168, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "arg0_1_0", + "name": "N___arg0_1_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": { + "communications_type": "send", + "nodes_info": { + "0": [ + "0.3", + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + ], + "1": [ + "Nan", + "Tensor.__api__0.forward" + ], + "2": [ + "0.3", + "arg0_1_0" + ], + "3": [ + "0.3", + "arg0_1_0" + ], + "4": [ + "0.3", + "arg0_1_0" + ] + } + } + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "x": 80, + "y": 50, + "width": 226, + "height": 110, + "expand": true, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "name": "N___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "nodeType": 9, + "matchedNodeLink": [ + "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + ], + "precisionIndex": "NaN", + "overflowLevel": "medium", + "matchedDistributed": {} + }, + "AddOne_0": { + "x": 164, + "y": 75, + "width": 58, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "label": "AddOne_0", + "name": "N___AddOne_0", + "nodeType": 0, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "AddOne_1": { + "x": 135, + "y": 100, + "width": 115, + "height": 50, + "expand": true, + "isRoot": false, + "parentNode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "label": "AddOne_1", + "name": "N___AddOne_1", + "nodeType": 9, + "matchedNodeLink": [], + "precisionIndex": 0.8, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "add_1": { + "x": 140, + "y": 125, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddOne_1", + "label": "add_1", + "name": "N___add_1", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "add_4": { + "x": 195, + "y": 125, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddOne_1", + "label": "add_4", + "name": "N___add_4", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "x": 5, + "y": 170, + "width": 376, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "name": "N___Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "nodeType": 8, + "matchedNodeLink": [], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "output_0": { + "x": 168, + "y": 195, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "output_0", + "name": "N___output_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + }, + { + "case_id": 6, + "description": "测试展开单图子节点", + "input": { + "node_name": "Apis_Between_Modules.0", + "graph_type": "Single", + "graph": {}, + "micro_step": -1 + }, + "expected": { + "AddThree_0": { + "x": 0, + "y": 0, + "width": 386, + "height": 185, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "AddThree_0", + "name": "AddThree_0", + "nodeType": 0, + "matchedNodeLink": [ + "B___AddThree_0" + ], + "precisionIndex": 0.5, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "arg0_1_0": { + "x": 168, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "arg0_1_0", + "name": "arg0_1_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Apis_Between_Modules.0": { + "x": 80, + "y": 50, + "width": 225, + "height": 50, + "expand": true, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Apis_Between_Modules.0", + "name": "Apis_Between_Modules.0", + "nodeType": 9, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Tensor.__api__0.forward": { + "x": 85, + "y": 75, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Apis_Between_Modules.0", + "label": "__api__0.forward", + "name": "Tensor.__api__0.forward", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Tensor.__api__1.forward": { + "x": 140, + "y": 75, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Apis_Between_Modules.0", + "label": "__api__1.forward", + "name": "Tensor.__api__1.forward", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Tensor.__api__2.forward": { + "x": 195, + "y": 75, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Apis_Between_Modules.0", + "label": "__api__2.forward", + "name": "Tensor.__api__2.forward", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Tensor.__api__3.forward": { + "x": 250, + "y": 75, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Apis_Between_Modules.0", + "label": "__api__3.forward", + "name": "Tensor.__api__3.forward", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "x": 80, + "y": 110, + "width": 226, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "name": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "nodeType": 9, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "medium", + "matchedDistributed": {} + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "x": 5, + "y": 135, + "width": 376, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "name": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "nodeType": 0, + "matchedNodeLink": [], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "output_0": { + "x": 168, + "y": 160, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "output_0", + "name": "output_0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_compare_statis_graph.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_compare_statis_graph.vis new file mode 100644 index 000000000..410cc2fc9 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_compare_statis_graph.vis @@ -0,0 +1,945 @@ +{ + "ToolTip": "{\"shape\": \"\\u6570\"}", + "NPU": { + "edge": [], + "node": { + "AddOne_0": { + "matched_node_link": [], + "data": {}, + "id": "AddOne_0", + "inputs": [], + "input_data": { + "AddOne_0.input_arg.0": { + "type": "torch.Tensor", + "dtype": "", + "shape": [ + 32, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "AddOne_0.input_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "AddOne_0.1": {}, + "AddOne_0.2": {} + }, + "output_data": { + "AddOne_0.output_arg.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 32, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "AddOne_0.output_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "AddOne_0.1": {}, + "AddOne_0.2": {} + }, + "is_forward": true, + "node_type": 0, + "outputs": [], + "pair": "None", + "subnodes": [ + "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", + "add_51111" + ], + "type": "AddOne", + "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + }, + "AddOne_1": { + "matched_node_link": [], + "data": { + "precision_index": 0.8 + }, + "id": "AddOne_1", + "inputs": [], + "input_data": { + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.input_arg.0": { + "data_name": "-10", + "longlonglonglonglonglongName": "hah", + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[32, 512, 2, 2]", + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406", + "error_key": [ + "type", + "shape" + ] + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.kwrag_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "is_forward": true, + "node_type": 9, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "add_1", + "add_4" + ], + "type": "AddOne", + "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "matched_node_link": [], + "data": { + "precision_index": 0 + }, + "id": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "inputs": [], + "is_forward": true, + "node_type": 8, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "add_2" + ], + "type": "AddOne", + "upnode": "AddThree_0", + "micro_step_id": "3" + }, + "AddThree_0": { + "matched_node_link": [ + "B___AddThree_0" + ], + "data": { + "precision_index": 0.5 + }, + "id": "AddThree_0", + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "arg0_1_0", + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "output_0" + ], + "type": "AddThree", + "upnode": "None" + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "matched_node_link": [ + "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + ], + "data": { + "precision_status": false, + "Host Self Duration(us)": 56.24, + "Host Total Duration(us)": 56.24, + "Device Self Duration(us)": 0, + "Device Total Duration(us)": 0, + "overflow_level": "medium" + }, + "id": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "inputs": [], + "input_data": { + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.input_arg.0": { + "data_name": "-10", + "longlonglonglonglonglongName": "hah", + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[32, 512, 2, 2]", + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406", + "error_key": [ + "type", + "shape" + ] + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.kwrag_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "is_forward": true, + "node_type": 9, + "outputs": [], + "output_data": { + "output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 128, + 512, + 2, + 2 + ], + "Max": "538.2343242", + "Min": "-234.124124234", + "Mean": "-510.23432654", + "Norm": "3555.3406" + }, + "output.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 16, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "pair": "None", + "subnodes": [ + "AddOne_0", + "AddOne_1" + ], + "suggestions": { + "text": "test ptdbg工具 with longlong tenm tensldjta te alsejtka gaew jtljae tet jsdklfj.", + "ptdbg工具": "https://gitee.com/ascend/att/tree/master/debug/accuracy_tools/ptdbg_ascend" + }, + "stack_info": [ + "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)", + "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)", + "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)" + ], + "type": "AddTwo", + "upnode": "AddThree_0", + "micro_step_id": "0" + }, + "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee": { + "matched_node_link": [ + "B___AddThree_0", + "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "B___AddOne_0", + "B___Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee" + ], + "data": { + "precision_index": 0.35 + }, + "id": "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", + "inputs": [], + "input_data": { + "input_arg.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 32, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "input_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "input_arg.2": "None" + }, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": { + "output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 128, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "output.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 16, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "pair": "None", + "subnodes": [], + "type": "addlongtingmelasidngkonklajelkjsakljgskadtest", + "upnode": "AddOne_0" + }, + "add_51111": { + "matched_node_link": [], + "data": { + "precision_status": true, + "precision_index": 1, + "md5 Compare Result": "Pass" + }, + "id": "add_51111", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 1, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "AddOne_0" + }, + "add_1": { + "matched_node_link": [], + "data": { + "precision_status": false, + "precision_index": 0, + "md5 Compare Result": "Pass" + }, + "id": "add_1", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "AddOne_1" + }, + "add_4": { + "matched_node_link": [], + "data": {}, + "id": "add_4", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "AddOne_1" + }, + "add_2": { + "matched_node_link": [], + "data": {}, + "id": "add_2", + "inputs": [], + "input_data": { + "add_2.input_arg.0": { + "longlonglonglonglonglongName": "hah", + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[32, 512, 2, 2]", + "Max": "6408.2343242", + "Min": "-3134.124124234", + "Mean": "-501.23432654", + "Norm": "3555.3406", + "error_key": [ + "type", + "shape" + ] + }, + "add_2.kwrag_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee" + }, + "arg0_1_0": { + "matched_node_link": [], + "data": {}, + "id": "arg0_1_0", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "arg0_1", + "upnode": "AddThree_0", + "micro_step_id": "2", + "suggestions": { + "text": "test ptdbg工" + }, + "stack_info": [ + "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)" + ], + "matched_distributed": { + "communications_type": "send", + "nodes_info": { + "0": [ + "0.3", + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + ], + "1": [ + "Nan", + "Tensor.__api__0.forward" + ], + "2": [ + "0.3", + "arg0_1_0" + ], + "3": [ + "0.3", + "arg0_1_0" + ], + "4": [ + "0.3", + "arg0_1_0" + ] + } + } + }, + "output_0": { + "matched_node_link": [], + "data": {}, + "id": "output_0", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "output", + "upnode": "AddThree_0", + "micro_step_id": "3" + } + }, + "root": "AddThree_0" + }, + "Bench": { + "edge": [], + "node": { + "AddOne_0": { + "matched_node_link": [], + "data": {}, + "id": "AddOne_0", + "inputs": [], + "input_data": { + "AddOne_0.input_arg.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 32, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "AddOne_0.input_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "output_data": { + "AddOne_0.output_arg.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 32, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "AddOne_0.output_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "is_forward": true, + "node_type": 0, + "outputs": [], + "pair": "None", + "subnodes": [ + "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee" + ], + "type": "AddOne", + "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + }, + "AddOne_1": { + "matched_node_link": [], + "data": {}, + "id": "AddOne_1", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "add_1" + ], + "type": "AddOne", + "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "matched_node_link": [], + "data": {}, + "id": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "add_2" + ], + "type": "AddOne", + "upnode": "AddThree_0" + }, + "AddThree_0": { + "matched_node_link": [ + "N___AddThree_0" + ], + "data": {}, + "id": "AddThree_0", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "arg0_1_0", + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "output_0" + ], + "type": "AddThree", + "upnode": "root" + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "matched_node_link": [], + "data": {}, + "id": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "inputs": [], + "input_data": { + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.input_arg.0": { + "longlonglonglonglonglongName": "hah", + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[32, 512, 2, 2]", + "Max": "548.2343242", + "Min": "-234.124124234", + "Mean": "-5.23432654", + "Norm": "35555.3406", + "error_key": [ + "type", + "shape" + ] + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.kwrag_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": { + "output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 128, + 512, + 2, + 2 + ], + "Max": "5038.2343242", + "Min": "-1234.124124234", + "Mean": "-410.23432654", + "Norm": "3255.3406" + }, + "output.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 16, + 256, + 2, + 2 + ], + "Max": "538.2343242", + "Min": "-234.124124234", + "Mean": "-51.23432654", + "Norm": "35555.3406" + } + }, + "pair": "None", + "subnodes": [ + "AddOne_0", + "AddOne_1" + ], + "type": "AddTwo", + "upnode": "AddThree_0" + }, + "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee": { + "matched_node_link": [ + "N___AddThree_0", + "N___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "N___AddOne_0", + "N___Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee" + ], + "data": {}, + "id": "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", + "inputs": [], + "input_data": { + "input_arg.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 32, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "input_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "is_forward": true, + "node_type": 1, + "outputs": [], + "output_data": { + "output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 128, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "output.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 16, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "AddOne_0" + }, + "add_1": { + "matched_node_link": [], + "data": {}, + "id": "add_1", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 1, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "AddOne_1" + }, + "add_2": { + "matched_node_link": [], + "data": {}, + "id": "add_2", + "inputs": [], + "input_data": { + "add_2.input_arg.0": { + "longlonglonglonglonglongName": "hah", + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[32, 512, 2, 2]", + "Max": "548.2343242", + "Min": "-234.124124234", + "Mean": "-5.23432654", + "Norm": "35555.3406", + "error_key": [ + "type", + "shape" + ] + }, + "add_2.kwrag_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "is_forward": true, + "node_type": 1, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee" + }, + "arg0_1_0": { + "matched_node_link": [], + "data": {}, + "id": "arg0_1_0", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 1, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "arg0_1", + "upnode": "AddThree_0" + }, + "output_0": { + "matched_node_link": [], + "data": {}, + "id": "output_0", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 1, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "output", + "upnode": "AddThree_0" + } + }, + "root": "AddThree_0" + }, + "Colors": { + "#FFFCF3": { + "value": [ + 0, + 0.2 + ], + "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" + }, + "#FFEDBE": { + "value": [ + 0.2, + 0.4 + ], + "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" + }, + "#FFDC7F": { + "value": [ + 0.4, + 0.6 + ], + "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" + }, + "#FFC62E": { + "value": [ + 0.6, + 0.8 + ], + "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" + }, + "#ff704d": { + "value": [ + 0.8, + 1 + ], + "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" + }, + "#C7C7C7": { + "value": "无匹配节点", + "description": "对比过程中节点未匹配上" + } + }, + "MicroSteps": 5, + "task": "summary", + "match": [], + "OverflowCheck": true, + "npu_match_nodes": {}, + "bench_match_nodes": {} +} \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_single_statis_graph.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_single_statis_graph.vis new file mode 100644 index 000000000..323db0b2a --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_single_statis_graph.vis @@ -0,0 +1,523 @@ +{ + "ToolTip": "{\"OneTwoThree\": \"\\u6570\"}", + + "node": { + "AddOne_0": { + "matched_node_link": [], + "data": { + "precision_index": 1 + }, + "id": "AddOne_0", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", + "add_5" + ], + "type": "AddOne", + "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + }, + "AddOne_1": { + "matched_node_link": [], + "data": { + "precision_index": 0.8 + }, + "id": "AddOne_1", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 9, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "add_1", + "add_4" + ], + "type": "AddOne", + "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "matched_node_link": [], + "data": { + "precision_index": 0 + }, + "id": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "add_2" + ], + "type": "AddOne", + "upnode": "AddThree_0", + "micro_step_id": "3" + }, + "Apis_Between_Modules.0": { + "matched_node_link": [], + "data": {}, + "id": "Apis_Between_Modules.0", + "inputs": [], + "input_data": {}, + "node_type": 9, + "outputs": [], + "output_data": {}, + "subnodes": [ + "Tensor.__api__0.forward", + "Tensor.__api__1.forward", + "Tensor.__api__2.forward", + "Tensor.__api__3.forward", + "Tensor.__api__4.forward", + "Tensor.__api__5.forward", + "Tensor.__api__6.forward", + "Tensor.__api__7.forward", + "Tensor.__api__8.forward", + "Tensor.__api__9.forward", + "api__10", + "Tensor.__api__11.forward", + "Tensor.__api__12.forward", + "Tensor.__api__13.forward", + "Tensor.__api__14.forward", + "Tensor.__api__15.forward", + "Tensor.__api__16.forward", + "api__17", + "Tensor.__api__18.forward", + "Tensor.__api__19.forward", + "Tensor.__api__20.forward", + "Tensor.__apis__0.forward", + "Tensor.__apis__1.forward", + "Tensor.__apis__2.forward", + "Tensor.__apis__3.forward", + "Tensor.__apis__4.forward", + "Tensor.__apis__5.forward", + "Tensor.__apis__6.forward", + "Tensor.__apis__7.forward", + "Tensor.__apis__8.forward", + "Tensor.__apis__9.forward", + "apis__10", + "Tensor.__apis__11.forward", + "Tensor.__apis__12.forward", + "Tensor.__apis__13.forward", + "Tensor.__apis__14.forward", + "Tensor.__apis__15.forward", + "Tensor.__apis__16.forward", + "apis__17", + "Tensor.__apis__18.forward", + "Tensor.__apis__19.forward", + "Tensor.__apis__20.forward" + ], + "upnode": "AddThree_0", + "micro_step_id": "3" + }, + "Tensor.__api__0.forward": { + "matched_node_link": [], + "id": "Tensor.__api__0.forward", + "inputs": [], + "input_data": {}, + "node_type": 1, + "outputs": [], + "output_data": {}, + "subnodes": [], + "upnode": "Apis_Between_Modules.0" + }, + "Tensor.__api__1.forward": { + "matched_node_link": [], + "id": "Tensor.__api__1.forward", + "inputs": [], + "input_data": {}, + "node_type": 1, + "outputs": [], + "output_data": {}, + "subnodes": [], + "upnode": "Apis_Between_Modules.0" + }, + "Tensor.__api__2.forward": { + "matched_node_link": [], + "id": "Tensor.__api__2.forward", + "inputs": [], + "input_data": {}, + "node_type": 1, + "outputs": [], + "output_data": {}, + "subnodes": [], + "upnode": "Apis_Between_Modules.0" + }, + "Tensor.__api__3.forward": { + "matched_node_link": [], + "id": "Tensor.__api__3.forward", + "inputs": [], + "input_data": {}, + "node_type": 1, + "outputs": [], + "output_data": {}, + "subnodes": [], + "upnode": "Apis_Between_Modules.0" + }, + "AddThree_0": { + "matched_node_link": [ + "B___AddThree_0" + ], + "data": { + "precision_index": 0.5 + }, + "id": "AddThree_0", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [ + "arg0_1_0", + "Apis_Between_Modules.0", + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "output_0" + ], + "type": "AddThree", + "upnode": "None" + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "matched_node_link": [], + "data": { + "precision_status": false, + "Host Self Duration(us)": 56.24, + "Host Total Duration(us)": 56.24, + "Device Self Duration(us)": 0, + "Device Total Duration(us)": 0, + "overflow_level": "medium" + }, + "id": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "inputs": [], + "input_data": { + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.input_arg.0": { + "longlonglonglonglonglongName": "hah", + "type": "torch.Tensorzhishihsihsaoidfhisjdflksjdflkjsklgjskldjfkls阿斯利康大姐夫克里斯丁剪发卡老大说发了跨境电商付了款大", + "dtype": "torch.float32", + "shape": "[32, 512, 2, 2]", + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406", + "error_key": [ + "type", + "shape" + ] + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.kwrag_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "is_forward": true, + "node_type": 9, + "outputs": [], + "output_data": { + "output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 128, + 512, + 2, + 2 + ], + "Max": "538.2343242", + "Min": "-234.124124234", + "Mean": "-510.23432654", + "Norm": "3555.3406" + }, + "output.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 16, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "pair": "None", + "subnodes": [ + "AddOne_0", + "AddOne_1" + ], + "suggestions": { + "text": "test ptdbg工具 with longlong tenm tensldjta te alsejtka gaew jtljae tet jsdklfj.", + "ptdbg工具": "https://gitee.com/ascend/att/tree/master/debug/accuracy_tools/ptdbg_ascend" + }, + "stack_info": [ + "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)", + "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)", + "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)" + ], + "type": "AddTwo", + "upnode": "AddThree_0", + "micro_step_id": "0" + }, + "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee": { + "matched_node_link": [ + "B___AddThree_0", + "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "B___AddOne_0", + "B___Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee" + ], + "data": { + "precision_index": 0.35 + }, + "id": "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", + "inputs": [], + "input_data": { + "input_arg.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 32, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "input_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "input_arg.2": "None" + }, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": { + "output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 128, + 512, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + }, + "output.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 16, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406" + } + }, + "pair": "None", + "subnodes": [], + "type": "addlongtingmelasidngkonklajelkjsakljgskadtest", + "upnode": "AddOne_0" + }, + "add_5": { + "matched_node_link": [], + "data": { + "precision_status": true, + "precision_index": 1, + "md5 Compare Result": "Pass" + }, + "id": "add_5", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "AddOne_0" + }, + "add_1": { + "matched_node_link": [], + "data": { + "precision_status": false, + "precision_index": 0, + "md5 Compare Result": "Pass" + }, + "id": "add_1", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "AddOne_1" + }, + "add_4": { + "matched_node_link": [], + "data": {}, + "id": "add_4", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "AddOne_1" + }, + "add_2": { + "matched_node_link": [ + "add_2" + ], + "data": { + "precision_index": 9475.908623767291 + }, + "id": "add_2", + "inputs": [], + "input_data": { + "add_2.input_arg.0": { + "longlonglonglonglonglongName": "hah", + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[32, 512, 2, 2]", + "Max": "6408.2343242", + "Min": "-3134.124124234", + "Mean": "-501.23432654", + "Norm": "3555.3406", + "error_key": [ + "type", + "shape" + ], + "Max diff": 5860, + "Min diff": -2900, + "Mean diff": -496, + "L2norm diff": -32000.000000000004, + "MaxRelativeErr": "1068.886011%", + "MinRelativeErr": "1238.659198%", + "MeanRelativeErr": "9475.908624%", + "NormRelativeErr": "90.000544%" + }, + "add_2.kwrag_arg.1": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": [ + 64, + 256, + 2, + 2 + ], + "Max": "5348.2343242", + "Min": "-2344.124124234", + "Mean": "-51.23432654", + "Norm": "355555.3406", + "Max diff": 0, + "Min diff": 0, + "Mean diff": 0, + "L2norm diff": 0, + "MaxRelativeErr": "0.000000%", + "MinRelativeErr": "0.000000%", + "MeanRelativeErr": "0.000000%", + "NormRelativeErr": "0.000000%" + } + }, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "add", + "upnode": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee" + }, + "arg0_1_0": { + "matched_node_link": [], + "data": {}, + "id": "arg0_1_0", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "arg0_1", + "upnode": "AddThree_0", + "micro_step_id": "2", + "suggestions": { + "text": "test ptdbg工" + }, + "stack_info": [ + "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)" + ] + }, + "output_0": { + "matched_node_link": [], + "data": {}, + "id": "output_0", + "inputs": [], + "input_data": {}, + "is_forward": true, + "node_type": 0, + "outputs": [], + "output_data": {}, + "pair": "None", + "subnodes": [], + "type": "output", + "upnode": "AddThree_0", + "micro_step_id": "3" + } + }, + "root": "AddThree_0", + "MicroSteps": 5, + "task": "summary" +} diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/update_hierarchy_data_case.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/update_hierarchy_data_case.json index e69de29bb..1aba4c270 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/update_hierarchy_data_case.json +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/update_hierarchy_data_case.json @@ -0,0 +1,245 @@ +[ + { + "case_id": "1", + "description": "测试无效graph type", + "input": { + "graph_type": "invaild" + }, + "expected": {} + }, + { + "case_id": "2", + "description": "测试单图", + "input": { + "graph_type": "Single" + }, + "expected": { + "AddThree_0": { + "x": 0, + "y": 0, + "width": 386, + "height": 185, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "AddThree_0", + "name": "AddThree_0", + "children": [ + "arg0_1_0", + "Apis_Between_Modules.0", + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "output_0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "B___AddThree_0" + ], + "precisionIndex": 0.5, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "arg0_1_0": { + "x": 168, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "arg0_1_0", + "name": "arg0_1_0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Apis_Between_Modules.0": { + "x": 80, + "y": 50, + "width": 225, + "height": 50, + "expand": true, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Apis_Between_Modules.0", + "name": "Apis_Between_Modules.0", + "children": [ + "Tensor.__api__0.forward", + "Tensor.__api__1.forward", + "Tensor.__api__2.forward", + "Tensor.__api__3.forward", + "Tensor.__api__4.forward", + "Tensor.__api__5.forward", + "Tensor.__api__6.forward", + "Tensor.__api__7.forward", + "Tensor.__api__8.forward", + "Tensor.__api__9.forward", + "api__10", + "Tensor.__api__11.forward", + "Tensor.__api__12.forward", + "Tensor.__api__13.forward", + "Tensor.__api__14.forward", + "Tensor.__api__15.forward", + "Tensor.__api__16.forward", + "api__17", + "Tensor.__api__18.forward", + "Tensor.__api__19.forward", + "Tensor.__api__20.forward", + "Tensor.__apis__0.forward", + "Tensor.__apis__1.forward", + "Tensor.__apis__2.forward", + "Tensor.__apis__3.forward", + "Tensor.__apis__4.forward", + "Tensor.__apis__5.forward", + "Tensor.__apis__6.forward", + "Tensor.__apis__7.forward", + "Tensor.__apis__8.forward", + "Tensor.__apis__9.forward", + "apis__10", + "Tensor.__apis__11.forward", + "Tensor.__apis__12.forward", + "Tensor.__apis__13.forward", + "Tensor.__apis__14.forward", + "Tensor.__apis__15.forward", + "Tensor.__apis__16.forward", + "apis__17", + "Tensor.__apis__18.forward", + "Tensor.__apis__19.forward", + "Tensor.__apis__20.forward" + ], + "nodeType": 9, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Tensor.__api__0.forward": { + "x": 85, + "y": 75, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Apis_Between_Modules.0", + "label": "__api__0.forward", + "name": "Tensor.__api__0.forward", + "children": [], + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Tensor.__api__1.forward": { + "x": 140, + "y": 75, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Apis_Between_Modules.0", + "label": "__api__1.forward", + "name": "Tensor.__api__1.forward", + "children": [], + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Tensor.__api__2.forward": { + "x": 195, + "y": 75, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Apis_Between_Modules.0", + "label": "__api__2.forward", + "name": "Tensor.__api__2.forward", + "children": [], + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Tensor.__api__3.forward": { + "x": 250, + "y": 75, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Apis_Between_Modules.0", + "label": "__api__3.forward", + "name": "Tensor.__api__3.forward", + "children": [], + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { + "x": 80, + "y": 110, + "width": 226, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "name": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", + "children": [ + "AddOne_0", + "AddOne_1" + ], + "nodeType": 9, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "medium", + "matchedDistributed": {} + }, + "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { + "x": 5, + "y": 135, + "width": 376, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "name": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", + "children": [ + "add_2" + ], + "nodeType": 0, + "matchedNodeLink": [], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "output_0": { + "x": 168, + "y": 160, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "AddThree_0", + "label": "output_0", + "name": "output_0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py index ee2432f47..ffd42a4f3 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py @@ -13,3 +13,34 @@ # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== + +import pytest +from data.test_case_factory import TestCaseFactory +from server.app.utils.global_state import SINGLE +from server.app.controllers.layout_hierarchy_controller import LayoutHierarchyController + + +@pytest.mark.unit +class TestLayoutHierarchyController: + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_change_expand_state_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_change_expand_state(self, test_case): + graph_type = test_case['input']['graph_type'] + if graph_type == SINGLE: + test_case['input']['graph'] = TestCaseFactory.load_single_graph_test_data() + else: + test_case['input']['graph'] = TestCaseFactory.load_compare_graph_test_data().get(graph_type, {}) + node_name, graph_type, graph, micro_step = test_case['input'].values() + excepted = test_case['expected'] + actual = LayoutHierarchyController.change_expand_state(node_name, graph_type, graph, micro_step) + + assert actual == excepted + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_update_hierarchy_data_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_update_hierarchy_data(self, test_case): + graph_type = test_case['input']['graph_type'] + excepted = test_case['expected'] + actual = LayoutHierarchyController.update_hierarchy_data(graph_type) + print("graph_type===", graph_type) + print(actual) + assert actual == excepted -- Gitee From feeb3fd9b7ddf3e94fee98bc0bcc8fd41f6a14b2 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Thu, 19 Jun 2025 16:47:08 +0800 Subject: [PATCH 04/22] =?UTF-8?q?=F0=9F=A7=AA=20test:=20=E5=88=86=E6=94=AF?= =?UTF-8?q?=E8=A6=86=E7=9B=96=E7=8E=8762%?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../tb_graph_ascend/pytest.ini | 8 + .../layout_hierarchy_controller.py | 1 - .../app/controllers/match_nodes_controller.py | 1 - .../server/app/service/graph_service.py | 2 + .../tb_graph_ascend/server/plugin.py | 1 + .../tb_graph_ascend/test/conftest.py | 4 +- .../test_compare_resnet_data.vis | 17016 ++++++++++++++++ .../test_load_graph_all_node_list.json | 317 + .../test_load_graph_config_info.json | 57 + .../test/data/test_case_factory.py | 45 +- .../integration/views/test_graph_views.py | 93 + .../tb_graph_ascend/test/pytest.ini | 12 - .../test_layout_hierarchy_controller.py | 3 - .../test_match_nodes_controller.py | 1 - 14 files changed, 17530 insertions(+), 31 deletions(-) create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/pytest.ini create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_compare_resnet_data.vis create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_all_node_list.json create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/pytest.ini diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/pytest.ini b/plugins/tensorboard-plugins/tb_graph_ascend/pytest.ini new file mode 100644 index 000000000..5784e1ce1 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/pytest.ini @@ -0,0 +1,8 @@ +[pytest] +testpaths = + test/unit + test/integration + +markers = + unit: unit tests + integration: integration tests \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/layout_hierarchy_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/layout_hierarchy_controller.py index 8d6fa8389..a88f09474 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/layout_hierarchy_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/layout_hierarchy_controller.py @@ -29,7 +29,6 @@ class LayoutHierarchyController: @staticmethod def change_expand_state(node_name, graph_type, graph, micro_step): - print("change_expand_state", node_name, graph_type, micro_step) if node_name == 'root': LayoutHierarchyController.hierarchy[graph_type] = Hierarchy(graph_type, graph, micro_step) elif LayoutHierarchyController.hierarchy.get(graph_type, None): diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py index c1864e367..1860dcaa3 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py @@ -183,7 +183,6 @@ class MatchNodesController: # 2. 目标节点的子节点和标杆侧的子节点添加匹配关系 def process_child_layer(npu_child_nodes): - print("process_child_layer", npu_child_nodes) for npu_subnode_name in npu_child_nodes: npu_subnode_info = npu_nodes.get(npu_subnode_name, {}) matched_node_link = npu_subnode_info.get('matched_node_link', []) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py index 2e218519e..ea01bfa92 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py @@ -31,9 +31,11 @@ class GraphService: @staticmethod def load_meta_dir(): """Scan logdir for directories containing .vis files, modified to return a tuple of (run, tag).""" + logdir = GraphState.get_global_value('logdir') runs = GraphState.get_global_value('runs', {}) first_run_tags = GraphState.get_global_value('first_run_tags', {}) + meta_dir = {} for root, _, files in GraphUtils.walk_with_max_depth(logdir, 2): for file in files: diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/plugin.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/plugin.py index 192843038..2c65227a9 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/plugin.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/plugin.py @@ -47,6 +47,7 @@ class GraphsPlugin(base_plugin.TBPlugin): context: A base_plugin.TBContext instance. """ super().__init__(context) + GraphState.reset_global_state() self._data_provider = context.data_provider self.logdir = os.path.abspath(os.path.expanduser(context.logdir.rstrip('/'))) # 将logdir赋值给global_state中的logdir属性,方便其他模块使用 diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py index e2af65460..ab0aeb977 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py @@ -22,10 +22,12 @@ from data.test_case_factory import TestCaseFactory @pytest.fixture(scope="function", autouse=True) def reset_global_state(request): """每个测试后重置全局状态""" + print('module', request.module.__name__) # 执行测试 yield # 恢复原始状态 - GraphState.init_defaults() + if request.module.__name__ != "test_graph_views": + GraphState.init_defaults() def pytest_addoption(parser): diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_compare_resnet_data.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_compare_resnet_data.vis new file mode 100644 index 000000000..3cc29203c --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_compare_resnet_data.vis @@ -0,0 +1,17016 @@ +{ + "NPU": { + "root": "DefaultModel", + "dump_data_dir": null, + "node": { + "DefaultModel": { + "id": "DefaultModel", + "node_type": 0, + "output_data": {}, + "input_data": {}, + "upnode": "None", + "subnodes": [ + "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.Sequential.forward.0", + "Module.layer2.Sequential.forward.0", + "Module.layer3.Sequential.forward.0", + "Module.layer4.Sequential.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.fc.Linear.forward.0", + "Module.fc.Linear.backward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.Sequential.backward.0", + "Module.layer3.Sequential.backward.0", + "Module.layer2.Sequential.backward.0", + "Module.layer1.Sequential.backward.0", + "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.conv1.Conv2d.forward.0": { + "id": "Module.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "1.526799", + "Min": "-1.559762", + "Mean": "-0.000263", + "Norm": "244.860931", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 3, 64, 64]", + "Max": "4.350435", + "Min": "-4.339223", + "Mean": "-0.001572", + "Norm": "350.247772", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 268, in _forward_impl, \n x = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.bn1.BatchNorm2d.forward.0": { + "id": "Module.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "-5.146786", + "Mean": "4.656613e-11", + "Norm": "809.493835", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "1.526799", + "Min": "-1.559762", + "Mean": "-0.000263", + "Norm": "244.860931", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 269, in _forward_impl, \n x = self.bn1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.relu.ReLU.forward.0": { + "id": "Module.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 270, in _forward_impl, \n x = self.relu(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.maxpool.MaxPool2d.forward.0": { + "id": "Module.maxpool.MaxPool2d.forward.0", + "node_type": 0, + "output_data": { + "Module.maxpool.MaxPool2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.maxpool.MaxPool2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 271, in _forward_impl, \n x = self.maxpool(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.BasicBlock.forward.0": { + "id": "Module.layer1.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.Sequential.forward.0", + "subnodes": [ + "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.conv1.Conv2d.forward.0": { + "id": "Module.layer1.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.74388", + "Min": "-7.379547", + "Mean": "-0.12333", + "Norm": "858.103699", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.Sequential.forward.0": { + "id": "Module.layer1.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "1.241406", + "Min diff": "-0.352369", + "Mean diff": "3.252369", + "L2norm diff": "6.914416", + "MaxRelativeErr": "66.663253%", + "MinRelativeErr": "56.663237%", + "MeanRelativeErr": "52.663233%", + "NormRelativeErr": "53.663533%" + } + }, + "input_data": { + "Module.layer1.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.7 + } + }, + "Module.layer1.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "-4.199296", + "Mean": "1.620501e-08", + "Norm": "404.769043", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.74388", + "Min": "-7.379547", + "Mean": "-0.12333", + "Norm": "858.103699", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.relu.ReLU.forward.0": { + "id": "Module.layer1.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.conv2.Conv2d.forward.0": { + "id": "Module.layer1.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.442179", + "Min": "-3.972987", + "Mean": "0.084329", + "Norm": "370.438843", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.605992", + "Min": "-4.646146", + "Mean": "4.284084e-09", + "Norm": "404.767944", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.442179", + "Min": "-3.972987", + "Mean": "0.084329", + "Norm": "370.438843", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.relu.ReLU.forward.1": { + "id": "Module.layer1.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.BasicBlock.forward.0": { + "id": "Module.layer1.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "6.326555", + "Min diff": "5.36963", + "Mean diff": "5.12369", + "L2norm diff": "8.39633", + "MaxRelativeErr": "83.235636%", + "MinRelativeErr": "69.362945%", + "MeanRelativeErr": "72.369548%", + "NormRelativeErr": "71.369612%" + } + }, + "input_data": { + "Module.layer1.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.Sequential.forward.0", + "subnodes": [ + "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer1.1.conv1.Conv2d.forward.0": { + "id": "Module.layer1.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "9.274334", + "Min": "-10.156013", + "Mean": "-0.101834", + "Norm": "975.393066", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "-4.49145", + "Mean": "-2.235174e-09", + "Norm": "404.770447", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "9.274334", + "Min": "-10.156013", + "Mean": "-0.101834", + "Norm": "975.393066", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.relu.ReLU.forward.0": { + "id": "Module.layer1.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.conv2.Conv2d.forward.0": { + "id": "Module.layer1.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.431858", + "Min": "-4.229196", + "Mean": "0.005514", + "Norm": "375.989105", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.475619", + "Min": "-4.364196", + "Mean": "1.396984e-09", + "Norm": "404.76828", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.431858", + "Min": "-4.229196", + "Mean": "0.005514", + "Norm": "375.989105", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.relu.ReLU.forward.1": { + "id": "Module.layer1.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.BasicBlock.forward.0": { + "id": "Module.layer2.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.conv1.Conv2d.forward.0": { + "id": "Module.layer2.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.363841", + "Min": "-8.813498", + "Mean": "0.116351", + "Norm": "582.720398", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.Sequential.forward.0": { + "id": "Module.layer2.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "-4.77158", + "Mean": "1.303852e-09", + "Norm": "286.215912", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.363841", + "Min": "-8.813498", + "Mean": "0.116351", + "Norm": "582.720398", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.relu.ReLU.forward.0": { + "id": "Module.layer2.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.conv2.Conv2d.forward.0": { + "id": "Module.layer2.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.0345", + "Min": "-4.125886", + "Mean": "-0.100337", + "Norm": "260.142944", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.152795", + "Min": "-4.936253", + "Mean": "3.725290e-10", + "Norm": "286.214294", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.0345", + "Min": "-4.125886", + "Mean": "-0.100337", + "Norm": "260.142944", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.downsample.Sequential.forward.0": { + "id": "Module.layer2.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.257706", + "Min": "-4.515994", + "Mean": "-1.117587e-09", + "Norm": "286.215851", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.203266", + "Min": "-9.355068", + "Mean": "-0.02311", + "Norm": "617.127319", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.257706", + "Min": "-4.515994", + "Mean": "-1.117587e-09", + "Norm": "286.215851", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.203266", + "Min": "-9.355068", + "Mean": "-0.02311", + "Norm": "617.127319", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.relu.ReLU.forward.1": { + "id": "Module.layer2.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.BasicBlock.forward.0": { + "id": "Module.layer2.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.conv1.Conv2d.forward.0": { + "id": "Module.layer2.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.62359", + "Min": "-5.580112", + "Mean": "0.074416", + "Norm": "367.649841", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "-4.101557", + "Mean": "-3.818422e-09", + "Norm": "286.215485", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.62359", + "Min": "-5.580112", + "Mean": "0.074416", + "Norm": "367.649841", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.relu.ReLU.forward.0": { + "id": "Module.layer2.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.conv2.Conv2d.forward.0": { + "id": "Module.layer2.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.393562", + "Min": "-4.753343", + "Mean": "-0.078746", + "Norm": "260.969421", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.73594", + "Min": "-4.475933", + "Mean": "2.421439e-09", + "Norm": "286.214294", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.393562", + "Min": "-4.753343", + "Mean": "-0.078746", + "Norm": "260.969421", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.relu.ReLU.forward.1": { + "id": "Module.layer2.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.BasicBlock.forward.0": { + "id": "Module.layer3.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.Sequential.forward.0", + "subnodes": [ + "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.conv1.Conv2d.forward.0": { + "id": "Module.layer3.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.532973", + "Min": "-6.165116", + "Mean": "0.023511", + "Norm": "250.68428", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.Sequential.forward.0": { + "id": "Module.layer3.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.layer3.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "-4.041963", + "Mean": "1.024455e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.532973", + "Min": "-6.165116", + "Mean": "0.023511", + "Norm": "250.68428", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.relu.ReLU.forward.0": { + "id": "Module.layer3.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.conv2.Conv2d.forward.0": { + "id": "Module.layer3.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.085584", + "Min": "-3.535729", + "Mean": "0.009184", + "Norm": "171.884354", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.328585", + "Min": "-4.24462", + "Mean": "-5.587936e-10", + "Norm": "202.383789", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.085584", + "Min": "-3.535729", + "Mean": "0.009184", + "Norm": "171.884354", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.Sequential.forward.0": { + "id": "Module.layer3.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.673633", + "Min": "-4.118578", + "Mean": "2.980232e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.544863", + "Min": "-5.637341", + "Mean": "0.063504", + "Norm": "262.41275", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.673633", + "Min": "-4.118578", + "Mean": "2.980232e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.544863", + "Min": "-5.637341", + "Mean": "0.063504", + "Norm": "262.41275", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.relu.ReLU.forward.1": { + "id": "Module.layer3.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.BasicBlock.forward.0": { + "id": "Module.layer3.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.Sequential.forward.0", + "subnodes": [ + "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.conv1.Conv2d.forward.0": { + "id": "Module.layer3.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.445492", + "Min": "-5.73983", + "Mean": "0.056189", + "Norm": "242.794586", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "-4.302232", + "Mean": "6.053597e-10", + "Norm": "202.384811", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.445492", + "Min": "-5.73983", + "Mean": "0.056189", + "Norm": "242.794586", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.relu.ReLU.forward.0": { + "id": "Module.layer3.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.conv2.Conv2d.forward.0": { + "id": "Module.layer3.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "3.904869", + "Min": "-3.915274", + "Mean": "0.000739", + "Norm": "175.362854", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.820035", + "Min": "-4.248729", + "Mean": "3.725290e-09", + "Norm": "202.38385", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "3.904869", + "Min": "-3.915274", + "Mean": "0.000739", + "Norm": "175.362854", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.relu.ReLU.forward.1": { + "id": "Module.layer3.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.BasicBlock.forward.0": { + "id": "Module.layer4.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.Sequential.forward.0", + "subnodes": [ + "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.conv1.Conv2d.forward.0": { + "id": "Module.layer4.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.17719", + "Min": "-5.021754", + "Mean": "-0.003242", + "Norm": "160.062332", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.Sequential.forward.0": { + "id": "Module.layer4.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.layer4.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "-4.494643", + "Mean": "0.0", + "Norm": "143.107346", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.17719", + "Min": "-5.021754", + "Mean": "-0.003242", + "Norm": "160.062332", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.relu.ReLU.forward.0": { + "id": "Module.layer4.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.conv2.Conv2d.forward.0": { + "id": "Module.layer4.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.548945", + "Min": "-2.623174", + "Mean": "-0.024468", + "Norm": "96.85141", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.43048", + "Min": "-3.390204", + "Mean": "-5.587936e-10", + "Norm": "143.106155", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.548945", + "Min": "-2.623174", + "Mean": "-0.024468", + "Norm": "96.85141", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.Sequential.forward.0": { + "id": "Module.layer4.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.162686", + "Min": "-4.141354", + "Mean": "-1.396984e-09", + "Norm": "143.107498", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "5.574177", + "Min": "-5.778933", + "Mean": "0.001088", + "Norm": "182.966492", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.162686", + "Min": "-4.141354", + "Mean": "-1.396984e-09", + "Norm": "143.107498", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "5.574177", + "Min": "-5.778933", + "Mean": "0.001088", + "Norm": "182.966492", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.relu.ReLU.forward.1": { + "id": "Module.layer4.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.BasicBlock.forward.0": { + "id": "Module.layer4.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.Sequential.forward.0", + "subnodes": [ + "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.conv1.Conv2d.forward.0": { + "id": "Module.layer4.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.864757", + "Min": "-3.787591", + "Mean": "0.002277", + "Norm": "133.55986", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "-3.694792", + "Mean": "1.490116e-09", + "Norm": "143.107239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.864757", + "Min": "-3.787591", + "Mean": "0.002277", + "Norm": "133.55986", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.relu.ReLU.forward.0": { + "id": "Module.layer4.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.conv2.Conv2d.forward.0": { + "id": "Module.layer4.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.484763", + "Min": "-2.720093", + "Mean": "0.013722", + "Norm": "95.469269", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.644991", + "Min": "-3.459976", + "Mean": "-4.656613e-10", + "Norm": "143.106094", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.484763", + "Min": "-2.720093", + "Mean": "0.013722", + "Norm": "95.469269", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.relu.ReLU.forward.1": { + "id": "Module.layer4.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.avgpool.AdaptiveAvgPool2d.forward.0": { + "id": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "node_type": 0, + "output_data": { + "Module.avgpool.AdaptiveAvgPool2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 1, 1]", + "Max": "2.68325", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "66.964317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.avgpool.AdaptiveAvgPool2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 278, in _forward_impl, \n x = self.avgpool(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.fc.Linear.forward.0": { + "id": "Module.fc.Linear.forward.0", + "node_type": 0, + "output_data": { + "Module.fc.Linear.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 10]", + "Max": "1.236255", + "Min": "-1.562365", + "Mean": "-0.12689", + "Norm": "5.357258", + "data_name": "-1" + } + }, + "input_data": { + "Module.fc.Linear.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512]", + "Max": "2.68325", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "66.964317", + "data_name": "-1" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + } + }, + "Module.fc.Linear.backward.0": { + "id": "Module.fc.Linear.backward.0", + "node_type": 0, + "output_data": { + "Module.fc.Linear.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512]", + "Max": "0.006356", + "Min": "-0.00662", + "Mean": "0.000117", + "Norm": "0.176545", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.fc.Linear.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 10]", + "Max": "0.03222", + "Min": "-0.097696", + "Mean": "1.490116e-10", + "Norm": "0.311353", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + } + }, + "Module.avgpool.AdaptiveAvgPool2d.backward.0": { + "id": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "node_type": 0, + "output_data": { + "Module.avgpool.AdaptiveAvgPool2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.avgpool.AdaptiveAvgPool2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 1, 1]", + "Max": "0.006356", + "Min": "-0.00662", + "Mean": "0.000117", + "Norm": "0.176545", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.layer4.1.BasicBlock.backward.0": { + "id": "Module.layer4.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.Sequential.backward.0", + "subnodes": [ + "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.relu.ReLU.backward.0": { + "id": "Module.layer4.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.170244e-05", + "Norm": "0.071178", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.Sequential.backward.0": { + "id": "Module.layer4.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00349", + "Min": "-0.003203", + "Mean": "-1.818989e-13", + "Norm": "0.114767", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.170244e-05", + "Norm": "0.071178", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.conv2.Conv2d.backward.0": { + "id": "Module.layer4.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003047", + "Min": "-0.003687", + "Mean": "5.127279e-08", + "Norm": "0.107756", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00349", + "Min": "-0.003203", + "Mean": "-1.818989e-13", + "Norm": "0.114767", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.relu.ReLU.backward.1": { + "id": "Module.layer4.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003023", + "Min": "-0.002646", + "Mean": "9.799842e-08", + "Norm": "0.075418", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003047", + "Min": "-0.003687", + "Mean": "5.127279e-08", + "Norm": "0.107756", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00392", + "Min": "-0.00384", + "Mean": "2.160050e-13", + "Norm": "0.093361", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003023", + "Min": "-0.002646", + "Mean": "9.799842e-08", + "Norm": "0.075418", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.conv1.Conv2d.backward.0": { + "id": "Module.layer4.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.002777", + "Min": "-0.002687", + "Mean": "-1.536876e-06", + "Norm": "0.087284", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00392", + "Min": "-0.00384", + "Mean": "2.160050e-13", + "Norm": "0.093361", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.BasicBlock.backward.0": { + "id": "Module.layer4.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.Sequential.backward.0", + "subnodes": [ + "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.relu.ReLU.backward.0": { + "id": "Module.layer4.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.Sequential.backward.0": { + "id": "Module.layer4.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004114", + "Min": "-0.003346", + "Mean": "-4.547474e-14", + "Norm": "0.087317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004101", + "Min": "-0.003454", + "Mean": "-3.637979e-13", + "Norm": "0.087384", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004114", + "Min": "-0.003346", + "Mean": "-4.547474e-14", + "Norm": "0.087317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004101", + "Min": "-0.003454", + "Mean": "-3.637979e-13", + "Norm": "0.087384", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.006026", + "Min": "-0.006504", + "Mean": "7.275958e-13", + "Norm": "0.138286", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.conv2.Conv2d.backward.0": { + "id": "Module.layer4.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "2.937198e-06", + "Norm": "0.130315", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.006026", + "Min": "-0.006504", + "Mean": "7.275958e-13", + "Norm": "0.138286", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.relu.ReLU.backward.1": { + "id": "Module.layer4.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "-8.934543e-07", + "Norm": "0.092057", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "2.937198e-06", + "Norm": "0.130315", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004244", + "Min": "-0.004086", + "Mean": "-4.547474e-13", + "Norm": "0.106542", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "-8.934543e-07", + "Norm": "0.092057", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.conv1.Conv2d.backward.0": { + "id": "Module.layer4.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.002732", + "Min": "-0.002337", + "Mean": "1.283062e-07", + "Norm": "0.088477", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004244", + "Min": "-0.004086", + "Mean": "-4.547474e-13", + "Norm": "0.106542", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.BasicBlock.backward.0": { + "id": "Module.layer3.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.Sequential.backward.0", + "subnodes": [ + "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.relu.ReLU.backward.0": { + "id": "Module.layer3.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "5.267739e-07", + "Norm": "0.100327", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.Sequential.backward.0": { + "id": "Module.layer3.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005349", + "Min": "-0.00458", + "Mean": "5.456968e-13", + "Norm": "0.134192", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "5.267739e-07", + "Norm": "0.100327", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.conv2.Conv2d.backward.0": { + "id": "Module.layer3.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004227", + "Min": "-0.003777", + "Mean": "-1.105049e-06", + "Norm": "0.161834", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005349", + "Min": "-0.00458", + "Mean": "5.456968e-13", + "Norm": "0.134192", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.relu.ReLU.backward.1": { + "id": "Module.layer3.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003753", + "Min": "-0.003777", + "Mean": "-1.121872e-07", + "Norm": "0.113553", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004227", + "Min": "-0.003777", + "Mean": "-1.105049e-06", + "Norm": "0.161834", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004302", + "Min": "-0.003597", + "Mean": "4.547474e-14", + "Norm": "0.108404", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003753", + "Min": "-0.003777", + "Mean": "-1.121872e-07", + "Norm": "0.113553", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.conv1.Conv2d.backward.0": { + "id": "Module.layer3.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003036", + "Min": "-0.002772", + "Mean": "-2.692081e-07", + "Norm": "0.133319", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004302", + "Min": "-0.003597", + "Mean": "4.547474e-14", + "Norm": "0.108404", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.BasicBlock.backward.0": { + "id": "Module.layer3.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.Sequential.backward.0", + "subnodes": [ + "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.relu.ReLU.backward.0": { + "id": "Module.layer3.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.Sequential.backward.0": { + "id": "Module.layer3.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004002", + "Min": "-0.004525", + "Mean": "3.410605e-13", + "Norm": "0.1262", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004036", + "Min": "-0.005194", + "Mean": "0.0", + "Norm": "0.126903", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004002", + "Min": "-0.004525", + "Mean": "3.410605e-13", + "Norm": "0.1262", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004036", + "Min": "-0.005194", + "Mean": "0.0", + "Norm": "0.126903", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.006225", + "Min": "-0.005798", + "Mean": "-3.637979e-13", + "Norm": "0.166553", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.conv2.Conv2d.backward.0": { + "id": "Module.layer3.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-6.200127e-07", + "Norm": "0.20419", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.006225", + "Min": "-0.005798", + "Mean": "-3.637979e-13", + "Norm": "0.166553", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.relu.ReLU.backward.1": { + "id": "Module.layer3.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-5.361890e-07", + "Norm": "0.144125", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-6.200127e-07", + "Norm": "0.20419", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005433", + "Min": "-0.005011", + "Mean": "0.0", + "Norm": "0.150797", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-5.361890e-07", + "Norm": "0.144125", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.conv1.Conv2d.backward.0": { + "id": "Module.layer3.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.003242", + "Min": "-0.002676", + "Mean": "1.208646e-08", + "Norm": "0.139735", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005433", + "Min": "-0.005011", + "Mean": "0.0", + "Norm": "0.150797", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.BasicBlock.backward.0": { + "id": "Module.layer2.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.Sequential.backward.0", + "subnodes": [ + "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.relu.ReLU.backward.0": { + "id": "Module.layer2.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "6.662881e-07", + "Norm": "0.152697", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.Sequential.backward.0": { + "id": "Module.layer2.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005537", + "Min": "-0.006419", + "Mean": "4.547474e-14", + "Norm": "0.192183", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "6.662881e-07", + "Norm": "0.152697", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.conv2.Conv2d.backward.0": { + "id": "Module.layer2.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004991", + "Mean": "6.954823e-07", + "Norm": "0.250644", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005537", + "Min": "-0.006419", + "Mean": "4.547474e-14", + "Norm": "0.192183", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.relu.ReLU.backward.1": { + "id": "Module.layer2.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004159", + "Mean": "2.355963e-06", + "Norm": "0.177588", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004991", + "Mean": "6.954823e-07", + "Norm": "0.250644", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004246", + "Min": "-0.003801", + "Mean": "3.865353e-13", + "Norm": "0.159253", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004159", + "Mean": "2.355963e-06", + "Norm": "0.177588", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.conv1.Conv2d.backward.0": { + "id": "Module.layer2.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.003947", + "Min": "-0.00409", + "Mean": "1.122175e-06", + "Norm": "0.213347", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004246", + "Min": "-0.003801", + "Mean": "3.865353e-13", + "Norm": "0.159253", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.BasicBlock.backward.0": { + "id": "Module.layer2.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.Sequential.backward.0", + "subnodes": [ + "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.relu.ReLU.backward.0": { + "id": "Module.layer2.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.Sequential.backward.0": { + "id": "Module.layer2.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004066", + "Min": "-0.004851", + "Mean": "4.547474e-14", + "Norm": "0.148232", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004749", + "Min": "-0.004585", + "Mean": "-2.728484e-13", + "Norm": "0.14894", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004066", + "Min": "-0.004851", + "Mean": "4.547474e-14", + "Norm": "0.148232", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004749", + "Min": "-0.004585", + "Mean": "-2.728484e-13", + "Norm": "0.14894", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00708", + "Min": "-0.008085", + "Mean": "-5.456968e-13", + "Norm": "0.246197", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.conv2.Conv2d.backward.0": { + "id": "Module.layer2.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005883", + "Min": "-0.005688", + "Mean": "7.895345e-07", + "Norm": "0.328498", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00708", + "Min": "-0.008085", + "Mean": "-5.456968e-13", + "Norm": "0.246197", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.relu.ReLU.backward.1": { + "id": "Module.layer2.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005686", + "Min": "-0.005685", + "Mean": "1.743164e-06", + "Norm": "0.232839", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005883", + "Min": "-0.005688", + "Mean": "7.895345e-07", + "Norm": "0.328498", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004441", + "Min": "-0.004493", + "Mean": "-3.637979e-13", + "Norm": "0.176547", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005686", + "Min": "-0.005685", + "Mean": "1.743164e-06", + "Norm": "0.232839", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.conv1.Conv2d.backward.0": { + "id": "Module.layer2.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.002586", + "Min": "-0.002816", + "Mean": "-2.737123e-07", + "Norm": "0.171941", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004441", + "Min": "-0.004493", + "Mean": "-3.637979e-13", + "Norm": "0.176547", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.BasicBlock.backward.0": { + "id": "Module.layer1.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.Sequential.backward.0", + "subnodes": [ + "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.relu.ReLU.backward.0": { + "id": "Module.layer1.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "1.113839e-07", + "Norm": "0.209072", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.Sequential.backward.0": { + "id": "Module.layer1.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004873", + "Min": "-0.006985", + "Mean": "6.366463e-13", + "Norm": "0.263476", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "1.113839e-07", + "Norm": "0.209072", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.conv2.Conv2d.backward.0": { + "id": "Module.layer1.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.005144", + "Mean": "5.896727e-08", + "Norm": "0.36269", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004873", + "Min": "-0.006985", + "Mean": "6.366463e-13", + "Norm": "0.263476", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.relu.ReLU.backward.1": { + "id": "Module.layer1.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.004949", + "Mean": "-2.247479e-07", + "Norm": "0.255762", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.005144", + "Mean": "5.896727e-08", + "Norm": "0.36269", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00343", + "Min": "-0.003328", + "Mean": "1.818989e-13", + "Norm": "0.165887", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.004949", + "Mean": "-2.247479e-07", + "Norm": "0.255762", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.conv1.Conv2d.backward.0": { + "id": "Module.layer1.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003166", + "Min": "-0.003639", + "Mean": "-1.210342e-08", + "Norm": "0.229291", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00343", + "Min": "-0.003328", + "Mean": "1.818989e-13", + "Norm": "0.165887", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.BasicBlock.backward.0": { + "id": "Module.layer1.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.Sequential.backward.0", + "subnodes": [ + "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.relu.ReLU.backward.0": { + "id": "Module.layer1.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "3.088644e-07", + "Norm": "0.299243", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007243", + "Min": "-0.006519", + "Mean": "-7.275958e-13", + "Norm": "0.389929", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "3.088644e-07", + "Norm": "0.299243", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.conv2.Conv2d.backward.0": { + "id": "Module.layer1.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "-5.936339e-07", + "Norm": "0.54013", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007243", + "Min": "-0.006519", + "Mean": "-7.275958e-13", + "Norm": "0.389929", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.relu.ReLU.backward.1": { + "id": "Module.layer1.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "2.777797e-07", + "Norm": "0.379333", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "-5.936339e-07", + "Norm": "0.54013", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.009111", + "Min": "-0.009193", + "Mean": "-7.275958e-13", + "Norm": "0.387683", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "2.777797e-07", + "Norm": "0.379333", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.conv1.Conv2d.backward.0": { + "id": "Module.layer1.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007328", + "Min": "-0.008206", + "Mean": "3.342619e-07", + "Norm": "0.538403", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.009111", + "Min": "-0.009193", + "Mean": "-7.275958e-13", + "Norm": "0.387683", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.maxpool.MaxPool2d.backward.0": { + "id": "Module.maxpool.MaxPool2d.backward.0", + "node_type": 0, + "output_data": { + "Module.maxpool.MaxPool2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.607818e-07", + "Norm": "0.615501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.maxpool.MaxPool2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.relu.ReLU.backward.0": { + "id": "Module.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.113458e-07", + "Norm": "0.614639", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.607818e-07", + "Norm": "0.615501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.bn1.BatchNorm2d.backward.0": { + "id": "Module.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.049808", + "Min": "-0.064687", + "Mean": "1.364242e-12", + "Norm": "2.04307", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.113458e-07", + "Norm": "0.614639", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.conv1.Conv2d.backward.0": { + "id": "Module.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.conv1.Conv2d.backward.0.output.0": { + "value": "null" + } + }, + "input_data": { + "Module.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.049808", + "Min": "-0.064687", + "Mean": "1.364242e-12", + "Norm": "2.04307", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + } + } + }, + "Bench": { + "root": "DefaultModel", + "dump_data_dir": null, + "node": { + "DefaultModel": { + "id": "DefaultModel", + "node_type": 0, + "output_data": {}, + "input_data": {}, + "upnode": "None", + "subnodes": [ + "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.Sequential.forward.0", + "Module.layer2.Sequential.forward.0", + "Module.layer3.Sequential.forward.0", + "Module.layer4.Sequential.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.fc.Linear.forward.0", + "Module.fc.Linear.backward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.Sequential.backward.0", + "Module.layer3.Sequential.backward.0", + "Module.layer2.Sequential.backward.0", + "Module.layer1.Sequential.backward.0", + "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.conv1.Conv2d.forward.0": { + "id": "Module.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "1.526799", + "Min": "-1.559762", + "Mean": "-0.000263", + "Norm": "244.860931", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 3, 64, 64]", + "Max": "4.350435", + "Min": "-4.339223", + "Mean": "-0.001572", + "Norm": "350.247772", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 268, in _forward_impl, \n x = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.bn1.BatchNorm2d.forward.0": { + "id": "Module.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "-5.146786", + "Mean": "4.656613e-11", + "Norm": "809.493835", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "1.526799", + "Min": "-1.559762", + "Mean": "-0.000263", + "Norm": "244.860931", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 269, in _forward_impl, \n x = self.bn1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.relu.ReLU.forward.0": { + "id": "Module.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 270, in _forward_impl, \n x = self.relu(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.maxpool.MaxPool2d.forward.0": { + "id": "Module.maxpool.MaxPool2d.forward.0", + "node_type": 0, + "output_data": { + "Module.maxpool.MaxPool2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.maxpool.MaxPool2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 271, in _forward_impl, \n x = self.maxpool(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer1.0.BasicBlock.forward.0": { + "id": "Module.layer1.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.Sequential.forward.0", + "subnodes": [ + "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.conv1.Conv2d.forward.0": { + "id": "Module.layer1.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.74388", + "Min": "-7.379547", + "Mean": "-0.12333", + "Norm": "858.103699", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.Sequential.forward.0": { + "id": "Module.layer1.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer1.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "-4.199296", + "Mean": "1.620501e-08", + "Norm": "404.769043", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.74388", + "Min": "-7.379547", + "Mean": "-0.12333", + "Norm": "858.103699", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.relu.ReLU.forward.0": { + "id": "Module.layer1.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.conv2.Conv2d.forward.0": { + "id": "Module.layer1.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.442179", + "Min": "-3.972987", + "Mean": "0.084329", + "Norm": "370.438843", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.605992", + "Min": "-4.646146", + "Mean": "4.284084e-09", + "Norm": "404.767944", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.442179", + "Min": "-3.972987", + "Mean": "0.084329", + "Norm": "370.438843", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.relu.ReLU.forward.1": { + "id": "Module.layer1.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.BasicBlock.forward.0": { + "id": "Module.layer1.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.Sequential.forward.0", + "subnodes": [ + "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.conv1.Conv2d.forward.0": { + "id": "Module.layer1.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "9.274334", + "Min": "-10.156013", + "Mean": "-0.101834", + "Norm": "975.393066", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "-4.49145", + "Mean": "-2.235174e-09", + "Norm": "404.770447", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "9.274334", + "Min": "-10.156013", + "Mean": "-0.101834", + "Norm": "975.393066", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.relu.ReLU.forward.0": { + "id": "Module.layer1.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.conv2.Conv2d.forward.0": { + "id": "Module.layer1.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.431858", + "Min": "-4.229196", + "Mean": "0.005514", + "Norm": "375.989105", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.475619", + "Min": "-4.364196", + "Mean": "1.396984e-09", + "Norm": "404.76828", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.431858", + "Min": "-4.229196", + "Mean": "0.005514", + "Norm": "375.989105", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.relu.ReLU.forward.1": { + "id": "Module.layer1.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.BasicBlock.forward.0": { + "id": "Module.layer2.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.conv1.Conv2d.forward.0": { + "id": "Module.layer2.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.363841", + "Min": "-8.813498", + "Mean": "0.116351", + "Norm": "582.720398", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.Sequential.forward.0": { + "id": "Module.layer2.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer2.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "-4.77158", + "Mean": "1.303852e-09", + "Norm": "286.215912", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.363841", + "Min": "-8.813498", + "Mean": "0.116351", + "Norm": "582.720398", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.relu.ReLU.forward.0": { + "id": "Module.layer2.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.conv2.Conv2d.forward.0": { + "id": "Module.layer2.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.0345", + "Min": "-4.125886", + "Mean": "-0.100337", + "Norm": "260.142944", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.152795", + "Min": "-4.936253", + "Mean": "3.725290e-10", + "Norm": "286.214294", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.0345", + "Min": "-4.125886", + "Mean": "-0.100337", + "Norm": "260.142944", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.downsample.Sequential.forward.0": { + "id": "Module.layer2.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.257706", + "Min": "-4.515994", + "Mean": "-1.117587e-09", + "Norm": "286.215851", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.203266", + "Min": "-9.355068", + "Mean": "-0.02311", + "Norm": "617.127319", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.257706", + "Min": "-4.515994", + "Mean": "-1.117587e-09", + "Norm": "286.215851", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.203266", + "Min": "-9.355068", + "Mean": "-0.02311", + "Norm": "617.127319", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.relu.ReLU.forward.1": { + "id": "Module.layer2.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.BasicBlock.forward.0": { + "id": "Module.layer2.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.conv1.Conv2d.forward.0": { + "id": "Module.layer2.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.62359", + "Min": "-5.580112", + "Mean": "0.074416", + "Norm": "367.649841", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "-4.101557", + "Mean": "-3.818422e-09", + "Norm": "286.215485", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.62359", + "Min": "-5.580112", + "Mean": "0.074416", + "Norm": "367.649841", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.relu.ReLU.forward.0": { + "id": "Module.layer2.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.conv2.Conv2d.forward.0": { + "id": "Module.layer2.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.393562", + "Min": "-4.753343", + "Mean": "-0.078746", + "Norm": "260.969421", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.73594", + "Min": "-4.475933", + "Mean": "2.421439e-09", + "Norm": "286.214294", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.393562", + "Min": "-4.753343", + "Mean": "-0.078746", + "Norm": "260.969421", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.relu.ReLU.forward.1": { + "id": "Module.layer2.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.BasicBlock.forward.0": { + "id": "Module.layer3.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.Sequential.forward.0", + "subnodes": [ + "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.conv1.Conv2d.forward.0": { + "id": "Module.layer3.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.532973", + "Min": "-6.165116", + "Mean": "0.023511", + "Norm": "250.68428", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.Sequential.forward.0": { + "id": "Module.layer3.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer3.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "-4.041963", + "Mean": "1.024455e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.532973", + "Min": "-6.165116", + "Mean": "0.023511", + "Norm": "250.68428", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.relu.ReLU.forward.0": { + "id": "Module.layer3.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.conv2.Conv2d.forward.0": { + "id": "Module.layer3.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.085584", + "Min": "-3.535729", + "Mean": "0.009184", + "Norm": "171.884354", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.328585", + "Min": "-4.24462", + "Mean": "-5.587936e-10", + "Norm": "202.383789", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.085584", + "Min": "-3.535729", + "Mean": "0.009184", + "Norm": "171.884354", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.downsample.Sequential.forward.0": { + "id": "Module.layer3.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.673633", + "Min": "-4.118578", + "Mean": "2.980232e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.544863", + "Min": "-5.637341", + "Mean": "0.063504", + "Norm": "262.41275", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.673633", + "Min": "-4.118578", + "Mean": "2.980232e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.544863", + "Min": "-5.637341", + "Mean": "0.063504", + "Norm": "262.41275", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.relu.ReLU.forward.1": { + "id": "Module.layer3.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.BasicBlock.forward.0": { + "id": "Module.layer3.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.Sequential.forward.0", + "subnodes": [ + "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.conv1.Conv2d.forward.0": { + "id": "Module.layer3.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.445492", + "Min": "-5.73983", + "Mean": "0.056189", + "Norm": "242.794586", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "-4.302232", + "Mean": "6.053597e-10", + "Norm": "202.384811", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.445492", + "Min": "-5.73983", + "Mean": "0.056189", + "Norm": "242.794586", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.relu.ReLU.forward.0": { + "id": "Module.layer3.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.conv2.Conv2d.forward.0": { + "id": "Module.layer3.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "3.904869", + "Min": "-3.915274", + "Mean": "0.000739", + "Norm": "175.362854", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.820035", + "Min": "-4.248729", + "Mean": "3.725290e-09", + "Norm": "202.38385", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "3.904869", + "Min": "-3.915274", + "Mean": "0.000739", + "Norm": "175.362854", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.relu.ReLU.forward.1": { + "id": "Module.layer3.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.BasicBlock.forward.0": { + "id": "Module.layer4.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.Sequential.forward.0", + "subnodes": [ + "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.conv1.Conv2d.forward.0": { + "id": "Module.layer4.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.17719", + "Min": "-5.021754", + "Mean": "-0.003242", + "Norm": "160.062332", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.Sequential.forward.0": { + "id": "Module.layer4.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer4.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "-4.494643", + "Mean": "0.0", + "Norm": "143.107346", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.17719", + "Min": "-5.021754", + "Mean": "-0.003242", + "Norm": "160.062332", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.relu.ReLU.forward.0": { + "id": "Module.layer4.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.conv2.Conv2d.forward.0": { + "id": "Module.layer4.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.548945", + "Min": "-2.623174", + "Mean": "-0.024468", + "Norm": "96.85141", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.43048", + "Min": "-3.390204", + "Mean": "-5.587936e-10", + "Norm": "143.106155", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.548945", + "Min": "-2.623174", + "Mean": "-0.024468", + "Norm": "96.85141", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.downsample.Sequential.forward.0": { + "id": "Module.layer4.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.162686", + "Min": "-4.141354", + "Mean": "-1.396984e-09", + "Norm": "143.107498", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "5.574177", + "Min": "-5.778933", + "Mean": "0.001088", + "Norm": "182.966492", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.162686", + "Min": "-4.141354", + "Mean": "-1.396984e-09", + "Norm": "143.107498", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "5.574177", + "Min": "-5.778933", + "Mean": "0.001088", + "Norm": "182.966492", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.relu.ReLU.forward.1": { + "id": "Module.layer4.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.BasicBlock.forward.0": { + "id": "Module.layer4.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.Sequential.forward.0", + "subnodes": [ + "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.conv1.Conv2d.forward.0": { + "id": "Module.layer4.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.864757", + "Min": "-3.787591", + "Mean": "0.002277", + "Norm": "133.55986", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "-3.694792", + "Mean": "1.490116e-09", + "Norm": "143.107239", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.864757", + "Min": "-3.787591", + "Mean": "0.002277", + "Norm": "133.55986", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.relu.ReLU.forward.0": { + "id": "Module.layer4.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.conv2.Conv2d.forward.0": { + "id": "Module.layer4.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.484763", + "Min": "-2.720093", + "Mean": "0.013722", + "Norm": "95.469269", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.644991", + "Min": "-3.459976", + "Mean": "-4.656613e-10", + "Norm": "143.106094", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.484763", + "Min": "-2.720093", + "Mean": "0.013722", + "Norm": "95.469269", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.relu.ReLU.forward.1": { + "id": "Module.layer4.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.forward.0": { + "id": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "node_type": 0, + "output_data": { + "Module.avgpool.AdaptiveAvgPool2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 1, 1]", + "Max": "2.68325", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "66.964317", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.avgpool.AdaptiveAvgPool2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 278, in _forward_impl, \n x = self.avgpool(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.fc.Linear.forward.0": { + "id": "Module.fc.Linear.forward.0", + "node_type": 0, + "output_data": { + "Module.fc.Linear.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 10]", + "Max": "1.236255", + "Min": "-1.562365", + "Mean": "-0.12689", + "Norm": "5.357258", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.fc.Linear.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512]", + "Max": "2.68325", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "66.964317", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.fc.Linear.backward.0": { + "id": "Module.fc.Linear.backward.0", + "node_type": 0, + "output_data": { + "Module.fc.Linear.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512]", + "Max": "0.006356", + "Min": "-0.00662", + "Mean": "0.000117", + "Norm": "0.176545", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.fc.Linear.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 10]", + "Max": "0.03222", + "Min": "-0.097696", + "Mean": "1.490116e-10", + "Norm": "0.311353", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.backward.0": { + "id": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "node_type": 0, + "output_data": { + "Module.avgpool.AdaptiveAvgPool2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.avgpool.AdaptiveAvgPool2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 1, 1]", + "Max": "0.006356", + "Min": "-0.00662", + "Mean": "0.000117", + "Norm": "0.176545", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer4.1.BasicBlock.backward.0": { + "id": "Module.layer4.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.Sequential.backward.0", + "subnodes": [ + "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.relu.ReLU.backward.0": { + "id": "Module.layer4.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.170244e-05", + "Norm": "0.071178", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.Sequential.backward.0": { + "id": "Module.layer4.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer4.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00349", + "Min": "-0.003203", + "Mean": "-1.818989e-13", + "Norm": "0.114767", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.170244e-05", + "Norm": "0.071178", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.conv2.Conv2d.backward.0": { + "id": "Module.layer4.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003047", + "Min": "-0.003687", + "Mean": "5.127279e-08", + "Norm": "0.107756", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00349", + "Min": "-0.003203", + "Mean": "-1.818989e-13", + "Norm": "0.114767", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.relu.ReLU.backward.1": { + "id": "Module.layer4.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003023", + "Min": "-0.002646", + "Mean": "9.799842e-08", + "Norm": "0.075418", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003047", + "Min": "-0.003687", + "Mean": "5.127279e-08", + "Norm": "0.107756", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00392", + "Min": "-0.00384", + "Mean": "2.160050e-13", + "Norm": "0.093361", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003023", + "Min": "-0.002646", + "Mean": "9.799842e-08", + "Norm": "0.075418", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.conv1.Conv2d.backward.0": { + "id": "Module.layer4.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.002777", + "Min": "-0.002687", + "Mean": "-1.536876e-06", + "Norm": "0.087284", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00392", + "Min": "-0.00384", + "Mean": "2.160050e-13", + "Norm": "0.093361", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.BasicBlock.backward.0": { + "id": "Module.layer4.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.Sequential.backward.0", + "subnodes": [ + "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.relu.ReLU.backward.0": { + "id": "Module.layer4.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.downsample.Sequential.backward.0": { + "id": "Module.layer4.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004114", + "Min": "-0.003346", + "Mean": "-4.547474e-14", + "Norm": "0.087317", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004101", + "Min": "-0.003454", + "Mean": "-3.637979e-13", + "Norm": "0.087384", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004114", + "Min": "-0.003346", + "Mean": "-4.547474e-14", + "Norm": "0.087317", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004101", + "Min": "-0.003454", + "Mean": "-3.637979e-13", + "Norm": "0.087384", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.006026", + "Min": "-0.006504", + "Mean": "7.275958e-13", + "Norm": "0.138286", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.conv2.Conv2d.backward.0": { + "id": "Module.layer4.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "2.937198e-06", + "Norm": "0.130315", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.006026", + "Min": "-0.006504", + "Mean": "7.275958e-13", + "Norm": "0.138286", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.relu.ReLU.backward.1": { + "id": "Module.layer4.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "-8.934543e-07", + "Norm": "0.092057", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "2.937198e-06", + "Norm": "0.130315", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004244", + "Min": "-0.004086", + "Mean": "-4.547474e-13", + "Norm": "0.106542", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "-8.934543e-07", + "Norm": "0.092057", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.conv1.Conv2d.backward.0": { + "id": "Module.layer4.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.002732", + "Min": "-0.002337", + "Mean": "1.283062e-07", + "Norm": "0.088477", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004244", + "Min": "-0.004086", + "Mean": "-4.547474e-13", + "Norm": "0.106542", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.BasicBlock.backward.0": { + "id": "Module.layer3.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.Sequential.backward.0", + "subnodes": [ + "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.relu.ReLU.backward.0": { + "id": "Module.layer3.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "5.267739e-07", + "Norm": "0.100327", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.Sequential.backward.0": { + "id": "Module.layer3.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer3.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005349", + "Min": "-0.00458", + "Mean": "5.456968e-13", + "Norm": "0.134192", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "5.267739e-07", + "Norm": "0.100327", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.conv2.Conv2d.backward.0": { + "id": "Module.layer3.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004227", + "Min": "-0.003777", + "Mean": "-1.105049e-06", + "Norm": "0.161834", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005349", + "Min": "-0.00458", + "Mean": "5.456968e-13", + "Norm": "0.134192", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.relu.ReLU.backward.1": { + "id": "Module.layer3.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003753", + "Min": "-0.003777", + "Mean": "-1.121872e-07", + "Norm": "0.113553", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004227", + "Min": "-0.003777", + "Mean": "-1.105049e-06", + "Norm": "0.161834", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004302", + "Min": "-0.003597", + "Mean": "4.547474e-14", + "Norm": "0.108404", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003753", + "Min": "-0.003777", + "Mean": "-1.121872e-07", + "Norm": "0.113553", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.conv1.Conv2d.backward.0": { + "id": "Module.layer3.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003036", + "Min": "-0.002772", + "Mean": "-2.692081e-07", + "Norm": "0.133319", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004302", + "Min": "-0.003597", + "Mean": "4.547474e-14", + "Norm": "0.108404", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.BasicBlock.backward.0": { + "id": "Module.layer3.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.Sequential.backward.0", + "subnodes": [ + "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.relu.ReLU.backward.0": { + "id": "Module.layer3.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.downsample.Sequential.backward.0": { + "id": "Module.layer3.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004002", + "Min": "-0.004525", + "Mean": "3.410605e-13", + "Norm": "0.1262", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004036", + "Min": "-0.005194", + "Mean": "0.0", + "Norm": "0.126903", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004002", + "Min": "-0.004525", + "Mean": "3.410605e-13", + "Norm": "0.1262", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004036", + "Min": "-0.005194", + "Mean": "0.0", + "Norm": "0.126903", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.006225", + "Min": "-0.005798", + "Mean": "-3.637979e-13", + "Norm": "0.166553", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.conv2.Conv2d.backward.0": { + "id": "Module.layer3.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-6.200127e-07", + "Norm": "0.20419", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.006225", + "Min": "-0.005798", + "Mean": "-3.637979e-13", + "Norm": "0.166553", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.relu.ReLU.backward.1": { + "id": "Module.layer3.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-5.361890e-07", + "Norm": "0.144125", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-6.200127e-07", + "Norm": "0.20419", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005433", + "Min": "-0.005011", + "Mean": "0.0", + "Norm": "0.150797", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-5.361890e-07", + "Norm": "0.144125", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.conv1.Conv2d.backward.0": { + "id": "Module.layer3.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.003242", + "Min": "-0.002676", + "Mean": "1.208646e-08", + "Norm": "0.139735", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005433", + "Min": "-0.005011", + "Mean": "0.0", + "Norm": "0.150797", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.BasicBlock.backward.0": { + "id": "Module.layer2.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.Sequential.backward.0", + "subnodes": [ + "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.relu.ReLU.backward.0": { + "id": "Module.layer2.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "6.662881e-07", + "Norm": "0.152697", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.Sequential.backward.0": { + "id": "Module.layer2.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer2.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005537", + "Min": "-0.006419", + "Mean": "4.547474e-14", + "Norm": "0.192183", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "6.662881e-07", + "Norm": "0.152697", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.conv2.Conv2d.backward.0": { + "id": "Module.layer2.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004991", + "Mean": "6.954823e-07", + "Norm": "0.250644", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005537", + "Min": "-0.006419", + "Mean": "4.547474e-14", + "Norm": "0.192183", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.relu.ReLU.backward.1": { + "id": "Module.layer2.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004159", + "Mean": "2.355963e-06", + "Norm": "0.177588", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004991", + "Mean": "6.954823e-07", + "Norm": "0.250644", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004246", + "Min": "-0.003801", + "Mean": "3.865353e-13", + "Norm": "0.159253", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004159", + "Mean": "2.355963e-06", + "Norm": "0.177588", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.conv1.Conv2d.backward.0": { + "id": "Module.layer2.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.003947", + "Min": "-0.00409", + "Mean": "1.122175e-06", + "Norm": "0.213347", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004246", + "Min": "-0.003801", + "Mean": "3.865353e-13", + "Norm": "0.159253", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.BasicBlock.backward.0": { + "id": "Module.layer2.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.Sequential.backward.0", + "subnodes": [ + "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.relu.ReLU.backward.0": { + "id": "Module.layer2.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.downsample.Sequential.backward.0": { + "id": "Module.layer2.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004066", + "Min": "-0.004851", + "Mean": "4.547474e-14", + "Norm": "0.148232", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004749", + "Min": "-0.004585", + "Mean": "-2.728484e-13", + "Norm": "0.14894", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004066", + "Min": "-0.004851", + "Mean": "4.547474e-14", + "Norm": "0.148232", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004749", + "Min": "-0.004585", + "Mean": "-2.728484e-13", + "Norm": "0.14894", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00708", + "Min": "-0.008085", + "Mean": "-5.456968e-13", + "Norm": "0.246197", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.conv2.Conv2d.backward.0": { + "id": "Module.layer2.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005883", + "Min": "-0.005688", + "Mean": "7.895345e-07", + "Norm": "0.328498", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00708", + "Min": "-0.008085", + "Mean": "-5.456968e-13", + "Norm": "0.246197", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.relu.ReLU.backward.1": { + "id": "Module.layer2.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005686", + "Min": "-0.005685", + "Mean": "1.743164e-06", + "Norm": "0.232839", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005883", + "Min": "-0.005688", + "Mean": "7.895345e-07", + "Norm": "0.328498", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004441", + "Min": "-0.004493", + "Mean": "-3.637979e-13", + "Norm": "0.176547", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005686", + "Min": "-0.005685", + "Mean": "1.743164e-06", + "Norm": "0.232839", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.conv1.Conv2d.backward.0": { + "id": "Module.layer2.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.002586", + "Min": "-0.002816", + "Mean": "-2.737123e-07", + "Norm": "0.171941", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004441", + "Min": "-0.004493", + "Mean": "-3.637979e-13", + "Norm": "0.176547", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.BasicBlock.backward.0": { + "id": "Module.layer1.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.Sequential.backward.0", + "subnodes": [ + "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.relu.ReLU.backward.0": { + "id": "Module.layer1.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "1.113839e-07", + "Norm": "0.209072", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.Sequential.backward.0": { + "id": "Module.layer1.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer1.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004873", + "Min": "-0.006985", + "Mean": "6.366463e-13", + "Norm": "0.263476", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "1.113839e-07", + "Norm": "0.209072", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.conv2.Conv2d.backward.0": { + "id": "Module.layer1.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.005144", + "Mean": "5.896727e-08", + "Norm": "0.36269", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004873", + "Min": "-0.006985", + "Mean": "6.366463e-13", + "Norm": "0.263476", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.relu.ReLU.backward.1": { + "id": "Module.layer1.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.004949", + "Mean": "-2.247479e-07", + "Norm": "0.255762", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.005144", + "Mean": "5.896727e-08", + "Norm": "0.36269", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00343", + "Min": "-0.003328", + "Mean": "1.818989e-13", + "Norm": "0.165887", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.004949", + "Mean": "-2.247479e-07", + "Norm": "0.255762", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.conv1.Conv2d.backward.0": { + "id": "Module.layer1.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003166", + "Min": "-0.003639", + "Mean": "-1.210342e-08", + "Norm": "0.229291", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00343", + "Min": "-0.003328", + "Mean": "1.818989e-13", + "Norm": "0.165887", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.BasicBlock.backward.0": { + "id": "Module.layer1.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.Sequential.backward.0", + "subnodes": [ + "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.relu.ReLU.backward.0": { + "id": "Module.layer1.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "3.088644e-07", + "Norm": "0.299243", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007243", + "Min": "-0.006519", + "Mean": "-7.275958e-13", + "Norm": "0.389929", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "3.088644e-07", + "Norm": "0.299243", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.conv2.Conv2d.backward.0": { + "id": "Module.layer1.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "-5.936339e-07", + "Norm": "0.54013", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007243", + "Min": "-0.006519", + "Mean": "-7.275958e-13", + "Norm": "0.389929", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.relu.ReLU.backward.1": { + "id": "Module.layer1.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "2.777797e-07", + "Norm": "0.379333", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "-5.936339e-07", + "Norm": "0.54013", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.009111", + "Min": "-0.009193", + "Mean": "-7.275958e-13", + "Norm": "0.387683", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "2.777797e-07", + "Norm": "0.379333", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.conv1.Conv2d.backward.0": { + "id": "Module.layer1.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007328", + "Min": "-0.008206", + "Mean": "3.342619e-07", + "Norm": "0.538403", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.009111", + "Min": "-0.009193", + "Mean": "-7.275958e-13", + "Norm": "0.387683", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.maxpool.MaxPool2d.backward.0": { + "id": "Module.maxpool.MaxPool2d.backward.0", + "node_type": 0, + "output_data": { + "Module.maxpool.MaxPool2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.607818e-07", + "Norm": "0.615501", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.maxpool.MaxPool2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.relu.ReLU.backward.0": { + "id": "Module.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.113458e-07", + "Norm": "0.614639", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.607818e-07", + "Norm": "0.615501", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.bn1.BatchNorm2d.backward.0": { + "id": "Module.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.049808", + "Min": "-0.064687", + "Mean": "1.364242e-12", + "Norm": "2.04307", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.113458e-07", + "Norm": "0.614639", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.conv1.Conv2d.backward.0": { + "id": "Module.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.conv1.Conv2d.backward.0.output.0": { + "value": "null" + } + }, + "input_data": { + "Module.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.049808", + "Min": "-0.064687", + "Mean": "1.364242e-12", + "Norm": "2.04307", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + } + } + }, + "ToolTip": "{\"Max diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5927\\u503c\\u7684\\u5dee\\u503c\", \"Min diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5c0f\\u503c\\u7684\\u5dee\\u503c\", \"Mean diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u5e73\\u5747\\u503c\\u7684\\u5dee\\u503c\", \"L2norm diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c2\\u8303\\u6570\\uff08\\u5e73\\u65b9\\u6839\\uff09\\u7684\\u5dee\\u503c\"}", + "Colors": { + "#FFFCF3": { + "value": [ + 0, + 0.2 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#FFEDBE": { + "value": [ + 0.2, + 0.4 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#FFDC7F": { + "value": [ + 0.4, + 0.6 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#FFC62E": { + "value": [ + 0.6, + 0.8 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#FF704D": { + "value": [ + 0.8, + 1 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#C7C7C7": { + "value": [], + "description": "\u6bd4\u5bf9\u8fc7\u7a0b\u4e2d\u8282\u70b9\u672a\u5339\u914d\u4e0a" + } + }, + "MicroSteps": 1, + "task": "summary" +} \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_all_node_list.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_all_node_list.json new file mode 100644 index 000000000..31d53cd58 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_all_node_list.json @@ -0,0 +1,317 @@ +[ + { + "case_id": "1", + "description": "test load_graph_all_node_list", + "expected": { + "success": true, + "data": { + "npuNodeList": [], + "benchNodeList": [], + "npuUnMatchNodes": [], + "benchUnMatchNodes": [], + "npuMatchNodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" + }, + "benchMatchNodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" + } + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json new file mode 100644 index 000000000..dab080948 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json @@ -0,0 +1,57 @@ +[ + { + "case_id": "1", + "description": "test load_graph_config_info", + "expected": { + "success": true, + "data": { + "microSteps": 1, + "tooltips": "{\"Max diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5927\\u503c\\u7684\\u5dee\\u503c\", \"Min diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5c0f\\u503c\\u7684\\u5dee\\u503c\", \"Mean diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u5e73\\u5747\\u503c\\u7684\\u5dee\\u503c\", \"L2norm diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c2\\u8303\\u6570\\uff08\\u5e73\\u65b9\\u6839\\uff09\\u7684\\u5dee\\u503c\"}", + "overflowCheck": true, + "isSingleGraph": false, + "colors": { + "#FFFCF3": { + "value": [ + 0, + 0.2 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#FFEDBE": { + "value": [ + 0.2, + 0.4 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#FFDC7F": { + "value": [ + 0.4, + 0.6 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#FFC62E": { + "value": [ + 0.6, + 0.8 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#FF704D": { + "value": [ + 0.8, + 1 + ], + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + }, + "#C7C7C7": { + "value": [], + "description": "\u6bd4\u5bf9\u8fc7\u7a0b\u4e2d\u8282\u70b9\u672a\u5339\u914d\u4e0a" + } + }, + "matchedConfigFiles": [] + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py index 2f1a79085..5f61d033b 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py @@ -20,47 +20,68 @@ import os class TestCaseFactory: """管理所有测试用例的统一工厂""" - CASE_DIR = os.path.join(os.path.dirname(__file__), 'ut_test_cases') + UT_CASE_DIR = os.path.join(os.path.dirname(__file__), 'ut_test_cases') + ST_CASE_DIR = os.path.join(os.path.dirname(__file__), 'st_test_cases') @classmethod def get_process_task_add_cases(cls): - return cls._load_cases('test_match_node_controller\\process_task_add_case.json') + return cls._load_ut_cases('test_match_node_controller\\process_task_add_case.json') @classmethod def get_process_task_delete_cases(cls): - return cls._load_cases('test_match_node_controller\\process_task_delete_case.json') + return cls._load_ut_cases('test_match_node_controller\\process_task_delete_case.json') @classmethod def get_process_task_add_child_layer_cases(cls): - return cls._load_cases('test_match_node_controller\\process_task_add_child_layer.json') + return cls._load_ut_cases('test_match_node_controller\\process_task_add_child_layer.json') @classmethod def get_process_task_delete_child_layer_cases(cls): - return cls._load_cases('test_match_node_controller\\process_task_delete_child_layer.json') + return cls._load_ut_cases('test_match_node_controller\\process_task_delete_child_layer.json') @classmethod def get_process_task_add_child_layer_by_config_cases(cls): - return cls._load_cases('test_match_node_controller\\process_task_add_child_layer_by_config.json') + return cls._load_ut_cases('test_match_node_controller\\process_task_add_child_layer_by_config.json') @classmethod def get_change_expand_state_cases(cls): - return cls._load_cases('test_layout_hierarchy_controller\\change_expand_state_case.json') + return cls._load_ut_cases('test_layout_hierarchy_controller\\change_expand_state_case.json') @classmethod def get_update_hierarchy_data_cases(cls): - return cls._load_cases('test_layout_hierarchy_controller\\update_hierarchy_data_case.json') + return cls._load_ut_cases('test_layout_hierarchy_controller\\update_hierarchy_data_case.json') @classmethod def load_single_graph_test_data(cls): - return cls._load_cases('test_layout_hierarchy_controller\\test_single_statis_graph.vis') + return cls._load_ut_cases('test_layout_hierarchy_controller\\test_single_statis_graph.vis') @classmethod def load_compare_graph_test_data(cls): - return cls._load_cases('test_layout_hierarchy_controller\\test_compare_statis_graph.vis') + return cls._load_ut_cases('test_layout_hierarchy_controller\\test_compare_statis_graph.vis') + + @classmethod + def _load_ut_cases(cls, filename): + """从JSON文件加载测试用例""" + path = os.path.join(cls.UT_CASE_DIR, filename) + with open(path, 'r', encoding='utf-8') as f: + return json.load(f) + + # ST + @classmethod + def get_load_graph_config_info_cases(cls): + return cls._load_st_cases('test_load_graph_config_info.json') + + @classmethod + def get_load_graph_all_node_list(cls): + return cls._load_st_cases('test_load_graph_all_node_list.json') @classmethod - def _load_cases(cls, filename): + def load_compare_resnet_test_data(cls): + return cls._load_st_cases('test_compare_resnet_data.vis') + + @classmethod + def _load_st_cases(cls, filename): """从JSON文件加载测试用例""" - path = os.path.join(cls.CASE_DIR, filename) + path = os.path.join(cls.ST_CASE_DIR, filename) with open(path, 'r', encoding='utf-8') as f: return json.load(f) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py new file mode 100644 index 000000000..6e19efd9e --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -0,0 +1,93 @@ +# Copyright (c) 2025, Huawei Technologies. +# All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +import pytest +import json +from types import SimpleNamespace +from pathlib import Path +from werkzeug.wrappers import Request +from werkzeug.test import EnvironBuilder +from data.test_case_factory import TestCaseFactory +from server.app.utils.global_state import GraphState +from server.app.views.graph_views import GraphView + + +@pytest.mark.integration +class TestGraphViews: + + captured = SimpleNamespace(status=None, headers=None) + + @staticmethod + def start_response(status, response_headers): + TestGraphViews.captured.status = status + TestGraphViews.captured.headers = dict(response_headers) + return lambda x: None # 必须返回一个 writer callable + + @staticmethod + def create_mock_request(path="/meta"): + builder = EnvironBuilder(path=path) + return builder.get_environ() + + @pytest.mark.parametrize("test_case", + [ + {"case_id": "1", + "description": "test_load_meta_dir", + "excepted":{'st_test_cases': ['test_compare_resnet_data']} + } + ], + ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_load_meta_dir(self, test_case): + logdir = Path(__file__).resolve().parent.parent.parent / 'data' / 'st_test_cases' + GraphState.set_global_value('logdir', str(logdir)) + # 构造请求 + request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/load_meta_dir") + response_iter = GraphView.load_meta_dir(request, TestGraphViews.start_response) + excepted = test_case['excepted'] + # 获取响应内容 + response_body = json.loads(b''.join(response_iter).decode('utf-8')) + assert response_body == excepted + assert TestGraphViews.captured.status == "200 OK" + assert TestGraphViews.captured.headers["Content-Type"] == "application/json" + + @pytest.mark.parametrize("test_case", [{"case_id": "2", "description": "test_load_graph_data"}], ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_load_graph_data(self, test_case): + request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/load_graph_data?run=st_test_cases&tag=test_compare_resnet_data") + response_iter = GraphView.load_graph_data(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + runs = GraphState.get_global_value('runs') + current_run = GraphState.get_global_value('current_run') + current_tag = GraphState.get_global_value('current_tag') + assert current_run == runs.get('st_test_cases') + assert current_tag == 'test_compare_resnet_data' + assert TestGraphViews.captured.status == "200 OK" + assert TestGraphViews.captured.headers["Content-Type"] == "text/event-stream; charset=utf-8" + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_load_graph_config_info_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_load_graph_config_info(self, test_case): + request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/load_graph_config_info?run=st_test_cases&tag=test_compare_resnet_data") + response_iter = GraphView.load_graph_config_info(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + excepted = test_case['expected'] + assert response_body == json.dumps(excepted) + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_load_graph_all_node_list(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_load_graph_all_node_list(self, test_case): + request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/load_graph_all_node_list?run=st_test_cases&tag=test_compare_resnet_data") + response_iter = GraphView.load_graph_all_node_list(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + excepted = test_case['expected'] + assert response_body == json.dumps(excepted) + diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/pytest.ini b/plugins/tensorboard-plugins/tb_graph_ascend/test/pytest.ini deleted file mode 100644 index 532b3cd39..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/pytest.ini +++ /dev/null @@ -1,12 +0,0 @@ -[pytest] -testpaths = - tests/unit - tests/functional - -markers = - unit: unit tests - functional: functional tests - graph: graph module tests - slow: mark test as slow to run - smoke: smoke tests - large_dataset: tests requiring large datasets \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py index ffd42a4f3..23ca0662f 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py @@ -33,7 +33,6 @@ class TestLayoutHierarchyController: node_name, graph_type, graph, micro_step = test_case['input'].values() excepted = test_case['expected'] actual = LayoutHierarchyController.change_expand_state(node_name, graph_type, graph, micro_step) - assert actual == excepted @pytest.mark.parametrize("test_case", TestCaseFactory.get_update_hierarchy_data_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") @@ -41,6 +40,4 @@ class TestLayoutHierarchyController: graph_type = test_case['input']['graph_type'] excepted = test_case['expected'] actual = LayoutHierarchyController.update_hierarchy_data(graph_type) - print("graph_type===", graph_type) - print(actual) assert actual == excepted diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py index f007fb0e2..a677b968b 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_match_nodes_controller.py @@ -52,7 +52,6 @@ class TestMatchNodesController: graph_data, npu_node_name, bench_node_name, task = test_case['input'].values() excepted = test_case['expected'] actual = MatchNodesController.process_task_add_child_layer(graph_data, npu_node_name, bench_node_name, task) - print(actual) assert actual == excepted @pytest.mark.parametrize("test_case", TestCaseFactory.get_process_task_delete_child_layer_cases(), -- Gitee From b1b258bf4104a5f843ad81e7ec47284fb51b42a8 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Fri, 20 Jun 2025 15:14:53 +0800 Subject: [PATCH 05/22] =?UTF-8?q?=F0=9F=A7=AA=20test:=20=E5=88=86=E6=94=AF?= =?UTF-8?q?=E8=A6=86=E7=9B=96=E7=8E=8766%?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ..._data.vis => mock_compare_resnet_data.vis} | 0 .../st_test_cases/test_add_match_nodes.json | 318 ++++ .../test_change_node_expand_state.json | 1650 +++++++++++++++++ .../test_delete_match_nodes.json | 320 ++++ .../test_update_hierarchy_data.json | 474 +++++ .../test/data/test_case_factory.py | 24 +- ...raph.vis => mock_compare_statis_graph.vis} | 0 ...graph.vis => mock_single_statis_graph.vis} | 0 .../integration/views/test_graph_views.py | 51 +- 9 files changed, 2826 insertions(+), 11 deletions(-) rename plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/{test_compare_resnet_data.vis => mock_compare_resnet_data.vis} (100%) create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes.json create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_change_node_expand_state.json create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_delete_match_nodes.json create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_hierarchy_data.json rename plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/{test_compare_statis_graph.vis => mock_compare_statis_graph.vis} (100%) rename plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/{test_single_statis_graph.vis => mock_single_statis_graph.vis} (100%) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_compare_resnet_data.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis similarity index 100% rename from plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_compare_resnet_data.vis rename to plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes.json new file mode 100644 index 000000000..2662bf3a4 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes.json @@ -0,0 +1,318 @@ +[ + { + "case_id": "1", + "description": "测试删除匹配节点", + "input": "data/plugin/graph_ascend/addMatchNodes?npuNodeName=Module.fc.Linear.forward.0&benchNodeName=Module.fc.Linear.forward.0&metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}", + "expected": { + "success": true, + "data": { + "npuMatchNodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0", + "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" + }, + "benchMatchNodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0", + "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_change_node_expand_state.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_change_node_expand_state.json new file mode 100644 index 000000000..da8c16519 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_change_node_expand_state.json @@ -0,0 +1,1650 @@ +[ + { + "case_id": "1", + "description": "测试展开NPU侧根节点", + "input": "/data/plugin/graph_ascend/changeNodeExpandState?nodeInfo={\"nodeName\":\"root\",\"nodeType\":\"NPU\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", + "expected": { + "success": true, + "data": { + "DefaultModel": { + "x": 0, + "y": 0, + "width": 230, + "height": 300, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "DefaultModel", + "name": "N___DefaultModel", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.forward.0": { + "x": 7, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.forward.0", + "name": "N___Module.conv1.Conv2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.forward.0": { + "x": 62, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.forward.0", + "name": "N___Module.bn1.BatchNorm2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.forward.0": { + "x": 117, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.forward.0", + "name": "N___Module.relu.ReLU.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.forward.0": { + "x": 172, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.forward.0", + "name": "N___Module.maxpool.MaxPool2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.forward.0": { + "x": 8, + "y": 50, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.forward.0", + "name": "N___Module.layer1.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0" + ], + "precisionIndex": 0.7, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.forward.0": { + "x": 8, + "y": 75, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.forward.0", + "name": "N___Module.layer2.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.forward.0": { + "x": 8, + "y": 100, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.forward.0", + "name": "N___Module.layer3.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.forward.0": { + "x": 8, + "y": 125, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.forward.0", + "name": "N___Module.layer4.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.forward.0": { + "x": 7, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "name": "N___Module.avgpool.AdaptiveAvgPool2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.forward.0": { + "x": 62, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.forward.0", + "name": "N___Module.fc.Linear.forward.0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.backward.0": { + "x": 117, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.backward.0", + "name": "N___Module.fc.Linear.backward.0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.backward.0": { + "x": 172, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "name": "N___Module.avgpool.AdaptiveAvgPool2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.backward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.backward.0": { + "x": 5, + "y": 175, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.backward.0", + "name": "N___Module.layer4.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.backward.0": { + "x": 5, + "y": 200, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.backward.0", + "name": "N___Module.layer3.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.backward.0": { + "x": 5, + "y": 225, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.backward.0", + "name": "N___Module.layer2.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.backward.0": { + "x": 5, + "y": 250, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.backward.0", + "name": "N___Module.layer1.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.backward.0": { + "x": 7, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.backward.0", + "name": "N___Module.maxpool.MaxPool2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.backward.0": { + "x": 62, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.backward.0", + "name": "N___Module.relu.ReLU.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.backward.0": { + "x": 117, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.backward.0", + "name": "N___Module.bn1.BatchNorm2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.backward.0": { + "x": 172, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.backward.0", + "name": "N___Module.conv1.Conv2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + } + }, + { + "case_id": "2", + "description": "测试展开Bench侧根节点", + "input": "/data/plugin/graph_ascend/changeNodeExpandState?nodeInfo={\"nodeName\":\"root\",\"nodeType\":\"Bench\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", + "expected": { + "success": true, + "data": { + "DefaultModel": { + "x": 0, + "y": 0, + "width": 230, + "height": 300, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "DefaultModel", + "name": "B___DefaultModel", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.forward.0": { + "x": 7, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.forward.0", + "name": "B___Module.conv1.Conv2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.forward.0": { + "x": 62, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.forward.0", + "name": "B___Module.bn1.BatchNorm2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.forward.0": { + "x": 117, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.forward.0", + "name": "B___Module.relu.ReLU.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.forward.0": { + "x": 172, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.forward.0", + "name": "B___Module.maxpool.MaxPool2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.forward.0": { + "x": 8, + "y": 50, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.forward.0", + "name": "B___Module.layer1.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.forward.0": { + "x": 8, + "y": 75, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.forward.0", + "name": "B___Module.layer2.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.forward.0": { + "x": 8, + "y": 100, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.forward.0", + "name": "B___Module.layer3.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.forward.0": { + "x": 8, + "y": 125, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.forward.0", + "name": "B___Module.layer4.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.forward.0": { + "x": 7, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "name": "B___Module.avgpool.AdaptiveAvgPool2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.forward.0": { + "x": 62, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.forward.0", + "name": "B___Module.fc.Linear.forward.0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.backward.0": { + "x": 117, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.backward.0", + "name": "B___Module.fc.Linear.backward.0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.backward.0": { + "x": 172, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "name": "B___Module.avgpool.AdaptiveAvgPool2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.backward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.backward.0": { + "x": 5, + "y": 175, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.backward.0", + "name": "B___Module.layer4.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.backward.0": { + "x": 5, + "y": 200, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.backward.0", + "name": "B___Module.layer3.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.backward.0": { + "x": 5, + "y": 225, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.backward.0", + "name": "B___Module.layer2.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.backward.0": { + "x": 5, + "y": 250, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.backward.0", + "name": "B___Module.layer1.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.backward.0": { + "x": 7, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.backward.0", + "name": "B___Module.maxpool.MaxPool2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.backward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.backward.0": { + "x": 62, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.backward.0", + "name": "B___Module.relu.ReLU.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.backward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.backward.0": { + "x": 117, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.backward.0", + "name": "B___Module.bn1.BatchNorm2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.backward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.backward.0": { + "x": 172, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.backward.0", + "name": "B___Module.conv1.Conv2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.backward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + } + }, + { + "case_id": "3", + "description": "测试展开NPU侧子节点", + "input": "/data/plugin/graph_ascend/changeNodeExpandState?nodeInfo={\"nodeName\":\"Module.layer1.Sequential.forward.0\",\"nodeType\":\"NPU\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", + "expected": { + "success": true, + "data": { + "DefaultModel": { + "x": 0, + "y": 0, + "width": 230, + "height": 360, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "DefaultModel", + "name": "N___DefaultModel", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.forward.0": { + "x": 7, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.forward.0", + "name": "N___Module.conv1.Conv2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.forward.0": { + "x": 62, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.forward.0", + "name": "N___Module.bn1.BatchNorm2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.forward.0": { + "x": 117, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.forward.0", + "name": "N___Module.relu.ReLU.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.forward.0": { + "x": 172, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.forward.0", + "name": "N___Module.maxpool.MaxPool2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.forward.0": { + "x": 8, + "y": 50, + "width": 214, + "height": 75, + "expand": true, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.forward.0", + "name": "N___Module.layer1.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0" + ], + "precisionIndex": 0.7, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.0.BasicBlock.forward.0": { + "x": 23, + "y": 75, + "width": 184, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Module.layer1.Sequential.forward.0", + "label": "layer1.0.BasicBlock.forward.0", + "name": "N___Module.layer1.0.BasicBlock.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.1.BasicBlock.forward.0": { + "x": 23, + "y": 100, + "width": 184, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "Module.layer1.Sequential.forward.0", + "label": "layer1.1.BasicBlock.forward.0", + "name": "N___Module.layer1.1.BasicBlock.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.forward.0": { + "x": 8, + "y": 135, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.forward.0", + "name": "N___Module.layer2.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.forward.0": { + "x": 8, + "y": 160, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.forward.0", + "name": "N___Module.layer3.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.forward.0": { + "x": 8, + "y": 185, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.forward.0", + "name": "N___Module.layer4.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.forward.0": { + "x": 7, + "y": 210, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "name": "N___Module.avgpool.AdaptiveAvgPool2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.forward.0": { + "x": 62, + "y": 210, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.forward.0", + "name": "N___Module.fc.Linear.forward.0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.backward.0": { + "x": 117, + "y": 210, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.backward.0", + "name": "N___Module.fc.Linear.backward.0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.backward.0": { + "x": 172, + "y": 210, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "name": "N___Module.avgpool.AdaptiveAvgPool2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.backward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.backward.0": { + "x": 5, + "y": 235, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.backward.0", + "name": "N___Module.layer4.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.backward.0": { + "x": 5, + "y": 260, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.backward.0", + "name": "N___Module.layer3.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.backward.0": { + "x": 5, + "y": 285, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.backward.0", + "name": "N___Module.layer2.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.backward.0": { + "x": 5, + "y": 310, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.backward.0", + "name": "N___Module.layer1.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.backward.0": { + "x": 7, + "y": 335, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.backward.0", + "name": "N___Module.maxpool.MaxPool2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.backward.0": { + "x": 62, + "y": 335, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.backward.0", + "name": "N___Module.relu.ReLU.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.backward.0": { + "x": 117, + "y": 335, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.backward.0", + "name": "N___Module.bn1.BatchNorm2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.backward.0": { + "x": 172, + "y": 335, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.backward.0", + "name": "N___Module.conv1.Conv2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + } + }, + { + "case_id": "4", + "description": "测试折叠NPU侧子节点", + "input": "/data/plugin/graph_ascend/changeNodeExpandState?nodeInfo={\"nodeName\":\"Module.layer1.Sequential.forward.0\",\"nodeType\":\"NPU\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", + "expected": { + "success": true, + "data": { + "DefaultModel": { + "x": 0, + "y": 0, + "width": 230, + "height": 300, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "DefaultModel", + "name": "N___DefaultModel", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.forward.0": { + "x": 7, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.forward.0", + "name": "N___Module.conv1.Conv2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.forward.0": { + "x": 62, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.forward.0", + "name": "N___Module.bn1.BatchNorm2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.forward.0": { + "x": 117, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.forward.0", + "name": "N___Module.relu.ReLU.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.forward.0": { + "x": 172, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.forward.0", + "name": "N___Module.maxpool.MaxPool2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.forward.0": { + "x": 8, + "y": 50, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.forward.0", + "name": "N___Module.layer1.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0" + ], + "precisionIndex": 0.7, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.forward.0": { + "x": 8, + "y": 75, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.forward.0", + "name": "N___Module.layer2.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.forward.0": { + "x": 8, + "y": 100, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.forward.0", + "name": "N___Module.layer3.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.forward.0": { + "x": 8, + "y": 125, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.forward.0", + "name": "N___Module.layer4.Sequential.forward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.forward.0": { + "x": 7, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "name": "N___Module.avgpool.AdaptiveAvgPool2d.forward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.forward.0": { + "x": 62, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.forward.0", + "name": "N___Module.fc.Linear.forward.0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.backward.0": { + "x": 117, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.backward.0", + "name": "N___Module.fc.Linear.backward.0", + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.backward.0": { + "x": 172, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "name": "N___Module.avgpool.AdaptiveAvgPool2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.backward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.backward.0": { + "x": 5, + "y": 175, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.backward.0", + "name": "N___Module.layer4.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.backward.0": { + "x": 5, + "y": 200, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.backward.0", + "name": "N___Module.layer3.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.backward.0": { + "x": 5, + "y": 225, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.backward.0", + "name": "N___Module.layer2.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.backward.0": { + "x": 5, + "y": 250, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.backward.0", + "name": "N___Module.layer1.Sequential.backward.0", + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.backward.0": { + "x": 7, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.backward.0", + "name": "N___Module.maxpool.MaxPool2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.backward.0": { + "x": 62, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.backward.0", + "name": "N___Module.relu.ReLU.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.backward.0": { + "x": 117, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.backward.0", + "name": "N___Module.bn1.BatchNorm2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.backward.0": { + "x": 172, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.backward.0", + "name": "N___Module.conv1.Conv2d.backward.0", + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_delete_match_nodes.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_delete_match_nodes.json new file mode 100644 index 000000000..89185fc8a --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_delete_match_nodes.json @@ -0,0 +1,320 @@ +[ + { + "case_id": "1", + "description": "测试删除匹配节点", + "input": "data/plugin/graph_ascend/addMatchNodes?npuNodeName=Module.fc.Linear.forward.0&benchNodeName=Module.fc.Linear.forward.0&metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}", + "expected": { + "success": true, + "data": { + "npuMatchNodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" + }, + "benchMatchNodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" + }, + "npuUnMatchNodes": [ + "Module.fc.Linear.forward.0" + ], + "benchUnMatchNodes": [ + "Module.fc.Linear.forward.0" + ] + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_hierarchy_data.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_hierarchy_data.json new file mode 100644 index 000000000..8883046f1 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_hierarchy_data.json @@ -0,0 +1,474 @@ +[ + { + "case_id": "1", + "description": "测试 updateHierarchyData 接口", + "input": "data/plugin/graph_ascend/updateHierarchyData?graphType=NPU", + "expected": { + "success": true, + "data": { + "DefaultModel": { + "x": 0, + "y": 0, + "width": 230, + "height": 300, + "expand": true, + "isRoot": true, + "parentNode": "None", + "label": "DefaultModel", + "name": "N___DefaultModel", + "children": [ + "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.Sequential.forward.0", + "Module.layer2.Sequential.forward.0", + "Module.layer3.Sequential.forward.0", + "Module.layer4.Sequential.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.fc.Linear.forward.0", + "Module.fc.Linear.backward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.Sequential.backward.0", + "Module.layer3.Sequential.backward.0", + "Module.layer2.Sequential.backward.0", + "Module.layer1.Sequential.backward.0", + "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.forward.0": { + "x": 7, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.forward.0", + "name": "N___Module.conv1.Conv2d.forward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.forward.0": { + "x": 62, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.forward.0", + "name": "N___Module.bn1.BatchNorm2d.forward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.forward.0": { + "x": 117, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.forward.0", + "name": "N___Module.relu.ReLU.forward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.forward.0": { + "x": 172, + "y": 25, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.forward.0", + "name": "N___Module.maxpool.MaxPool2d.forward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.forward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.forward.0": { + "x": 8, + "y": 50, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.forward.0", + "name": "N___Module.layer1.Sequential.forward.0", + "children": [ + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0" + ], + "precisionIndex": 0.7, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.forward.0": { + "x": 8, + "y": 75, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.forward.0", + "name": "N___Module.layer2.Sequential.forward.0", + "children": [ + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.forward.0": { + "x": 8, + "y": 100, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.forward.0", + "name": "N___Module.layer3.Sequential.forward.0", + "children": [ + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.1.BasicBlock.forward.0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.forward.0": { + "x": 8, + "y": 125, + "width": 214, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.forward.0", + "name": "N___Module.layer4.Sequential.forward.0", + "children": [ + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.1.BasicBlock.forward.0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.forward.0": { + "x": 7, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "name": "N___Module.avgpool.AdaptiveAvgPool2d.forward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.forward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.forward.0": { + "x": 62, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.forward.0", + "name": "N___Module.fc.Linear.forward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "None", + "DefaultModel", + "Module.fc.Linear.forward.0" + ], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.fc.Linear.backward.0": { + "x": 117, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.fc.Linear.backward.0", + "name": "N___Module.fc.Linear.backward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [], + "precisionIndex": "NaN", + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.backward.0": { + "x": 172, + "y": 150, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "name": "N___Module.avgpool.AdaptiveAvgPool2d.backward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.backward.0" + ], + "precisionIndex": 0.81, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer4.Sequential.backward.0": { + "x": 5, + "y": 175, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer4.Sequential.backward.0", + "name": "N___Module.layer4.Sequential.backward.0", + "children": [ + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.0.BasicBlock.backward.0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer3.Sequential.backward.0": { + "x": 5, + "y": 200, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer3.Sequential.backward.0", + "name": "N___Module.layer3.Sequential.backward.0", + "children": [ + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.0.BasicBlock.backward.0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer2.Sequential.backward.0": { + "x": 5, + "y": 225, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer2.Sequential.backward.0", + "name": "N___Module.layer2.Sequential.backward.0", + "children": [ + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.0.BasicBlock.backward.0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.layer1.Sequential.backward.0": { + "x": 5, + "y": 250, + "width": 220, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.layer1.Sequential.backward.0", + "name": "N___Module.layer1.Sequential.backward.0", + "children": [ + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.0.BasicBlock.backward.0" + ], + "nodeType": 0, + "matchedNodeLink": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.maxpool.MaxPool2d.backward.0": { + "x": 7, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.maxpool.MaxPool2d.backward.0", + "name": "N___Module.maxpool.MaxPool2d.backward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.relu.ReLU.backward.0": { + "x": 62, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.relu.ReLU.backward.0", + "name": "N___Module.relu.ReLU.backward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.relu.ReLU.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.bn1.BatchNorm2d.backward.0": { + "x": 117, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.bn1.BatchNorm2d.backward.0", + "name": "N___Module.bn1.BatchNorm2d.backward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + }, + "Module.conv1.Conv2d.backward.0": { + "x": 172, + "y": 275, + "width": 50, + "height": 15, + "expand": false, + "isRoot": false, + "parentNode": "DefaultModel", + "label": "Module.conv1.Conv2d.backward.0", + "name": "N___Module.conv1.Conv2d.backward.0", + "children": [], + "nodeType": 1, + "matchedNodeLink": [ + "DefaultModel", + "Module.conv1.Conv2d.backward.0" + ], + "precisionIndex": 0, + "overflowLevel": "NaN", + "matchedDistributed": {} + } + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py index 5f61d033b..51e73c164 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py @@ -53,11 +53,11 @@ class TestCaseFactory: @classmethod def load_single_graph_test_data(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller\\test_single_statis_graph.vis') + return cls._load_ut_cases('test_layout_hierarchy_controller\\mock_single_statis_graph.vis') @classmethod def load_compare_graph_test_data(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller\\test_compare_statis_graph.vis') + return cls._load_ut_cases('test_layout_hierarchy_controller\\mock_compare_statis_graph.vis') @classmethod def _load_ut_cases(cls, filename): @@ -72,12 +72,28 @@ class TestCaseFactory: return cls._load_st_cases('test_load_graph_config_info.json') @classmethod - def get_load_graph_all_node_list(cls): + def get_load_graph_all_node_list_cases(cls): return cls._load_st_cases('test_load_graph_all_node_list.json') + @classmethod + def get_change_node_expand_state_cases(cls): + return cls._load_st_cases('test_change_node_expand_state.json') + + @classmethod + def get_test_add_match_nodes_cases(cls): + return cls._load_st_cases('test_add_match_nodes.json') + + @classmethod + def get_test_update_hierarchy_data_cases(cls): + return cls._load_st_cases('test_update_hierarchy_data.json') + + @classmethod + def get_test_delete_match_nodes_cases(cls): + return cls._load_st_cases('test_delete_match_nodes.json') + @classmethod def load_compare_resnet_test_data(cls): - return cls._load_st_cases('test_compare_resnet_data.vis') + return cls._load_st_cases('mock_compare_resnet_data.vis') @classmethod def _load_st_cases(cls, filename): diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_compare_statis_graph.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_compare_statis_graph.vis similarity index 100% rename from plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_compare_statis_graph.vis rename to plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_compare_statis_graph.vis diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_single_statis_graph.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_single_statis_graph.vis similarity index 100% rename from plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/test_single_statis_graph.vis rename to plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_single_statis_graph.vis diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py index 6e19efd9e..f6ba024c4 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -29,6 +29,8 @@ from server.app.views.graph_views import GraphView class TestGraphViews: captured = SimpleNamespace(status=None, headers=None) + + mock_vis_tag = 'mock_compare_resnet_data' @staticmethod def start_response(status, response_headers): @@ -45,7 +47,7 @@ class TestGraphViews: [ {"case_id": "1", "description": "test_load_meta_dir", - "excepted":{'st_test_cases': ['test_compare_resnet_data']} + "excepted":{'st_test_cases': [mock_vis_tag]} } ], ids=lambda c: f"{c['case_id']}:{c['description']}") @@ -64,30 +66,65 @@ class TestGraphViews: @pytest.mark.parametrize("test_case", [{"case_id": "2", "description": "test_load_graph_data"}], ids=lambda c: f"{c['case_id']}:{c['description']}") def test_load_graph_data(self, test_case): - request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/load_graph_data?run=st_test_cases&tag=test_compare_resnet_data") + request = TestGraphViews.create_mock_request(f"/data/plugin/graph_ascend/load_graph_data?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") response_iter = GraphView.load_graph_data(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') runs = GraphState.get_global_value('runs') current_run = GraphState.get_global_value('current_run') current_tag = GraphState.get_global_value('current_tag') assert current_run == runs.get('st_test_cases') - assert current_tag == 'test_compare_resnet_data' + assert current_tag == TestGraphViews.mock_vis_tag assert TestGraphViews.captured.status == "200 OK" assert TestGraphViews.captured.headers["Content-Type"] == "text/event-stream; charset=utf-8" @pytest.mark.parametrize("test_case", TestCaseFactory.get_load_graph_config_info_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_load_graph_config_info(self, test_case): - request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/load_graph_config_info?run=st_test_cases&tag=test_compare_resnet_data") + request = TestGraphViews.create_mock_request(f"/data/plugin/graph_ascend/load_graph_config_info?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") response_iter = GraphView.load_graph_config_info(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') excepted = test_case['expected'] assert response_body == json.dumps(excepted) - @pytest.mark.parametrize("test_case", TestCaseFactory.get_load_graph_all_node_list(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", TestCaseFactory.get_load_graph_all_node_list_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_load_graph_all_node_list(self, test_case): - request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/load_graph_all_node_list?run=st_test_cases&tag=test_compare_resnet_data") + request = TestGraphViews.create_mock_request(f"/data/plugin/graph_ascend/load_graph_all_node_list?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") response_iter = GraphView.load_graph_all_node_list(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') excepted = test_case['expected'] assert response_body == json.dumps(excepted) - + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_change_node_expand_state_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_change_node_expand_state(self, test_case): + input = test_case['input'] + excepted = test_case['expected'] + request = TestGraphViews.create_mock_request(input) + response_iter = GraphView.change_node_expand_state(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + assert response_body == json.dumps(excepted) + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_add_match_nodes_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_add_match_nodes(self, test_case): + input = test_case['input'] + excepted = test_case['expected'] + request = TestGraphViews.create_mock_request(input) + response_iter = GraphView.add_match_nodes(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + assert response_body == json.dumps(excepted) + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_update_hierarchy_data_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_update_hierarchy_data(self, test_case): + input = test_case['input'] + excepted = test_case['expected'] + request = TestGraphViews.create_mock_request(input) + response_iter = GraphView.update_hierarchy_data(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + assert response_body == json.dumps(excepted) + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_delete_match_nodes_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_delete_match_nodes(self, test_case): + input = test_case['input'] + excepted = test_case['expected'] + request = TestGraphViews.create_mock_request(input) + response_iter = GraphView.delete_match_nodes(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + assert response_body == json.dumps(excepted) -- Gitee From f7845f4ed4f11a3d3fcd0d548f4e7afafb951e0b Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Sat, 21 Jun 2025 15:54:45 +0800 Subject: [PATCH 06/22] =?UTF-8?q?=F0=9F=A7=AA=20test:=20=E6=B5=8B=E8=AF=95?= =?UTF-8?q?=E8=8E=B7=E5=8F=96=E8=8A=82=E7=82=B9=E4=BF=A1=E6=81=AF=EF=BC=8C?= =?UTF-8?q?=E5=88=86=E6=94=AF=E8=A6=86=E7=9B=96=E6=97=8568%?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../mock_compare_resnet_data.vis.config | 4 + .../st_test_cases/test_get_node_info.json | 194 ++++++++++++++++++ .../test/data/test_case_factory.py | 4 + .../integration/views/test_graph_views.py | 10 + 4 files changed, 212 insertions(+) create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_get_node_info.json diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config new file mode 100644 index 000000000..9b08a108b --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config @@ -0,0 +1,4 @@ +{ + "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0", + "Module.fc.Linear.backward.0": "Module.fc.Linear.backward.0" +} \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_get_node_info.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_get_node_info.json new file mode 100644 index 000000000..fb19100d6 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_get_node_info.json @@ -0,0 +1,194 @@ +[ + { + "case_id": "1", + "description": "测试获取匹配节点信息", + "input": "/data/plugin/graph_ascend/getNodeInfo?nodeInfo={\"nodeType\":\"NPU\",\"nodeName\":\"Module.layer2.1.BasicBlock.forward.0\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", + "expected": { + "success": true, + "data": { + "npu": { + "id": "Module.layer2.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "bench": { + "id": "Module.layer2.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + } + } + } + }, + { + "case_id": "2", + "description": "测试获取未匹配节点信息", + "input": "/data/plugin/graph_ascend/getNodeInfo?nodeInfo={\"nodeType\":\"NPU\",\"nodeName\":\"Module.fc.Linear.forward.0\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", + "expected": { + "success": true, + "data": { + "npu": { + "id": "Module.fc.Linear.forward.0", + "node_type": 0, + "output_data": { + "Module.fc.Linear.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 10]", + "Max": "1.236255", + "Min": "-1.562365", + "Mean": "-0.12689", + "Norm": "5.357258", + "data_name": "-1" + } + }, + "input_data": { + "Module.fc.Linear.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512]", + "Max": "2.68325", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "66.964317", + "data_name": "-1" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "bench": null + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py index 51e73c164..42e069316 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py @@ -91,6 +91,10 @@ class TestCaseFactory: def get_test_delete_match_nodes_cases(cls): return cls._load_st_cases('test_delete_match_nodes.json') + @classmethod + def get_test_get_node_info_cases(cls): + return cls._load_st_cases('test_get_node_info.json') + @classmethod def load_compare_resnet_test_data(cls): return cls._load_st_cases('mock_compare_resnet_data.vis') diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py index f6ba024c4..d7986b35d 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -128,3 +128,13 @@ class TestGraphViews: response_iter = GraphView.delete_match_nodes(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_get_node_info_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_get_node_info(self, test_case): + input = test_case['input'] + excepted = test_case['expected'] + request = TestGraphViews.create_mock_request(input) + response_iter = GraphView.get_node_info(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + assert response_body == json.dumps(excepted) + -- Gitee From 2b705788ed4a59b83cf62a799cf9a49b96718675 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Sat, 21 Jun 2025 15:56:46 +0800 Subject: [PATCH 07/22] =?UTF-8?q?=E2=9C=A8=20feat:=20=E5=AF=BC=E5=87=BA?= =?UTF-8?q?=E8=8A=82=E7=82=B9=E5=8F=AA=E5=AF=BC=E5=87=BA=E6=89=8B=E5=8A=A8?= =?UTF-8?q?=E5=8C=B9=E9=85=8D=E8=8A=82=E7=82=B9?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../app/controllers/match_nodes_controller.py | 19 +++++---- .../server/app/service/graph_service.py | 2 +- .../server/app/utils/global_state.py | 40 +++++++++++++------ .../server/app/views/graph_views.py | 1 + 4 files changed, 42 insertions(+), 20 deletions(-) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py index 1860dcaa3..f5a01f0e1 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py @@ -328,6 +328,7 @@ class MatchNodesController: def add_config_match_nodes(npu_node_name, bench_node_name): config_data = GraphState.get_global_value("config_data") # 匹配列表和未匹配列表 + manual_match_nodes = config_data.setdefault('manualMatchNodes', {}) npu_match_nodes_list = config_data.setdefault('npuMatchNodes', {}) bench_match_nodes_list = config_data.setdefault('benchMatchNodes', {}) npu_unmatehed_name_list = config_data.setdefault('npuUnMatchNodes', []) @@ -335,25 +336,29 @@ class MatchNodesController: # 更新匹配列表和未匹配列表 if str(npu_node_name) in npu_unmatehed_name_list: npu_unmatehed_name_list.remove(str(npu_node_name)) - if str(str(bench_node_name)) in bench_unmatehed_name_list: + if str(bench_node_name) in bench_unmatehed_name_list: bench_unmatehed_name_list.remove(str(bench_node_name)) - npu_match_nodes_list[npu_node_name] = bench_node_name - bench_match_nodes_list[bench_node_name] = npu_node_name + manual_match_nodes[str(npu_node_name)] = str(bench_node_name) + npu_match_nodes_list[str(npu_node_name)] = str(bench_node_name) + bench_match_nodes_list[str(bench_node_name)] = str(npu_node_name) GraphState.set_global_value("config_data", config_data) @staticmethod def delete_config_match_nodes(npu_node_name, bench_node_name): config_data = GraphState.get_global_value("config_data") # 匹配列表和未匹配列表 + manual_match_nodes = config_data.setdefault('manualMatchNodes', {}) npu_match_nodes_list = config_data.setdefault('npuMatchNodes', {}) bench_match_nodes_list = config_data.setdefault('benchMatchNodes', {}) npu_unmatehed_name_list = config_data.setdefault('npuUnMatchNodes', []) bench_unmatehed_name_list = config_data.setdefault('benchUnMatchNodes', []) # 更新匹配列表和未匹配列表 - if npu_node_name in npu_match_nodes_list: - del npu_match_nodes_list[npu_node_name] - if bench_node_name in bench_match_nodes_list: - del bench_match_nodes_list[bench_node_name] + if str(npu_node_name) in manual_match_nodes: + del manual_match_nodes[str(npu_node_name)] + if str(npu_node_name) in npu_match_nodes_list: + del npu_match_nodes_list[str(npu_node_name)] + if str(bench_node_name) in bench_match_nodes_list: + del bench_match_nodes_list[str(bench_node_name)] npu_unmatehed_name_list.append(str(npu_node_name)) bench_unmatehed_name_list.append(str(bench_node_name)) GraphState.set_global_value("config_data", config_data) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py index 2403e2f35..a78023380 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py @@ -355,7 +355,7 @@ class GraphService: def save_matched_relations(meta_data): config_data = GraphState.get_global_value("config_data") # 匹配列表和未匹配列表 - npu_match_nodes_list = config_data.get('npuMatchNodes', {}) + npu_match_nodes_list = config_data.get('manualMatchNodes', {}) run = meta_data.get('run') tag = meta_data.get('tag') try: diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/global_state.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/global_state.py index 7f6ea45a9..b835e990c 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/global_state.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/global_state.py @@ -53,7 +53,15 @@ class GraphState: 'current_file_path': '', 'current_file_data': {}, 'current_hierarchy': {}, - 'config_data': {}, + 'config_data': { + "run":"", + "npuUnMatchNodes":[], + "benchUnMatchNodes":[], + "npuMatchNodes":{}, + "benchMatchNodes":{}, + "manualMatchNodes":{}, + + }, 'first_run_tags': {}, 'runs': {}, } @@ -64,17 +72,25 @@ class GraphState: 初始化全局变量的默认值 """ global _state - GraphState._state = { - 'logdir': '', - 'current_tag': '', - 'current_run': '', - 'current_file_path': '', - 'current_file_data': {}, - 'current_hierarchy': {}, - 'config_data': {}, - 'first_run_tags': {}, - 'runs': {} - } + GraphState._state = { + 'logdir': '', + 'current_tag': '', + 'current_run': '', + 'current_file_path': '', + 'current_file_data': {}, + 'current_hierarchy': {}, + 'config_data': { + "run":"", + "npuUnMatchNodes":[], + "benchUnMatchNodes":[], + "npuMatchNodes":{}, + "benchMatchNodes":{}, + "manualMatchNodes":{}, + + }, + 'first_run_tags': {}, + 'runs': {}, + } @staticmethod def set_global_value(key, value): diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py index 1ef7130e8..5eb218625 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py @@ -169,6 +169,7 @@ class GraphView: @staticmethod @wrappers.Request.application def save_matched_relations(request): + print("save_matched_relations", request) meta_data = GraphUtils.safe_json_loads(request.args.get("metaData")) save_result = GraphService.save_matched_relations(meta_data) return http_util.Respond(request, json.dumps(save_result), "application/json") -- Gitee From 661ea1f61cfd82e209e661ba33c65050cf9b3f28 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Mon, 23 Jun 2025 09:49:06 +0800 Subject: [PATCH 08/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20=E6=9B=B4=E6=94=B9?= =?UTF-8?q?=E6=B5=8B=E8=AF=95=E7=94=A8=E4=BE=8B?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../mock_compare_resnet_data.vis.config | 4 ---- .../test_load_graph_config_info.json | 12 ++++++------ .../test/data/test_case_factory.py | 18 +++++++++--------- .../test/integration/views/test_graph_views.py | 6 ++++++ 4 files changed, 21 insertions(+), 19 deletions(-) delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config deleted file mode 100644 index 9b08a108b..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config +++ /dev/null @@ -1,4 +0,0 @@ -{ - "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0", - "Module.fc.Linear.backward.0": "Module.fc.Linear.backward.0" -} \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json index dab080948..70315db7f 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json @@ -15,39 +15,39 @@ 0, 0.2 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#FFEDBE": { "value": [ 0.2, 0.4 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#FFDC7F": { "value": [ 0.4, 0.6 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#FFC62E": { "value": [ 0.6, 0.8 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#FF704D": { "value": [ 0.8, 1 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#C7C7C7": { "value": [], - "description": "\u6bd4\u5bf9\u8fc7\u7a0b\u4e2d\u8282\u70b9\u672a\u5339\u914d\u4e0a" + "description": "比对过程中节点未匹配上" } }, "matchedConfigFiles": [] diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py index 42e069316..d42c7a6c2 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py @@ -25,39 +25,39 @@ class TestCaseFactory: @classmethod def get_process_task_add_cases(cls): - return cls._load_ut_cases('test_match_node_controller\\process_task_add_case.json') + return cls._load_ut_cases('test_match_node_controller/process_task_add_case.json') @classmethod def get_process_task_delete_cases(cls): - return cls._load_ut_cases('test_match_node_controller\\process_task_delete_case.json') + return cls._load_ut_cases('test_match_node_controller/process_task_delete_case.json') @classmethod def get_process_task_add_child_layer_cases(cls): - return cls._load_ut_cases('test_match_node_controller\\process_task_add_child_layer.json') + return cls._load_ut_cases('test_match_node_controller/process_task_add_child_layer.json') @classmethod def get_process_task_delete_child_layer_cases(cls): - return cls._load_ut_cases('test_match_node_controller\\process_task_delete_child_layer.json') + return cls._load_ut_cases('test_match_node_controller/process_task_delete_child_layer.json') @classmethod def get_process_task_add_child_layer_by_config_cases(cls): - return cls._load_ut_cases('test_match_node_controller\\process_task_add_child_layer_by_config.json') + return cls._load_ut_cases('test_match_node_controller/process_task_add_child_layer_by_config.json') @classmethod def get_change_expand_state_cases(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller\\change_expand_state_case.json') + return cls._load_ut_cases('test_layout_hierarchy_controller/change_expand_state_case.json') @classmethod def get_update_hierarchy_data_cases(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller\\update_hierarchy_data_case.json') + return cls._load_ut_cases('test_layout_hierarchy_controller/update_hierarchy_data_case.json') @classmethod def load_single_graph_test_data(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller\\mock_single_statis_graph.vis') + return cls._load_ut_cases('test_layout_hierarchy_controller/mock_single_statis_graph.vis') @classmethod def load_compare_graph_test_data(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller\\mock_compare_statis_graph.vis') + return cls._load_ut_cases('test_layout_hierarchy_controller/mock_compare_statis_graph.vis') @classmethod def _load_ut_cases(cls, filename): diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py index d7986b35d..b60242345 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -137,4 +137,10 @@ class TestGraphViews: response_iter = GraphView.get_node_info(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) + + def test_save_matched_relations(self): + request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/saveMatchedRelations?metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data") + response_iter = GraphView.save_matched_relations(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + print(response_body) -- Gitee From 8c92dab337e5100123a350e55303c27e9c877d51 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Tue, 24 Jun 2025 11:17:38 +0800 Subject: [PATCH 09/22] =?UTF-8?q?=F0=9F=A7=AA=20test:=20view=20=E6=B5=8Bhi?= =?UTF-8?q?=E8=A6=86=E7=9B=96=E7=8E=87100%=EF=BC=8C=E5=88=86=E6=94=AF?= =?UTF-8?q?=E8=A6=86=E7=9B=96=E7=8E=87=E6=A6=82=E7=8E=8775%?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../server/app/utils/graph_utils.py | 3 +- .../server/app/views/graph_views.py | 3 +- .../st_test_cases/mock_compare_resnet_data | 17298 ++++++++++++++++ .../mock_compare_resnet_data.vis | 778 +- .../mock_compare_resnet_data.vis.config | 3 + .../test_add_match_nodes_by_config.json | 321 + .../test_load_graph_config_info.json | 17 +- .../st_test_cases/test_update_colors.json | 12 + .../test/data/test_case_factory.py | 8 + .../integration/views/test_graph_views.py | 84 +- 10 files changed, 18268 insertions(+), 259 deletions(-) create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes_by_config.json create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_colors.json diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py index aefaa5f7e..8e715b84d 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py @@ -148,8 +148,7 @@ class GraphUtils: if len(json_data) > MAX_FILE_SIZE: logger.error(f"File content exceeds {MAX_FILE_SIZE} bytes.") return default_value - - result = json.load(json_data) + result = json.loads(json_data) GraphUtils.remove_prototype_pollution(result) return result except json.JSONDecodeError as e: diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py index 5eb218625..def8c1001 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py @@ -29,6 +29,7 @@ class GraphView: @staticmethod @wrappers.Request.application def static_file_route(request): + print( ) filename = os.path.basename(request.path) extension = os.path.splitext(filename)[1] if extension == '.html': @@ -152,6 +153,7 @@ class GraphView: @staticmethod @wrappers.Request.application def save_data(request): + print("save_data", request) meta_data = GraphUtils.safe_json_loads(request.args.get("metaData")) save_result = GraphService.save_data(meta_data) return http_util.Respond(request, json.dumps(save_result), "application/json") @@ -169,7 +171,6 @@ class GraphView: @staticmethod @wrappers.Request.application def save_matched_relations(request): - print("save_matched_relations", request) meta_data = GraphUtils.safe_json_loads(request.args.get("metaData")) save_result = GraphService.save_matched_relations(meta_data) return http_util.Respond(request, json.dumps(save_result), "application/json") diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data new file mode 100644 index 000000000..0d07190cd --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data @@ -0,0 +1,17298 @@ +{ + "NPU": { + "root": "DefaultModel", + "dump_data_dir": null, + "node": { + "DefaultModel": { + "id": "DefaultModel", + "node_type": 0, + "output_data": {}, + "input_data": {}, + "upnode": "None", + "subnodes": [ + "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.Sequential.forward.0", + "Module.layer2.Sequential.forward.0", + "Module.layer3.Sequential.forward.0", + "Module.layer4.Sequential.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.fc.Linear.forward.0", + "Module.fc.Linear.backward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.Sequential.backward.0", + "Module.layer3.Sequential.backward.0", + "Module.layer2.Sequential.backward.0", + "Module.layer1.Sequential.backward.0", + "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.conv1.Conv2d.forward.0": { + "id": "Module.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "1.526799", + "Min": "-1.559762", + "Mean": "-0.000263", + "Norm": "244.860931", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 3, 64, 64]", + "Max": "4.350435", + "Min": "-4.339223", + "Mean": "-0.001572", + "Norm": "350.247772", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 268, in _forward_impl, \n x = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.bn1.BatchNorm2d.forward.0": { + "id": "Module.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "-5.146786", + "Mean": "4.656613e-11", + "Norm": "809.493835", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "1.526799", + "Min": "-1.559762", + "Mean": "-0.000263", + "Norm": "244.860931", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 269, in _forward_impl, \n x = self.bn1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.relu.ReLU.forward.0": { + "id": "Module.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 270, in _forward_impl, \n x = self.relu(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.maxpool.MaxPool2d.forward.0": { + "id": "Module.maxpool.MaxPool2d.forward.0", + "node_type": 0, + "output_data": { + "Module.maxpool.MaxPool2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.maxpool.MaxPool2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 271, in _forward_impl, \n x = self.maxpool(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.BasicBlock.forward.0": { + "id": "Module.layer1.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.Sequential.forward.0", + "subnodes": [ + "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.conv1.Conv2d.forward.0": { + "id": "Module.layer1.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.74388", + "Min": "-7.379547", + "Mean": "-0.12333", + "Norm": "858.103699", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.Sequential.forward.0": { + "id": "Module.layer1.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "1.241406", + "Min diff": "-0.352369", + "Mean diff": "3.252369", + "L2norm diff": "6.914416", + "MaxRelativeErr": "66.663253%", + "MinRelativeErr": "56.663237%", + "MeanRelativeErr": "52.663233%", + "NormRelativeErr": "53.663533%" + } + }, + "input_data": { + "Module.layer1.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.7 + } + }, + "Module.layer1.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "-4.199296", + "Mean": "1.620501e-08", + "Norm": "404.769043", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.74388", + "Min": "-7.379547", + "Mean": "-0.12333", + "Norm": "858.103699", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.relu.ReLU.forward.0": { + "id": "Module.layer1.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.conv2.Conv2d.forward.0": { + "id": "Module.layer1.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.442179", + "Min": "-3.972987", + "Mean": "0.084329", + "Norm": "370.438843", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.605992", + "Min": "-4.646146", + "Mean": "4.284084e-09", + "Norm": "404.767944", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.442179", + "Min": "-3.972987", + "Mean": "0.084329", + "Norm": "370.438843", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.relu.ReLU.forward.1": { + "id": "Module.layer1.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.BasicBlock.forward.0": { + "id": "Module.layer1.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "6.326555", + "Min diff": "5.36963", + "Mean diff": "5.12369", + "L2norm diff": "8.39633", + "MaxRelativeErr": "83.235636%", + "MinRelativeErr": "69.362945%", + "MeanRelativeErr": "72.369548%", + "NormRelativeErr": "71.369612%" + } + }, + "input_data": { + "Module.layer1.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.Sequential.forward.0", + "subnodes": [ + "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer1.1.conv1.Conv2d.forward.0": { + "id": "Module.layer1.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "9.274334", + "Min": "-10.156013", + "Mean": "-0.101834", + "Norm": "975.393066", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "-4.49145", + "Mean": "-2.235174e-09", + "Norm": "404.770447", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "9.274334", + "Min": "-10.156013", + "Mean": "-0.101834", + "Norm": "975.393066", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.relu.ReLU.forward.0": { + "id": "Module.layer1.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.conv2.Conv2d.forward.0": { + "id": "Module.layer1.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.431858", + "Min": "-4.229196", + "Mean": "0.005514", + "Norm": "375.989105", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.475619", + "Min": "-4.364196", + "Mean": "1.396984e-09", + "Norm": "404.76828", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.431858", + "Min": "-4.229196", + "Mean": "0.005514", + "Norm": "375.989105", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.relu.ReLU.forward.1": { + "id": "Module.layer1.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.BasicBlock.forward.0": { + "id": "Module.layer2.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.conv1.Conv2d.forward.0": { + "id": "Module.layer2.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.363841", + "Min": "-8.813498", + "Mean": "0.116351", + "Norm": "582.720398", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.Sequential.forward.0": { + "id": "Module.layer2.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "-4.77158", + "Mean": "1.303852e-09", + "Norm": "286.215912", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.363841", + "Min": "-8.813498", + "Mean": "0.116351", + "Norm": "582.720398", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.relu.ReLU.forward.0": { + "id": "Module.layer2.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.conv2.Conv2d.forward.0": { + "id": "Module.layer2.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.0345", + "Min": "-4.125886", + "Mean": "-0.100337", + "Norm": "260.142944", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.152795", + "Min": "-4.936253", + "Mean": "3.725290e-10", + "Norm": "286.214294", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.0345", + "Min": "-4.125886", + "Mean": "-0.100337", + "Norm": "260.142944", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0.81 + } + }, + "Module.layer2.0.downsample.Sequential.forward.0": { + "id": "Module.layer2.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.257706", + "Min": "-4.515994", + "Mean": "-1.117587e-09", + "Norm": "286.215851", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.203266", + "Min": "-9.355068", + "Mean": "-0.02311", + "Norm": "617.127319", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.257706", + "Min": "-4.515994", + "Mean": "-1.117587e-09", + "Norm": "286.215851", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.203266", + "Min": "-9.355068", + "Mean": "-0.02311", + "Norm": "617.127319", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.relu.ReLU.forward.1": { + "id": "Module.layer2.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.BasicBlock.forward.0": { + "id": "Module.layer2.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.conv1.Conv2d.forward.0": { + "id": "Module.layer2.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.62359", + "Min": "-5.580112", + "Mean": "0.074416", + "Norm": "367.649841", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "-4.101557", + "Mean": "-3.818422e-09", + "Norm": "286.215485", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.62359", + "Min": "-5.580112", + "Mean": "0.074416", + "Norm": "367.649841", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.relu.ReLU.forward.0": { + "id": "Module.layer2.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.conv2.Conv2d.forward.0": { + "id": "Module.layer2.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.393562", + "Min": "-4.753343", + "Mean": "-0.078746", + "Norm": "260.969421", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.73594", + "Min": "-4.475933", + "Mean": "2.421439e-09", + "Norm": "286.214294", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.393562", + "Min": "-4.753343", + "Mean": "-0.078746", + "Norm": "260.969421", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.relu.ReLU.forward.1": { + "id": "Module.layer2.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.BasicBlock.forward.0": { + "id": "Module.layer3.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.Sequential.forward.0", + "subnodes": [ + "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.conv1.Conv2d.forward.0": { + "id": "Module.layer3.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.532973", + "Min": "-6.165116", + "Mean": "0.023511", + "Norm": "250.68428", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.Sequential.forward.0": { + "id": "Module.layer3.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.layer3.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "-4.041963", + "Mean": "1.024455e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.532973", + "Min": "-6.165116", + "Mean": "0.023511", + "Norm": "250.68428", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.relu.ReLU.forward.0": { + "id": "Module.layer3.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.conv2.Conv2d.forward.0": { + "id": "Module.layer3.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.085584", + "Min": "-3.535729", + "Mean": "0.009184", + "Norm": "171.884354", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.328585", + "Min": "-4.24462", + "Mean": "-5.587936e-10", + "Norm": "202.383789", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.085584", + "Min": "-3.535729", + "Mean": "0.009184", + "Norm": "171.884354", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.Sequential.forward.0": { + "id": "Module.layer3.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.673633", + "Min": "-4.118578", + "Mean": "2.980232e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.544863", + "Min": "-5.637341", + "Mean": "0.063504", + "Norm": "262.41275", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.673633", + "Min": "-4.118578", + "Mean": "2.980232e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.544863", + "Min": "-5.637341", + "Mean": "0.063504", + "Norm": "262.41275", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.relu.ReLU.forward.1": { + "id": "Module.layer3.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.BasicBlock.forward.0": { + "id": "Module.layer3.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.Sequential.forward.0", + "subnodes": [ + "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.conv1.Conv2d.forward.0": { + "id": "Module.layer3.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.445492", + "Min": "-5.73983", + "Mean": "0.056189", + "Norm": "242.794586", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "-4.302232", + "Mean": "6.053597e-10", + "Norm": "202.384811", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.445492", + "Min": "-5.73983", + "Mean": "0.056189", + "Norm": "242.794586", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.relu.ReLU.forward.0": { + "id": "Module.layer3.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.conv2.Conv2d.forward.0": { + "id": "Module.layer3.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "3.904869", + "Min": "-3.915274", + "Mean": "0.000739", + "Norm": "175.362854", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.820035", + "Min": "-4.248729", + "Mean": "3.725290e-09", + "Norm": "202.38385", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "3.904869", + "Min": "-3.915274", + "Mean": "0.000739", + "Norm": "175.362854", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.relu.ReLU.forward.1": { + "id": "Module.layer3.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.BasicBlock.forward.0": { + "id": "Module.layer4.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.Sequential.forward.0", + "subnodes": [ + "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.conv1.Conv2d.forward.0": { + "id": "Module.layer4.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.17719", + "Min": "-5.021754", + "Mean": "-0.003242", + "Norm": "160.062332", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.Sequential.forward.0": { + "id": "Module.layer4.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.layer4.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "-4.494643", + "Mean": "0.0", + "Norm": "143.107346", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.17719", + "Min": "-5.021754", + "Mean": "-0.003242", + "Norm": "160.062332", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.relu.ReLU.forward.0": { + "id": "Module.layer4.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.conv2.Conv2d.forward.0": { + "id": "Module.layer4.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.548945", + "Min": "-2.623174", + "Mean": "-0.024468", + "Norm": "96.85141", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.43048", + "Min": "-3.390204", + "Mean": "-5.587936e-10", + "Norm": "143.106155", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.548945", + "Min": "-2.623174", + "Mean": "-0.024468", + "Norm": "96.85141", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.Sequential.forward.0": { + "id": "Module.layer4.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.162686", + "Min": "-4.141354", + "Mean": "-1.396984e-09", + "Norm": "143.107498", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "5.574177", + "Min": "-5.778933", + "Mean": "0.001088", + "Norm": "182.966492", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.162686", + "Min": "-4.141354", + "Mean": "-1.396984e-09", + "Norm": "143.107498", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "5.574177", + "Min": "-5.778933", + "Mean": "0.001088", + "Norm": "182.966492", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.relu.ReLU.forward.1": { + "id": "Module.layer4.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.BasicBlock.forward.0": { + "id": "Module.layer4.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.Sequential.forward.0", + "subnodes": [ + "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.conv1.Conv2d.forward.0": { + "id": "Module.layer4.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.864757", + "Min": "-3.787591", + "Mean": "0.002277", + "Norm": "133.55986", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "-3.694792", + "Mean": "1.490116e-09", + "Norm": "143.107239", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.864757", + "Min": "-3.787591", + "Mean": "0.002277", + "Norm": "133.55986", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.relu.ReLU.forward.0": { + "id": "Module.layer4.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.conv2.Conv2d.forward.0": { + "id": "Module.layer4.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.484763", + "Min": "-2.720093", + "Mean": "0.013722", + "Norm": "95.469269", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.644991", + "Min": "-3.459976", + "Mean": "-4.656613e-10", + "Norm": "143.106094", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.484763", + "Min": "-2.720093", + "Mean": "0.013722", + "Norm": "95.469269", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.relu.ReLU.forward.1": { + "id": "Module.layer4.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": { + "precision_index": 0 + } + }, + "Module.avgpool.AdaptiveAvgPool2d.forward.0": { + "id": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "node_type": 0, + "output_data": { + "Module.avgpool.AdaptiveAvgPool2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 1, 1]", + "Max": "2.68325", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "66.964317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.avgpool.AdaptiveAvgPool2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 278, in _forward_impl, \n x = self.avgpool(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.fc.Linear.forward.0": { + "id": "Module.fc.Linear.forward.0", + "node_type": 0, + "output_data": { + "Module.fc.Linear.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 10]", + "Max": "1.236255", + "Min": "-1.562365", + "Mean": "-0.12689", + "Norm": "5.357258", + "data_name": "-1" + } + }, + "input_data": { + "Module.fc.Linear.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512]", + "Max": "2.68325", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "66.964317", + "data_name": "-1" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.fc.Linear.backward.0": { + "id": "Module.fc.Linear.backward.0", + "node_type": 0, + "output_data": { + "Module.fc.Linear.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512]", + "Max": "0.006356", + "Min": "-0.00662", + "Mean": "0.000117", + "Norm": "0.176545", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.fc.Linear.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 10]", + "Max": "0.03222", + "Min": "-0.097696", + "Mean": "1.490116e-10", + "Norm": "0.311353", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.backward.0": { + "id": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "node_type": 0, + "output_data": { + "Module.avgpool.AdaptiveAvgPool2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.avgpool.AdaptiveAvgPool2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 1, 1]", + "Max": "0.006356", + "Min": "-0.00662", + "Mean": "0.000117", + "Norm": "0.176545", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0.81 + } + }, + "Module.layer4.1.BasicBlock.backward.0": { + "id": "Module.layer4.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.Sequential.backward.0", + "subnodes": [ + "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.relu.ReLU.backward.0": { + "id": "Module.layer4.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.170244e-05", + "Norm": "0.071178", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.Sequential.backward.0": { + "id": "Module.layer4.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00349", + "Min": "-0.003203", + "Mean": "-1.818989e-13", + "Norm": "0.114767", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.170244e-05", + "Norm": "0.071178", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.conv2.Conv2d.backward.0": { + "id": "Module.layer4.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003047", + "Min": "-0.003687", + "Mean": "5.127279e-08", + "Norm": "0.107756", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00349", + "Min": "-0.003203", + "Mean": "-1.818989e-13", + "Norm": "0.114767", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.relu.ReLU.backward.1": { + "id": "Module.layer4.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003023", + "Min": "-0.002646", + "Mean": "9.799842e-08", + "Norm": "0.075418", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003047", + "Min": "-0.003687", + "Mean": "5.127279e-08", + "Norm": "0.107756", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00392", + "Min": "-0.00384", + "Mean": "2.160050e-13", + "Norm": "0.093361", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003023", + "Min": "-0.002646", + "Mean": "9.799842e-08", + "Norm": "0.075418", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.1.conv1.Conv2d.backward.0": { + "id": "Module.layer4.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.002777", + "Min": "-0.002687", + "Mean": "-1.536876e-06", + "Norm": "0.087284", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00392", + "Min": "-0.00384", + "Mean": "2.160050e-13", + "Norm": "0.093361", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.BasicBlock.backward.0": { + "id": "Module.layer4.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.Sequential.backward.0", + "subnodes": [ + "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.relu.ReLU.backward.0": { + "id": "Module.layer4.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.Sequential.backward.0": { + "id": "Module.layer4.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004114", + "Min": "-0.003346", + "Mean": "-4.547474e-14", + "Norm": "0.087317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004101", + "Min": "-0.003454", + "Mean": "-3.637979e-13", + "Norm": "0.087384", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004114", + "Min": "-0.003346", + "Mean": "-4.547474e-14", + "Norm": "0.087317", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004101", + "Min": "-0.003454", + "Mean": "-3.637979e-13", + "Norm": "0.087384", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.006026", + "Min": "-0.006504", + "Mean": "7.275958e-13", + "Norm": "0.138286", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.conv2.Conv2d.backward.0": { + "id": "Module.layer4.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "2.937198e-06", + "Norm": "0.130315", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.006026", + "Min": "-0.006504", + "Mean": "7.275958e-13", + "Norm": "0.138286", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.relu.ReLU.backward.1": { + "id": "Module.layer4.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "-8.934543e-07", + "Norm": "0.092057", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "2.937198e-06", + "Norm": "0.130315", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004244", + "Min": "-0.004086", + "Mean": "-4.547474e-13", + "Norm": "0.106542", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "-8.934543e-07", + "Norm": "0.092057", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer4.0.conv1.Conv2d.backward.0": { + "id": "Module.layer4.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.002732", + "Min": "-0.002337", + "Mean": "1.283062e-07", + "Norm": "0.088477", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer4.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004244", + "Min": "-0.004086", + "Mean": "-4.547474e-13", + "Norm": "0.106542", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.BasicBlock.backward.0": { + "id": "Module.layer3.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.Sequential.backward.0", + "subnodes": [ + "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.relu.ReLU.backward.0": { + "id": "Module.layer3.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "5.267739e-07", + "Norm": "0.100327", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.Sequential.backward.0": { + "id": "Module.layer3.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005349", + "Min": "-0.00458", + "Mean": "5.456968e-13", + "Norm": "0.134192", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "5.267739e-07", + "Norm": "0.100327", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.conv2.Conv2d.backward.0": { + "id": "Module.layer3.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004227", + "Min": "-0.003777", + "Mean": "-1.105049e-06", + "Norm": "0.161834", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005349", + "Min": "-0.00458", + "Mean": "5.456968e-13", + "Norm": "0.134192", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.relu.ReLU.backward.1": { + "id": "Module.layer3.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003753", + "Min": "-0.003777", + "Mean": "-1.121872e-07", + "Norm": "0.113553", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004227", + "Min": "-0.003777", + "Mean": "-1.105049e-06", + "Norm": "0.161834", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004302", + "Min": "-0.003597", + "Mean": "4.547474e-14", + "Norm": "0.108404", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003753", + "Min": "-0.003777", + "Mean": "-1.121872e-07", + "Norm": "0.113553", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.1.conv1.Conv2d.backward.0": { + "id": "Module.layer3.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003036", + "Min": "-0.002772", + "Mean": "-2.692081e-07", + "Norm": "0.133319", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004302", + "Min": "-0.003597", + "Mean": "4.547474e-14", + "Norm": "0.108404", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.BasicBlock.backward.0": { + "id": "Module.layer3.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.Sequential.backward.0", + "subnodes": [ + "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.relu.ReLU.backward.0": { + "id": "Module.layer3.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.Sequential.backward.0": { + "id": "Module.layer3.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004002", + "Min": "-0.004525", + "Mean": "3.410605e-13", + "Norm": "0.1262", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004036", + "Min": "-0.005194", + "Mean": "0.0", + "Norm": "0.126903", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004002", + "Min": "-0.004525", + "Mean": "3.410605e-13", + "Norm": "0.1262", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004036", + "Min": "-0.005194", + "Mean": "0.0", + "Norm": "0.126903", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.006225", + "Min": "-0.005798", + "Mean": "-3.637979e-13", + "Norm": "0.166553", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.conv2.Conv2d.backward.0": { + "id": "Module.layer3.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-6.200127e-07", + "Norm": "0.20419", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.006225", + "Min": "-0.005798", + "Mean": "-3.637979e-13", + "Norm": "0.166553", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.relu.ReLU.backward.1": { + "id": "Module.layer3.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-5.361890e-07", + "Norm": "0.144125", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-6.200127e-07", + "Norm": "0.20419", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005433", + "Min": "-0.005011", + "Mean": "0.0", + "Norm": "0.150797", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-5.361890e-07", + "Norm": "0.144125", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer3.0.conv1.Conv2d.backward.0": { + "id": "Module.layer3.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.003242", + "Min": "-0.002676", + "Mean": "1.208646e-08", + "Norm": "0.139735", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer3.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005433", + "Min": "-0.005011", + "Mean": "0.0", + "Norm": "0.150797", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.BasicBlock.backward.0": { + "id": "Module.layer2.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.Sequential.backward.0", + "subnodes": [ + "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.relu.ReLU.backward.0": { + "id": "Module.layer2.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "6.662881e-07", + "Norm": "0.152697", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.Sequential.backward.0": { + "id": "Module.layer2.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005537", + "Min": "-0.006419", + "Mean": "4.547474e-14", + "Norm": "0.192183", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "6.662881e-07", + "Norm": "0.152697", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.conv2.Conv2d.backward.0": { + "id": "Module.layer2.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004991", + "Mean": "6.954823e-07", + "Norm": "0.250644", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005537", + "Min": "-0.006419", + "Mean": "4.547474e-14", + "Norm": "0.192183", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.relu.ReLU.backward.1": { + "id": "Module.layer2.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004159", + "Mean": "2.355963e-06", + "Norm": "0.177588", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004991", + "Mean": "6.954823e-07", + "Norm": "0.250644", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004246", + "Min": "-0.003801", + "Mean": "3.865353e-13", + "Norm": "0.159253", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004159", + "Mean": "2.355963e-06", + "Norm": "0.177588", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.1.conv1.Conv2d.backward.0": { + "id": "Module.layer2.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.003947", + "Min": "-0.00409", + "Mean": "1.122175e-06", + "Norm": "0.213347", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004246", + "Min": "-0.003801", + "Mean": "3.865353e-13", + "Norm": "0.159253", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.BasicBlock.backward.0": { + "id": "Module.layer2.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.Sequential.backward.0", + "subnodes": [ + "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.relu.ReLU.backward.0": { + "id": "Module.layer2.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.Sequential.backward.0": { + "id": "Module.layer2.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004066", + "Min": "-0.004851", + "Mean": "4.547474e-14", + "Norm": "0.148232", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004749", + "Min": "-0.004585", + "Mean": "-2.728484e-13", + "Norm": "0.14894", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004066", + "Min": "-0.004851", + "Mean": "4.547474e-14", + "Norm": "0.148232", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004749", + "Min": "-0.004585", + "Mean": "-2.728484e-13", + "Norm": "0.14894", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00708", + "Min": "-0.008085", + "Mean": "-5.456968e-13", + "Norm": "0.246197", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.conv2.Conv2d.backward.0": { + "id": "Module.layer2.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005883", + "Min": "-0.005688", + "Mean": "7.895345e-07", + "Norm": "0.328498", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00708", + "Min": "-0.008085", + "Mean": "-5.456968e-13", + "Norm": "0.246197", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.relu.ReLU.backward.1": { + "id": "Module.layer2.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005686", + "Min": "-0.005685", + "Mean": "1.743164e-06", + "Norm": "0.232839", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005883", + "Min": "-0.005688", + "Mean": "7.895345e-07", + "Norm": "0.328498", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004441", + "Min": "-0.004493", + "Mean": "-3.637979e-13", + "Norm": "0.176547", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005686", + "Min": "-0.005685", + "Mean": "1.743164e-06", + "Norm": "0.232839", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer2.0.conv1.Conv2d.backward.0": { + "id": "Module.layer2.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.002586", + "Min": "-0.002816", + "Mean": "-2.737123e-07", + "Norm": "0.171941", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer2.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004441", + "Min": "-0.004493", + "Mean": "-3.637979e-13", + "Norm": "0.176547", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.BasicBlock.backward.0": { + "id": "Module.layer1.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.Sequential.backward.0", + "subnodes": [ + "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.relu.ReLU.backward.0": { + "id": "Module.layer1.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "1.113839e-07", + "Norm": "0.209072", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.Sequential.backward.0": { + "id": "Module.layer1.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004873", + "Min": "-0.006985", + "Mean": "6.366463e-13", + "Norm": "0.263476", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "1.113839e-07", + "Norm": "0.209072", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.conv2.Conv2d.backward.0": { + "id": "Module.layer1.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.005144", + "Mean": "5.896727e-08", + "Norm": "0.36269", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004873", + "Min": "-0.006985", + "Mean": "6.366463e-13", + "Norm": "0.263476", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.relu.ReLU.backward.1": { + "id": "Module.layer1.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.004949", + "Mean": "-2.247479e-07", + "Norm": "0.255762", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.005144", + "Mean": "5.896727e-08", + "Norm": "0.36269", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00343", + "Min": "-0.003328", + "Mean": "1.818989e-13", + "Norm": "0.165887", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.004949", + "Mean": "-2.247479e-07", + "Norm": "0.255762", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.1.conv1.Conv2d.backward.0": { + "id": "Module.layer1.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003166", + "Min": "-0.003639", + "Mean": "-1.210342e-08", + "Norm": "0.229291", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00343", + "Min": "-0.003328", + "Mean": "1.818989e-13", + "Norm": "0.165887", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.BasicBlock.backward.0": { + "id": "Module.layer1.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.Sequential.backward.0", + "subnodes": [ + "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.relu.ReLU.backward.0": { + "id": "Module.layer1.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "3.088644e-07", + "Norm": "0.299243", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007243", + "Min": "-0.006519", + "Mean": "-7.275958e-13", + "Norm": "0.389929", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "3.088644e-07", + "Norm": "0.299243", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.conv2.Conv2d.backward.0": { + "id": "Module.layer1.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "-5.936339e-07", + "Norm": "0.54013", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007243", + "Min": "-0.006519", + "Mean": "-7.275958e-13", + "Norm": "0.389929", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.relu.ReLU.backward.1": { + "id": "Module.layer1.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "2.777797e-07", + "Norm": "0.379333", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "-5.936339e-07", + "Norm": "0.54013", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.009111", + "Min": "-0.009193", + "Mean": "-7.275958e-13", + "Norm": "0.387683", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "2.777797e-07", + "Norm": "0.379333", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.layer1.0.conv1.Conv2d.backward.0": { + "id": "Module.layer1.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007328", + "Min": "-0.008206", + "Mean": "3.342619e-07", + "Norm": "0.538403", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.layer1.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.009111", + "Min": "-0.009193", + "Mean": "-7.275958e-13", + "Norm": "0.387683", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": { + "precision_index": 0 + } + }, + "Module.maxpool.MaxPool2d.backward.0": { + "id": "Module.maxpool.MaxPool2d.backward.0", + "node_type": 0, + "output_data": { + "Module.maxpool.MaxPool2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.607818e-07", + "Norm": "0.615501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.maxpool.MaxPool2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.relu.ReLU.backward.0": { + "id": "Module.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.113458e-07", + "Norm": "0.614639", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.607818e-07", + "Norm": "0.615501", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.bn1.BatchNorm2d.backward.0": { + "id": "Module.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.049808", + "Min": "-0.064687", + "Mean": "1.364242e-12", + "Norm": "2.04307", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "input_data": { + "Module.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.113458e-07", + "Norm": "0.614639", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + }, + "Module.conv1.Conv2d.backward.0": { + "id": "Module.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.conv1.Conv2d.backward.0.output.0": { + "value": "null" + } + }, + "input_data": { + "Module.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.049808", + "Min": "-0.064687", + "Mean": "1.364242e-12", + "Norm": "2.04307", + "data_name": "-1", + "md5": "00000000", + "Max diff": "0.0", + "Min diff": "0.0", + "Mean diff": "0.0", + "L2norm diff": "0.0", + "MaxRelativeErr": "0.0%", + "MinRelativeErr": "0.0%", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", + "NormRelativeErr": "0.0%" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": { + "precision_index": 0 + } + } + } + }, + "Bench": { + "root": "DefaultModel", + "dump_data_dir": null, + "node": { + "DefaultModel": { + "id": "DefaultModel", + "node_type": 0, + "output_data": {}, + "input_data": {}, + "upnode": "None", + "subnodes": [ + "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.Sequential.forward.0", + "Module.layer2.Sequential.forward.0", + "Module.layer3.Sequential.forward.0", + "Module.layer4.Sequential.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.fc.Linear.forward.0", + "Module.fc.Linear.backward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.Sequential.backward.0", + "Module.layer3.Sequential.backward.0", + "Module.layer2.Sequential.backward.0", + "Module.layer1.Sequential.backward.0", + "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.conv1.Conv2d.forward.0": { + "id": "Module.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "1.526799", + "Min": "-1.559762", + "Mean": "-0.000263", + "Norm": "244.860931", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 3, 64, 64]", + "Max": "4.350435", + "Min": "-4.339223", + "Mean": "-0.001572", + "Norm": "350.247772", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 268, in _forward_impl, \n x = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.bn1.BatchNorm2d.forward.0": { + "id": "Module.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "-5.146786", + "Mean": "4.656613e-11", + "Norm": "809.493835", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "1.526799", + "Min": "-1.559762", + "Mean": "-0.000263", + "Norm": "244.860931", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 269, in _forward_impl, \n x = self.bn1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.relu.ReLU.forward.0": { + "id": "Module.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 270, in _forward_impl, \n x = self.relu(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.maxpool.MaxPool2d.forward.0": { + "id": "Module.maxpool.MaxPool2d.forward.0", + "node_type": 0, + "output_data": { + "Module.maxpool.MaxPool2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.maxpool.MaxPool2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "0.397851", + "Norm": "572.419128", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 271, in _forward_impl, \n x = self.maxpool(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer1.0.BasicBlock.forward.0": { + "id": "Module.layer1.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.Sequential.forward.0", + "subnodes": [ + "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.conv1.Conv2d.forward.0": { + "id": "Module.layer1.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.74388", + "Min": "-7.379547", + "Mean": "-0.12333", + "Norm": "858.103699", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.Sequential.forward.0": { + "id": "Module.layer1.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.673826", + "Min": "0.0", + "Mean": "1.460092", + "Norm": "641.917297", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer1.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "-4.199296", + "Mean": "1.620501e-08", + "Norm": "404.769043", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.74388", + "Min": "-7.379547", + "Mean": "-0.12333", + "Norm": "858.103699", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.relu.ReLU.forward.0": { + "id": "Module.layer1.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.conv2.Conv2d.forward.0": { + "id": "Module.layer1.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.442179", + "Min": "-3.972987", + "Mean": "0.084329", + "Norm": "370.438843", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.247875", + "Min": "0.0", + "Mean": "0.39636", + "Norm": "286.644501", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.605992", + "Min": "-4.646146", + "Mean": "4.284084e-09", + "Norm": "404.767944", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.442179", + "Min": "-3.972987", + "Mean": "0.084329", + "Norm": "370.438843", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.0.relu.ReLU.forward.1": { + "id": "Module.layer1.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.BasicBlock.forward.0": { + "id": "Module.layer1.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.Sequential.forward.0", + "subnodes": [ + "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.conv1.Conv2d.forward.0": { + "id": "Module.layer1.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "9.274334", + "Min": "-10.156013", + "Mean": "-0.101834", + "Norm": "975.393066", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "7.29416", + "Min": "0.0", + "Mean": "1.517842", + "Norm": "753.920776", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "-4.49145", + "Mean": "-2.235174e-09", + "Norm": "404.770447", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "9.274334", + "Min": "-10.156013", + "Mean": "-0.101834", + "Norm": "975.393066", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.relu.ReLU.forward.0": { + "id": "Module.layer1.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.conv2.Conv2d.forward.0": { + "id": "Module.layer1.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.431858", + "Min": "-4.229196", + "Mean": "0.005514", + "Norm": "375.989105", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.2462", + "Min": "0.0", + "Mean": "0.399545", + "Norm": "286.493317", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.475619", + "Min": "-4.364196", + "Mean": "1.396984e-09", + "Norm": "404.76828", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "4.431858", + "Min": "-4.229196", + "Mean": "0.005514", + "Norm": "375.989105", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer1.1.relu.ReLU.forward.1": { + "id": "Module.layer1.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.forward.0", + "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.BasicBlock.forward.0": { + "id": "Module.layer2.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.conv1.Conv2d.forward.0": { + "id": "Module.layer2.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.363841", + "Min": "-8.813498", + "Mean": "0.116351", + "Norm": "582.720398", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.Sequential.forward.0": { + "id": "Module.layer2.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer2.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "-4.77158", + "Mean": "1.303852e-09", + "Norm": "286.215912", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.363841", + "Min": "-8.813498", + "Mean": "0.116351", + "Norm": "582.720398", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.relu.ReLU.forward.0": { + "id": "Module.layer2.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.conv2.Conv2d.forward.0": { + "id": "Module.layer2.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.0345", + "Min": "-4.125886", + "Mean": "-0.100337", + "Norm": "260.142944", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.469386", + "Min": "0.0", + "Mean": "0.400609", + "Norm": "202.299973", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.152795", + "Min": "-4.936253", + "Mean": "3.725290e-10", + "Norm": "286.214294", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.0345", + "Min": "-4.125886", + "Mean": "-0.100337", + "Norm": "260.142944", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.downsample.Sequential.forward.0": { + "id": "Module.layer2.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.257706", + "Min": "-4.515994", + "Mean": "-1.117587e-09", + "Norm": "286.215851", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.203266", + "Min": "-9.355068", + "Mean": "-0.02311", + "Norm": "617.127319", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "8.480864", + "Min": "0.0", + "Mean": "1.621092", + "Norm": "845.908813", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.257706", + "Min": "-4.515994", + "Mean": "-1.117587e-09", + "Norm": "286.215851", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "9.203266", + "Min": "-9.355068", + "Mean": "-0.02311", + "Norm": "617.127319", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.0.relu.ReLU.forward.1": { + "id": "Module.layer2.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.BasicBlock.forward.0": { + "id": "Module.layer2.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.Sequential.forward.0", + "subnodes": [ + "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.conv1.Conv2d.forward.0": { + "id": "Module.layer2.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.62359", + "Min": "-5.580112", + "Mean": "0.074416", + "Norm": "367.649841", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.058126", + "Min": "0.0", + "Mean": "0.569005", + "Norm": "288.38382", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "-4.101557", + "Mean": "-3.818422e-09", + "Norm": "286.215485", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "6.62359", + "Min": "-5.580112", + "Mean": "0.074416", + "Norm": "367.649841", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.relu.ReLU.forward.0": { + "id": "Module.layer2.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.conv2.Conv2d.forward.0": { + "id": "Module.layer2.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.393562", + "Min": "-4.753343", + "Mean": "-0.078746", + "Norm": "260.969421", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.51583", + "Min": "0.0", + "Mean": "0.397453", + "Norm": "202.738693", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.73594", + "Min": "-4.475933", + "Mean": "2.421439e-09", + "Norm": "286.214294", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "4.393562", + "Min": "-4.753343", + "Mean": "-0.078746", + "Norm": "260.969421", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer2.1.relu.ReLU.forward.1": { + "id": "Module.layer2.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.forward.0", + "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.BasicBlock.forward.0": { + "id": "Module.layer3.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.Sequential.forward.0", + "subnodes": [ + "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.conv1.Conv2d.forward.0": { + "id": "Module.layer3.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.532973", + "Min": "-6.165116", + "Mean": "0.023511", + "Norm": "250.68428", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.Sequential.forward.0": { + "id": "Module.layer3.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer3.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "-4.041963", + "Mean": "1.024455e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.532973", + "Min": "-6.165116", + "Mean": "0.023511", + "Norm": "250.68428", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.relu.ReLU.forward.0": { + "id": "Module.layer3.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.conv2.Conv2d.forward.0": { + "id": "Module.layer3.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.085584", + "Min": "-3.535729", + "Mean": "0.009184", + "Norm": "171.884354", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.015517", + "Min": "0.0", + "Mean": "0.397493", + "Norm": "142.493881", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.328585", + "Min": "-4.24462", + "Mean": "-5.587936e-10", + "Norm": "202.383789", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.085584", + "Min": "-3.535729", + "Mean": "0.009184", + "Norm": "171.884354", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.downsample.Sequential.forward.0": { + "id": "Module.layer3.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.673633", + "Min": "-4.118578", + "Mean": "2.980232e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.544863", + "Min": "-5.637341", + "Mean": "0.063504", + "Norm": "262.41275", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "7.306092", + "Min": "0.0", + "Mean": "0.830152", + "Norm": "372.837189", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.673633", + "Min": "-4.118578", + "Mean": "2.980232e-09", + "Norm": "202.384674", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "5.544863", + "Min": "-5.637341", + "Mean": "0.063504", + "Norm": "262.41275", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.0.relu.ReLU.forward.1": { + "id": "Module.layer3.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.BasicBlock.forward.0": { + "id": "Module.layer3.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.Sequential.forward.0", + "subnodes": [ + "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.conv1.Conv2d.forward.0": { + "id": "Module.layer3.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.445492", + "Min": "-5.73983", + "Mean": "0.056189", + "Norm": "242.794586", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.011552", + "Min": "0.0", + "Mean": "0.558552", + "Norm": "202.094818", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "-4.302232", + "Mean": "6.053597e-10", + "Norm": "202.384811", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "6.445492", + "Min": "-5.73983", + "Mean": "0.056189", + "Norm": "242.794586", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.relu.ReLU.forward.0": { + "id": "Module.layer3.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.conv2.Conv2d.forward.0": { + "id": "Module.layer3.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "3.904869", + "Min": "-3.915274", + "Mean": "0.000739", + "Norm": "175.362854", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.64597", + "Min": "0.0", + "Mean": "0.397107", + "Norm": "143.5979", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "4.820035", + "Min": "-4.248729", + "Mean": "3.725290e-09", + "Norm": "202.38385", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "3.904869", + "Min": "-3.915274", + "Mean": "0.000739", + "Norm": "175.362854", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer3.1.relu.ReLU.forward.1": { + "id": "Module.layer3.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.forward.0", + "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.BasicBlock.forward.0": { + "id": "Module.layer4.0.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.Sequential.forward.0", + "subnodes": [ + "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.conv1.Conv2d.forward.0": { + "id": "Module.layer4.0.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.17719", + "Min": "-5.021754", + "Mean": "-0.003242", + "Norm": "160.062332", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.Sequential.forward.0": { + "id": "Module.layer4.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.1.BasicBlock.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.layer4.0.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "-4.494643", + "Mean": "0.0", + "Norm": "143.107346", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.17719", + "Min": "-5.021754", + "Mean": "-0.003242", + "Norm": "160.062332", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.relu.ReLU.forward.0": { + "id": "Module.layer4.0.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.conv2.Conv2d.forward.0": { + "id": "Module.layer4.0.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.548945", + "Min": "-2.623174", + "Mean": "-0.024468", + "Norm": "96.85141", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.531161", + "Min": "0.0", + "Mean": "0.396782", + "Norm": "101.735374", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.43048", + "Min": "-3.390204", + "Mean": "-5.587936e-10", + "Norm": "143.106155", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.548945", + "Min": "-2.623174", + "Mean": "-0.024468", + "Norm": "96.85141", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.downsample.Sequential.forward.0": { + "id": "Module.layer4.0.downsample.Sequential.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.Sequential.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.162686", + "Min": "-4.141354", + "Mean": "-1.396984e-09", + "Norm": "143.107498", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.Sequential.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [ + "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.downsample.0.Conv2d.forward.0": { + "id": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.0.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "5.574177", + "Min": "-5.778933", + "Mean": "0.001088", + "Norm": "182.966492", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.0.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "7.355758", + "Min": "0.0", + "Mean": "0.81968", + "Norm": "262.51239", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": { + "id": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "4.162686", + "Min": "-4.141354", + "Mean": "-1.396984e-09", + "Norm": "143.107498", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "5.574177", + "Min": "-5.778933", + "Mean": "0.001088", + "Norm": "182.966492", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.0.relu.ReLU.forward.1": { + "id": "Module.layer4.0.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.BasicBlock.forward.0": { + "id": "Module.layer4.1.BasicBlock.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.BasicBlock.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.BasicBlock.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.Sequential.forward.0", + "subnodes": [ + "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.conv1.Conv2d.forward.0": { + "id": "Module.layer4.1.conv1.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv1.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.864757", + "Min": "-3.787591", + "Mean": "0.002277", + "Norm": "133.55986", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.conv1.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.219019", + "Min": "0.0", + "Mean": "0.561198", + "Norm": "141.888809", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.bn1.BatchNorm2d.forward.0": { + "id": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn1.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "-3.694792", + "Mean": "1.490116e-09", + "Norm": "143.107239", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.bn1.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.864757", + "Min": "-3.787591", + "Mean": "0.002277", + "Norm": "133.55986", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.relu.ReLU.forward.0": { + "id": "Module.layer4.1.relu.ReLU.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.relu.ReLU.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.conv2.Conv2d.forward.0": { + "id": "Module.layer4.1.conv2.Conv2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv2.Conv2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.484763", + "Min": "-2.720093", + "Mean": "0.013722", + "Norm": "95.469269", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.conv2.Conv2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.722916", + "Min": "0.0", + "Mean": "0.402127", + "Norm": "101.228134", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.bn2.BatchNorm2d.forward.0": { + "id": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn2.BatchNorm2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "3.644991", + "Min": "-3.459976", + "Mean": "-4.656613e-10", + "Norm": "143.106094", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.bn2.BatchNorm2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "2.484763", + "Min": "-2.720093", + "Mean": "0.013722", + "Norm": "95.469269", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.layer4.1.relu.ReLU.forward.1": { + "id": "Module.layer4.1.relu.ReLU.forward.1", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.forward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.forward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.forward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.forward.0", + "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.relu.ReLU.forward.1" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "data": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.forward.0": { + "id": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "node_type": 0, + "output_data": { + "Module.avgpool.AdaptiveAvgPool2d.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 1, 1]", + "Max": "2.68325", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "66.964317", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.avgpool.AdaptiveAvgPool2d.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "6.209611", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "184.159729", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.forward.0" + ], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 278, in _forward_impl, \n x = self.avgpool(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.fc.Linear.forward.0": { + "id": "Module.fc.Linear.forward.0", + "node_type": 0, + "output_data": { + "Module.fc.Linear.forward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 10]", + "Max": "1.236255", + "Min": "-1.562365", + "Mean": "-0.12689", + "Norm": "5.357258", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.fc.Linear.forward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512]", + "Max": "2.68325", + "Min": "0.0", + "Mean": "0.82681", + "Norm": "66.964317", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [], + "suggestions": {}, + "stack_info": [ + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", + "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", + "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" + ], + "micro_step_id": 0, + "data": {} + }, + "Module.fc.Linear.backward.0": { + "id": "Module.fc.Linear.backward.0", + "node_type": 0, + "output_data": { + "Module.fc.Linear.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512]", + "Max": "0.006356", + "Min": "-0.00662", + "Mean": "0.000117", + "Norm": "0.176545", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.fc.Linear.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 10]", + "Max": "0.03222", + "Min": "-0.097696", + "Mean": "1.490116e-10", + "Norm": "0.311353", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.avgpool.AdaptiveAvgPool2d.backward.0": { + "id": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "node_type": 0, + "output_data": { + "Module.avgpool.AdaptiveAvgPool2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.avgpool.AdaptiveAvgPool2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 1, 1]", + "Max": "0.006356", + "Min": "-0.00662", + "Mean": "0.000117", + "Norm": "0.176545", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.avgpool.AdaptiveAvgPool2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer4.1.BasicBlock.backward.0": { + "id": "Module.layer4.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.Sequential.backward.0", + "subnodes": [ + "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.relu.ReLU.backward.0": { + "id": "Module.layer4.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.170244e-05", + "Norm": "0.071178", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.Sequential.backward.0": { + "id": "Module.layer4.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.922326e-05", + "Norm": "0.088272", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer4.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00349", + "Min": "-0.003203", + "Mean": "-1.818989e-13", + "Norm": "0.114767", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.001589", + "Min": "-0.001655", + "Mean": "2.170244e-05", + "Norm": "0.071178", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.conv2.Conv2d.backward.0": { + "id": "Module.layer4.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003047", + "Min": "-0.003687", + "Mean": "5.127279e-08", + "Norm": "0.107756", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00349", + "Min": "-0.003203", + "Mean": "-1.818989e-13", + "Norm": "0.114767", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.relu.ReLU.backward.1": { + "id": "Module.layer4.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer4.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003023", + "Min": "-0.002646", + "Mean": "9.799842e-08", + "Norm": "0.075418", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003047", + "Min": "-0.003687", + "Mean": "5.127279e-08", + "Norm": "0.107756", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00392", + "Min": "-0.00384", + "Mean": "2.160050e-13", + "Norm": "0.093361", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003023", + "Min": "-0.002646", + "Mean": "9.799842e-08", + "Norm": "0.075418", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.1.conv1.Conv2d.backward.0": { + "id": "Module.layer4.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.002777", + "Min": "-0.002687", + "Mean": "-1.536876e-06", + "Norm": "0.087284", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00392", + "Min": "-0.00384", + "Mean": "2.160050e-13", + "Norm": "0.093361", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.BasicBlock.backward.0": { + "id": "Module.layer4.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.Sequential.backward.0", + "subnodes": [ + "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.relu.ReLU.backward.0": { + "id": "Module.layer4.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "2.016556e-05", + "Norm": "0.112632", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.downsample.Sequential.backward.0": { + "id": "Module.layer4.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004114", + "Min": "-0.003346", + "Mean": "-4.547474e-14", + "Norm": "0.087317", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004101", + "Min": "-0.003454", + "Mean": "-3.637979e-13", + "Norm": "0.087384", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004114", + "Min": "-0.003346", + "Mean": "-4.547474e-14", + "Norm": "0.087317", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004101", + "Min": "-0.003454", + "Mean": "-3.637979e-13", + "Norm": "0.087384", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.006026", + "Min": "-0.006504", + "Mean": "7.275958e-13", + "Norm": "0.138286", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.003044", + "Min": "-0.003159", + "Mean": "1.279740e-05", + "Norm": "0.082885", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.conv2.Conv2d.backward.0": { + "id": "Module.layer4.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "2.937198e-06", + "Norm": "0.130315", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.006026", + "Min": "-0.006504", + "Mean": "7.275958e-13", + "Norm": "0.138286", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.relu.ReLU.backward.1": { + "id": "Module.layer4.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer4.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "-8.934543e-07", + "Norm": "0.092057", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "2.937198e-06", + "Norm": "0.130315", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004244", + "Min": "-0.004086", + "Mean": "-4.547474e-13", + "Norm": "0.106542", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.00354", + "Min": "-0.003561", + "Mean": "-8.934543e-07", + "Norm": "0.092057", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer4.0.conv1.Conv2d.backward.0": { + "id": "Module.layer4.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer4.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.002732", + "Min": "-0.002337", + "Mean": "1.283062e-07", + "Norm": "0.088477", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer4.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 512, 2, 2]", + "Max": "0.004244", + "Min": "-0.004086", + "Mean": "-4.547474e-13", + "Norm": "0.106542", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer4.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer4.Sequential.backward.0", + "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.BasicBlock.backward.0": { + "id": "Module.layer3.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.Sequential.backward.0", + "subnodes": [ + "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.relu.ReLU.backward.0": { + "id": "Module.layer3.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "5.267739e-07", + "Norm": "0.100327", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.Sequential.backward.0": { + "id": "Module.layer3.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "1.283064e-07", + "Norm": "0.12491", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer3.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005349", + "Min": "-0.00458", + "Mean": "5.456968e-13", + "Norm": "0.134192", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004012", + "Min": "-0.003481", + "Mean": "5.267739e-07", + "Norm": "0.100327", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.conv2.Conv2d.backward.0": { + "id": "Module.layer3.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004227", + "Min": "-0.003777", + "Mean": "-1.105049e-06", + "Norm": "0.161834", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005349", + "Min": "-0.00458", + "Mean": "5.456968e-13", + "Norm": "0.134192", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.relu.ReLU.backward.1": { + "id": "Module.layer3.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer3.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003753", + "Min": "-0.003777", + "Mean": "-1.121872e-07", + "Norm": "0.113553", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004227", + "Min": "-0.003777", + "Mean": "-1.105049e-06", + "Norm": "0.161834", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004302", + "Min": "-0.003597", + "Mean": "4.547474e-14", + "Norm": "0.108404", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003753", + "Min": "-0.003777", + "Mean": "-1.121872e-07", + "Norm": "0.113553", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.1.conv1.Conv2d.backward.0": { + "id": "Module.layer3.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.003036", + "Min": "-0.002772", + "Mean": "-2.692081e-07", + "Norm": "0.133319", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004302", + "Min": "-0.003597", + "Mean": "4.547474e-14", + "Norm": "0.108404", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.BasicBlock.backward.0": { + "id": "Module.layer3.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.Sequential.backward.0", + "subnodes": [ + "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.relu.ReLU.backward.0": { + "id": "Module.layer3.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "2.575660e-07", + "Norm": "0.166487", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.downsample.Sequential.backward.0": { + "id": "Module.layer3.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004002", + "Min": "-0.004525", + "Mean": "3.410605e-13", + "Norm": "0.1262", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004036", + "Min": "-0.005194", + "Mean": "0.0", + "Norm": "0.126903", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004002", + "Min": "-0.004525", + "Mean": "3.410605e-13", + "Norm": "0.1262", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004036", + "Min": "-0.005194", + "Mean": "0.0", + "Norm": "0.126903", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.006225", + "Min": "-0.005798", + "Mean": "-3.637979e-13", + "Norm": "0.166553", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.004265", + "Min": "-0.004394", + "Mean": "4.540960e-07", + "Norm": "0.122012", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.conv2.Conv2d.backward.0": { + "id": "Module.layer3.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-6.200127e-07", + "Norm": "0.20419", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.006225", + "Min": "-0.005798", + "Mean": "-3.637979e-13", + "Norm": "0.166553", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.relu.ReLU.backward.1": { + "id": "Module.layer3.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer3.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-5.361890e-07", + "Norm": "0.144125", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-6.200127e-07", + "Norm": "0.20419", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005433", + "Min": "-0.005011", + "Mean": "0.0", + "Norm": "0.150797", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005283", + "Min": "-0.005217", + "Mean": "-5.361890e-07", + "Norm": "0.144125", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer3.0.conv1.Conv2d.backward.0": { + "id": "Module.layer3.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer3.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.003242", + "Min": "-0.002676", + "Mean": "1.208646e-08", + "Norm": "0.139735", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer3.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 256, 4, 4]", + "Max": "0.005433", + "Min": "-0.005011", + "Mean": "0.0", + "Norm": "0.150797", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer3.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer3.Sequential.backward.0", + "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.BasicBlock.backward.0": { + "id": "Module.layer2.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.Sequential.backward.0", + "subnodes": [ + "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.relu.ReLU.backward.0": { + "id": "Module.layer2.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "6.662881e-07", + "Norm": "0.152697", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.Sequential.backward.0": { + "id": "Module.layer2.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "1.208646e-08", + "Norm": "0.188543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer2.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005537", + "Min": "-0.006419", + "Mean": "4.547474e-14", + "Norm": "0.192183", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004368", + "Min": "-0.004748", + "Mean": "6.662881e-07", + "Norm": "0.152697", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.conv2.Conv2d.backward.0": { + "id": "Module.layer2.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004991", + "Mean": "6.954823e-07", + "Norm": "0.250644", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005537", + "Min": "-0.006419", + "Mean": "4.547474e-14", + "Norm": "0.192183", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.relu.ReLU.backward.1": { + "id": "Module.layer2.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer2.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004159", + "Mean": "2.355963e-06", + "Norm": "0.177588", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004991", + "Mean": "6.954823e-07", + "Norm": "0.250644", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004246", + "Min": "-0.003801", + "Mean": "3.865353e-13", + "Norm": "0.159253", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004543", + "Min": "-0.004159", + "Mean": "2.355963e-06", + "Norm": "0.177588", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.1.conv1.Conv2d.backward.0": { + "id": "Module.layer2.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.003947", + "Min": "-0.00409", + "Mean": "1.122175e-06", + "Norm": "0.213347", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004246", + "Min": "-0.003801", + "Mean": "3.865353e-13", + "Norm": "0.159253", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.BasicBlock.backward.0": { + "id": "Module.layer2.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.Sequential.backward.0", + "subnodes": [ + "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.relu.ReLU.backward.0": { + "id": "Module.layer2.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "1.788464e-06", + "Norm": "0.2636", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.downsample.Sequential.backward.0": { + "id": "Module.layer2.0.downsample.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004066", + "Min": "-0.004851", + "Mean": "4.547474e-14", + "Norm": "0.148232", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [ + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004749", + "Min": "-0.004585", + "Mean": "-2.728484e-13", + "Norm": "0.14894", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.downsample.0.Conv2d.backward.0": { + "id": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.downsample.0.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004066", + "Min": "-0.004851", + "Mean": "4.547474e-14", + "Norm": "0.148232", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.downsample.0.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004749", + "Min": "-0.004585", + "Mean": "-2.728484e-13", + "Norm": "0.14894", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.downsample.Sequential.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00708", + "Min": "-0.008085", + "Mean": "-5.456968e-13", + "Norm": "0.246197", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00595", + "Min": "-0.006032", + "Mean": "2.777311e-06", + "Norm": "0.192543", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.conv2.Conv2d.backward.0": { + "id": "Module.layer2.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005883", + "Min": "-0.005688", + "Mean": "7.895345e-07", + "Norm": "0.328498", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.00708", + "Min": "-0.008085", + "Mean": "-5.456968e-13", + "Norm": "0.246197", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.relu.ReLU.backward.1": { + "id": "Module.layer2.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer2.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005686", + "Min": "-0.005685", + "Mean": "1.743164e-06", + "Norm": "0.232839", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005883", + "Min": "-0.005688", + "Mean": "7.895345e-07", + "Norm": "0.328498", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004441", + "Min": "-0.004493", + "Mean": "-3.637979e-13", + "Norm": "0.176547", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.005686", + "Min": "-0.005685", + "Mean": "1.743164e-06", + "Norm": "0.232839", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer2.0.conv1.Conv2d.backward.0": { + "id": "Module.layer2.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer2.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.002586", + "Min": "-0.002816", + "Mean": "-2.737123e-07", + "Norm": "0.171941", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer2.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 128, 8, 8]", + "Max": "0.004441", + "Min": "-0.004493", + "Mean": "-3.637979e-13", + "Norm": "0.176547", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer2.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer2.Sequential.backward.0", + "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.BasicBlock.backward.0": { + "id": "Module.layer1.1.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.Sequential.backward.0", + "subnodes": [ + "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.relu.ReLU.backward.0": { + "id": "Module.layer1.1.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "1.113839e-07", + "Norm": "0.209072", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.Sequential.backward.0": { + "id": "Module.layer1.Sequential.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.Sequential.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.Sequential.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "-2.737119e-07", + "Norm": "0.226761", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [ + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.0.BasicBlock.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.layer1.1.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004873", + "Min": "-0.006985", + "Mean": "6.366463e-13", + "Norm": "0.263476", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003609", + "Min": "-0.005254", + "Mean": "1.113839e-07", + "Norm": "0.209072", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.conv2.Conv2d.backward.0": { + "id": "Module.layer1.1.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.005144", + "Mean": "5.896727e-08", + "Norm": "0.36269", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.004873", + "Min": "-0.006985", + "Mean": "6.366463e-13", + "Norm": "0.263476", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.relu.ReLU.backward.1": { + "id": "Module.layer1.1.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer1.1.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.004949", + "Mean": "-2.247479e-07", + "Norm": "0.255762", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.005144", + "Mean": "5.896727e-08", + "Norm": "0.36269", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00343", + "Min": "-0.003328", + "Mean": "1.818989e-13", + "Norm": "0.165887", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005249", + "Min": "-0.004949", + "Mean": "-2.247479e-07", + "Norm": "0.255762", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.1.conv1.Conv2d.backward.0": { + "id": "Module.layer1.1.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.1.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.003166", + "Min": "-0.003639", + "Mean": "-1.210342e-08", + "Norm": "0.229291", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.1.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00343", + "Min": "-0.003328", + "Mean": "1.818989e-13", + "Norm": "0.165887", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.1.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.BasicBlock.backward.0": { + "id": "Module.layer1.0.BasicBlock.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.BasicBlock.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.BasicBlock.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.Sequential.backward.0", + "subnodes": [ + "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0" + ], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.relu.ReLU.backward.0": { + "id": "Module.layer1.0.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "3.088644e-07", + "Norm": "0.299243", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "9.928035e-08", + "Norm": "0.311783", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.bn2.BatchNorm2d.backward.0": { + "id": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn2.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007243", + "Min": "-0.006519", + "Mean": "-7.275958e-13", + "Norm": "0.389929", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.bn2.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.005186", + "Min": "-0.005365", + "Mean": "3.088644e-07", + "Norm": "0.299243", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.conv2.Conv2d.backward.0": { + "id": "Module.layer1.0.conv2.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv2.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "-5.936339e-07", + "Norm": "0.54013", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.conv2.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007243", + "Min": "-0.006519", + "Mean": "-7.275958e-13", + "Norm": "0.389929", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.relu.ReLU.backward.1": { + "id": "Module.layer1.0.relu.ReLU.backward.1", + "node_type": 0, + "output_data": { + "Module.layer1.0.relu.ReLU.backward.1.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "2.777797e-07", + "Norm": "0.379333", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.relu.ReLU.backward.1.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "-5.936339e-07", + "Norm": "0.54013", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.1" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.bn1.BatchNorm2d.backward.0": { + "id": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.009111", + "Min": "-0.009193", + "Mean": "-7.275958e-13", + "Norm": "0.387683", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007983", + "Min": "-0.00772", + "Mean": "2.777797e-07", + "Norm": "0.379333", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.layer1.0.conv1.Conv2d.backward.0": { + "id": "Module.layer1.0.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.layer1.0.conv1.Conv2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.007328", + "Min": "-0.008206", + "Mean": "3.342619e-07", + "Norm": "0.538403", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.layer1.0.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.009111", + "Min": "-0.009193", + "Mean": "-7.275958e-13", + "Norm": "0.387683", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "Module.layer1.0.BasicBlock.backward.0", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.layer1.Sequential.backward.0", + "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "data": {} + }, + "Module.maxpool.MaxPool2d.backward.0": { + "id": "Module.maxpool.MaxPool2d.backward.0", + "node_type": 0, + "output_data": { + "Module.maxpool.MaxPool2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.607818e-07", + "Norm": "0.615501", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.maxpool.MaxPool2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 16, 16]", + "Max": "0.00901", + "Min": "-0.009858", + "Mean": "6.431268e-07", + "Norm": "0.614371", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.maxpool.MaxPool2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.relu.ReLU.backward.0": { + "id": "Module.relu.ReLU.backward.0", + "node_type": 0, + "output_data": { + "Module.relu.ReLU.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.113458e-07", + "Norm": "0.614639", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.relu.ReLU.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.607818e-07", + "Norm": "0.615501", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.relu.ReLU.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.bn1.BatchNorm2d.backward.0": { + "id": "Module.bn1.BatchNorm2d.backward.0", + "node_type": 0, + "output_data": { + "Module.bn1.BatchNorm2d.backward.0.output.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.049808", + "Min": "-0.064687", + "Mean": "1.364242e-12", + "Norm": "2.04307", + "data_name": "-1", + "md5": "00000000" + } + }, + "input_data": { + "Module.bn1.BatchNorm2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.01485", + "Min": "-0.019076", + "Mean": "1.113458e-07", + "Norm": "0.614639", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.bn1.BatchNorm2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + }, + "Module.conv1.Conv2d.backward.0": { + "id": "Module.conv1.Conv2d.backward.0", + "node_type": 0, + "output_data": { + "Module.conv1.Conv2d.backward.0.output.0": { + "value": "null" + } + }, + "input_data": { + "Module.conv1.Conv2d.backward.0.input.0": { + "type": "torch.Tensor", + "dtype": "torch.float32", + "shape": "[10, 64, 32, 32]", + "Max": "0.049808", + "Min": "-0.064687", + "Mean": "1.364242e-12", + "Norm": "2.04307", + "data_name": "-1", + "md5": "00000000" + } + }, + "upnode": "DefaultModel", + "subnodes": [], + "matched_node_link": [ + "DefaultModel", + "Module.conv1.Conv2d.backward.0" + ], + "suggestions": {}, + "stack_info": [], + "micro_step_id": 0, + "data": {} + } + } + }, + "ToolTip": "{\"Max diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5927\\u503c\\u7684\\u5dee\\u503c\", \"Min diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5c0f\\u503c\\u7684\\u5dee\\u503c\", \"Mean diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u5e73\\u5747\\u503c\\u7684\\u5dee\\u503c\", \"L2norm diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c2\\u8303\\u6570\\uff08\\u5e73\\u65b9\\u6839\\uff09\\u7684\\u5dee\\u503c\"}", + "Colors": { + "#FFEDBE": { + "value": [ + 0, + 0.3 + ], + "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" + }, + "#FFC62E": { + "value": [ + 0.3, + 0.9 + ], + "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" + }, + "#FF4118": { + "value": [ + 0.9, + 1 + ], + "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" + }, + "#C7C7C7": { + "value": "无匹配节点", + "description": "对比过程中节点未匹配上" + } + }, + "MicroSteps": 1, + "task": "summary", + "npu_match_nodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" + }, + "bench_match_nodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" + } +} \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis index 3cc29203c..3dae84fa1 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis @@ -122,7 +122,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -185,7 +185,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -206,7 +206,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -249,7 +249,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -270,7 +270,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -313,7 +313,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -334,7 +334,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -408,7 +408,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -479,7 +479,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -526,7 +526,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -596,7 +596,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -617,7 +617,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -688,7 +688,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -739,7 +739,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -809,7 +809,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -830,7 +830,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -901,7 +901,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -975,7 +975,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1026,7 +1026,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -1096,7 +1096,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1117,7 +1117,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1188,7 +1188,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1239,7 +1239,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -1309,7 +1309,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1330,7 +1330,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1380,7 +1380,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1401,7 +1401,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1476,7 +1476,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1526,7 +1526,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1547,7 +1547,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1594,7 +1594,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -1664,7 +1664,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1685,7 +1685,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1756,7 +1756,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1807,7 +1807,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -1878,7 +1878,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -1898,7 +1898,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -1972,7 +1972,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2027,7 +2027,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -2101,7 +2101,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2122,7 +2122,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2172,7 +2172,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2193,7 +2193,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2267,7 +2267,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2318,7 +2318,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -2388,7 +2388,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2409,7 +2409,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2480,7 +2480,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2531,7 +2531,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -2601,7 +2601,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2622,7 +2622,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2672,7 +2672,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2693,7 +2693,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2768,7 +2768,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2818,7 +2818,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2839,7 +2839,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2886,7 +2886,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -2956,7 +2956,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -2977,7 +2977,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3048,7 +3048,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3099,7 +3099,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -3170,7 +3170,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -3190,7 +3190,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3264,7 +3264,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3319,7 +3319,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -3393,7 +3393,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3414,7 +3414,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3464,7 +3464,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3485,7 +3485,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3559,7 +3559,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3610,7 +3610,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -3680,7 +3680,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3701,7 +3701,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3772,7 +3772,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3823,7 +3823,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -3893,7 +3893,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3914,7 +3914,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3964,7 +3964,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -3985,7 +3985,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4060,7 +4060,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4110,7 +4110,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4131,7 +4131,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4178,7 +4178,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -4248,7 +4248,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4269,7 +4269,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4340,7 +4340,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4391,7 +4391,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -4462,7 +4462,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -4482,7 +4482,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4556,7 +4556,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4611,7 +4611,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -4685,7 +4685,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4706,7 +4706,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4756,7 +4756,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4777,7 +4777,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4851,7 +4851,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4902,7 +4902,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -4972,7 +4972,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -4993,7 +4993,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -5064,7 +5064,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -5115,7 +5115,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5185,7 +5185,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -5206,7 +5206,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -5256,7 +5256,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -5277,7 +5277,7 @@ "Mean diff": "0.0", "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", "MeanRelativeErr": "0.0%", "NormRelativeErr": "0.0%" } @@ -5330,8 +5330,7 @@ }, "upnode": "DefaultModel", "subnodes": [], - "matched_node_link": [ - ], + "matched_node_link": [], "suggestions": {}, "stack_info": [ "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", @@ -5341,8 +5340,7 @@ "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" ], "micro_step_id": 0, - "data": { - } + "data": {} }, "Module.fc.Linear.backward.0": { "id": "Module.fc.Linear.backward.0", @@ -5385,19 +5383,17 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, "upnode": "DefaultModel", "subnodes": [], - "matched_node_link": [ - ], + "matched_node_link": [], "suggestions": {}, "stack_info": [], "micro_step_id": 0, - "data": { - } + "data": {} }, "Module.avgpool.AdaptiveAvgPool2d.backward.0": { "id": "Module.avgpool.AdaptiveAvgPool2d.backward.0", @@ -5601,7 +5597,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5662,7 +5658,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5721,7 +5717,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5742,7 +5738,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5780,7 +5776,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5801,7 +5797,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5839,7 +5835,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5860,7 +5856,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5919,7 +5915,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -5957,7 +5953,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6082,7 +6078,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6144,7 +6140,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6204,7 +6200,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6225,7 +6221,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6264,7 +6260,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6344,7 +6340,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6382,7 +6378,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6441,7 +6437,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6462,7 +6458,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6500,7 +6496,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6521,7 +6517,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6559,7 +6555,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6580,7 +6576,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6624,7 +6620,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6645,7 +6641,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6683,7 +6679,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6704,7 +6700,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6744,7 +6740,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6765,7 +6761,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6824,7 +6820,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6862,7 +6858,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6921,7 +6917,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6942,7 +6938,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -6980,7 +6976,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7001,7 +6997,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7039,7 +7035,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7060,7 +7056,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7105,7 +7101,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7126,7 +7122,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7164,7 +7160,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7185,7 +7181,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7226,7 +7222,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7247,7 +7243,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7286,7 +7282,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7307,7 +7303,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7346,7 +7342,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7367,7 +7363,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7405,7 +7401,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7426,7 +7422,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7464,7 +7460,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7485,7 +7481,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7523,7 +7519,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7544,7 +7540,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7582,7 +7578,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7603,7 +7599,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7662,7 +7658,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7706,7 +7702,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7727,7 +7723,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7765,7 +7761,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7786,7 +7782,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7826,7 +7822,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7847,7 +7843,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7885,7 +7881,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7906,7 +7902,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -7965,7 +7961,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8003,7 +7999,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8083,7 +8079,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8121,7 +8117,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8246,7 +8242,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8308,7 +8304,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8368,7 +8364,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8389,7 +8385,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8428,7 +8424,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8487,7 +8483,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8508,7 +8504,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8567,7 +8563,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8605,7 +8601,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8664,7 +8660,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8685,7 +8681,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8723,7 +8719,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8744,7 +8740,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8788,7 +8784,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8809,7 +8805,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8847,7 +8843,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8868,7 +8864,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8908,7 +8904,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8929,7 +8925,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8967,7 +8963,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -8988,7 +8984,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9026,7 +9022,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9047,7 +9043,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9085,7 +9081,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9106,7 +9102,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9144,7 +9140,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9165,7 +9161,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9203,7 +9199,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9224,7 +9220,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9268,7 +9264,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9289,7 +9285,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9327,7 +9323,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9348,7 +9344,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9386,7 +9382,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9407,7 +9403,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9445,7 +9441,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9466,7 +9462,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9504,7 +9500,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9525,7 +9521,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9563,7 +9559,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9584,7 +9580,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9622,7 +9618,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9643,7 +9639,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9680,7 +9676,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9701,7 +9697,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9738,7 +9734,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9759,7 +9755,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -9801,7 +9797,7 @@ "L2norm diff": "0.0", "MaxRelativeErr": "0.0%", "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, \u7531\u4e8eMean\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", + "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", "NormRelativeErr": "0.0%" } }, @@ -13821,8 +13817,7 @@ }, "upnode": "DefaultModel", "subnodes": [], - "matched_node_link": [ - ], + "matched_node_link": [], "suggestions": {}, "stack_info": [ "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", @@ -13865,8 +13860,7 @@ }, "upnode": "DefaultModel", "subnodes": [], - "matched_node_link": [ - ], + "matched_node_link": [], "suggestions": {}, "stack_info": [], "micro_step_id": 0, @@ -16976,41 +16970,343 @@ 0, 0.2 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#FFEDBE": { "value": [ 0.2, 0.4 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#FFDC7F": { "value": [ 0.4, 0.6 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#FFC62E": { "value": [ 0.6, 0.8 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#FF704D": { "value": [ 0.8, 1 ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" + "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" }, "#C7C7C7": { "value": [], - "description": "\u6bd4\u5bf9\u8fc7\u7a0b\u4e2d\u8282\u70b9\u672a\u5339\u914d\u4e0a" + "description": "比对过程中节点未匹配上" } }, "MicroSteps": 1, - "task": "summary" + "task": "summary", + "npu_match_nodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" + }, + "bench_match_nodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" + } } \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config new file mode 100644 index 000000000..f0cb92aa4 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config @@ -0,0 +1,3 @@ +{ + "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" +} \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes_by_config.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes_by_config.json new file mode 100644 index 000000000..ef9d9cb80 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes_by_config.json @@ -0,0 +1,321 @@ +[ + { + "case_id": "1", + "description": "测试根据匹配文件添加节点", + "input": "data/plugin/graph_ascend/addMatchNodesByConfig?configFile=mock_compare_resnet_data.vis.config&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", + "expected": { + "success": true, + "data": { + "matchReslut": [ + true + ], + "npuMatchNodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0", + "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" + }, + "benchMatchNodes": { + "DefaultModel": "DefaultModel", + "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", + "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", + "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", + "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", + "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", + "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", + "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", + "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", + "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", + "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", + "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", + "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", + "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", + "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", + "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", + "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", + "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", + "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", + "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", + "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", + "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", + "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", + "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", + "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", + "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", + "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", + "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", + "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", + "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", + "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", + "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", + "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", + "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", + "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", + "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", + "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", + "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", + "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", + "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", + "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", + "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", + "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", + "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", + "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", + "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", + "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", + "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", + "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", + "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", + "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", + "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", + "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", + "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", + "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", + "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", + "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", + "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", + "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", + "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", + "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", + "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", + "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", + "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", + "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", + "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", + "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", + "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", + "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", + "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", + "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", + "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", + "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", + "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", + "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", + "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", + "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", + "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", + "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", + "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", + "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", + "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", + "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", + "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", + "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", + "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", + "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", + "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", + "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", + "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", + "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", + "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", + "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", + "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", + "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", + "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", + "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", + "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", + "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", + "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", + "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", + "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", + "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", + "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", + "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", + "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", + "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", + "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", + "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", + "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", + "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", + "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", + "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", + "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", + "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", + "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", + "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", + "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", + "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", + "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", + "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", + "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", + "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", + "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", + "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", + "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", + "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", + "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", + "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", + "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", + "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", + "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", + "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", + "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0", + "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" + }, + "npuUnMatchNodes": [], + "benchUnMatchNodes": [] + } + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json index 70315db7f..b1947dd13 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json @@ -15,42 +15,45 @@ 0, 0.2 ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" }, "#FFEDBE": { "value": [ 0.2, 0.4 ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" }, "#FFDC7F": { "value": [ 0.4, 0.6 ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" }, "#FFC62E": { "value": [ 0.6, 0.8 ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" }, "#FF704D": { "value": [ 0.8, 1 ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" + "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" }, "#C7C7C7": { "value": [], - "description": "比对过程中节点未匹配上" + "description": "\u6bd4\u5bf9\u8fc7\u7a0b\u4e2d\u8282\u70b9\u672a\u5339\u914d\u4e0a" } }, - "matchedConfigFiles": [] + "matchedConfigFiles": [ + "mock_compare_resnet_data.vis.config" + ], + "task": "summary" } } } diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_colors.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_colors.json new file mode 100644 index 000000000..f218537b5 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_colors.json @@ -0,0 +1,12 @@ +[ + { + "case_id": "1", + "description": "测试删除匹配节点", + "input": "data/plugin/graph_ascend/updateColors?colors={\"%23FFEDBE\":{\"value\":[0,0.3],\"description\":\"此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|\"},\"%23FFC62E\":{\"value\":[0.3,0.9],\"description\":\"此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|\"},\"%23FF4118\":{\"value\":[0.9,1],\"description\":\"此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|\"},\"%23C7C7C7\":{\"value\":\"无匹配节点\",\"description\":\"对比过程中节点未匹配上\"}}&run=st_test_cases", + "expected": { + "success": true, + "error": null, + "data": {} + } + } +] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py index d42c7a6c2..9e13bb431 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py @@ -94,6 +94,14 @@ class TestCaseFactory: @classmethod def get_test_get_node_info_cases(cls): return cls._load_st_cases('test_get_node_info.json') + + @classmethod + def get_test_add_match_nodes_by_config_cases(cls): + return cls._load_st_cases('test_add_match_nodes_by_config.json') + + @classmethod + def get_test_update_colors_cases(cls): + return cls._load_st_cases('test_update_colors.json') @classmethod def load_compare_resnet_test_data(cls): diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py index b60242345..ad10fac24 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -43,6 +43,31 @@ class TestGraphViews: builder = EnvironBuilder(path=path) return builder.get_environ() + @pytest.mark.parametrize("test_case", + [ + {"case_id": "1", + "description": "测试index.html", + "input": "/data/plugin/graph_ascend/index.html", + "excepted": "200 OK" + }, + {"case_id": "2", + "description": "测试index.js", + "input": "/data/plugin/graph_ascend/index.js", + "excepted": "200 OK" + }, + {"case_id": "3", + "description": "测试404文件", + "input": "/data/plugin/graph_ascend/index.css", + "excepted": "404 NOT FOUND" + }, + + ], ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_static_file_route(self, test_case): + request = TestGraphViews.create_mock_request(test_case['input']) + excepted = test_case['excepted'] + GraphView.static_file_route(request, TestGraphViews.start_response) + assert TestGraphViews.captured.status == excepted + @pytest.mark.parametrize("test_case", [ {"case_id": "1", @@ -68,7 +93,7 @@ class TestGraphViews: def test_load_graph_data(self, test_case): request = TestGraphViews.create_mock_request(f"/data/plugin/graph_ascend/load_graph_data?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") response_iter = GraphView.load_graph_data(request, TestGraphViews.start_response) - response_body = b''.join(response_iter).decode('utf-8') + response_body = b''.join(response_iter) runs = GraphState.get_global_value('runs') current_run = GraphState.get_global_value('current_run') current_tag = GraphState.get_global_value('current_tag') @@ -120,6 +145,30 @@ class TestGraphViews: response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) + @pytest.mark.parametrize("test_case", [ + { + "case_id": "1", + "description": "测试save_matched_relations接口", + "expected": {"success": True, "data": "mock_compare_resnet_data.vis.config"} + + } + ], ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_save_matched_relations(self, test_case): + request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/saveMatchedRelations?metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}") + response_iter = GraphView.save_matched_relations(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + excepted = test_case['expected'] + assert response_body == json.dumps(excepted) + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_add_match_nodes_by_config_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_add_match_nodes_by_config(self, test_case): + input = test_case['input'] + excepted = test_case['expected'] + request = TestGraphViews.create_mock_request(input) + response_iter = GraphView.add_match_nodes_by_config(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + assert response_body == json.dumps(excepted) + @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_delete_match_nodes_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_delete_match_nodes(self, test_case): input = test_case['input'] @@ -128,7 +177,16 @@ class TestGraphViews: response_iter = GraphView.delete_match_nodes(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) - + + @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_update_colors_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_update_colors(self, test_case): + input = test_case['input'] + excepted = test_case['expected'] + request = TestGraphViews.create_mock_request(input) + response_iter = GraphView.update_colors(request, TestGraphViews.start_response) + response_body = b''.join(response_iter).decode('utf-8') + assert response_body == json.dumps(excepted) + @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_get_node_info_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_get_node_info(self, test_case): input = test_case['input'] @@ -137,10 +195,20 @@ class TestGraphViews: response_iter = GraphView.get_node_info(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) - - def test_save_matched_relations(self): - request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/saveMatchedRelations?metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data") - response_iter = GraphView.save_matched_relations(request, TestGraphViews.start_response) + + @pytest.mark.parametrize("test_case", [ + { + "case_id": "1", + "description": "测试save_data接口", + "input": "/data/plugin/graph_ascend/saveData?metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}", + "expected": {"success": True} + } + ], ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_save_data(self, test_case): + input = test_case['input'] + excepted = test_case['expected'] + request = TestGraphViews.create_mock_request(input) + response_iter = GraphView.save_data(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') - print(response_body) - + assert response_body == json.dumps(excepted) + -- Gitee From 745457bcd8699fb2a7844f4d4239cd2c120e743a Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Wed, 25 Jun 2025 16:19:38 +0800 Subject: [PATCH 10/22] =?UTF-8?q?=F0=9F=A7=AA=20test:=20=E5=88=86=E6=94=AF?= =?UTF-8?q?=E8=A6=86=E7=9B=96=E7=8E=8778%?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../server/app/utils/graph_utils.py | 16 +- .../server/app/views/graph_views.py | 2 - .../tb_graph_ascend/test/conftest.py | 1 - .../test_layout_hierarchy_controller.py | 1 + .../test/unit/utils/test_graph_utils.py | 222 ++++++++++++++++++ 5 files changed, 224 insertions(+), 18 deletions(-) create mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/unit/utils/test_graph_utils.py diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py index 8e715b84d..aceda9867 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py @@ -266,7 +266,7 @@ class GraphUtils: raise RuntimeError("The target file is a symbolic link") if os.path.islink(run): raise RuntimeError(f"Parent directory contains a symbolic link") - # # 尝试写入文件 + # 尝试写入文件 with open(file_path, "w", encoding="utf-8") as file: json.dump(data, file, ensure_ascii=False, indent=4) os.chmod(file_path, 0o640) @@ -286,7 +286,6 @@ class GraphUtils: @staticmethod def safe_load_data(run_name, tag, only_check=False): - runs = GraphState.get_global_value('runs', {}) run_dir = runs.get(str(run_name)) or run_name """Load a single .vis file from a given directory based on the tag.""" @@ -439,16 +438,3 @@ class GraphUtils: return sorted_data - @staticmethod - def process_vis_file(dir_path, file, run_tag_pairs): - file_path = os.path.join(dir_path, file) - if os.path.isfile(file_path) and file.endswith('.vis'): - run = dir_path - run_name = os.path.basename(run) - GraphState.set_global_value('runs', run, run_name) - tag = file[:-4] # Use the filename without extension as tag - _, error = GraphUtils.safe_load_data(run_name, tag, True) - if error: - logger.error(f'Error: File run:"{run}, tag:{tag}" is not accessible. Error: {error}') - return - run_tag_pairs.setdefault(run_name, []).append(tag) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py index def8c1001..1ef7130e8 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/views/graph_views.py @@ -29,7 +29,6 @@ class GraphView: @staticmethod @wrappers.Request.application def static_file_route(request): - print( ) filename = os.path.basename(request.path) extension = os.path.splitext(filename)[1] if extension == '.html': @@ -153,7 +152,6 @@ class GraphView: @staticmethod @wrappers.Request.application def save_data(request): - print("save_data", request) meta_data = GraphUtils.safe_json_loads(request.args.get("metaData")) save_result = GraphService.save_data(meta_data) return http_util.Respond(request, json.dumps(save_result), "application/json") diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py index ab0aeb977..93be4c86c 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/conftest.py @@ -22,7 +22,6 @@ from data.test_case_factory import TestCaseFactory @pytest.fixture(scope="function", autouse=True) def reset_global_state(request): """每个测试后重置全局状态""" - print('module', request.module.__name__) # 执行测试 yield # 恢复原始状态 diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py index 23ca0662f..2ef561d69 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py @@ -41,3 +41,4 @@ class TestLayoutHierarchyController: excepted = test_case['expected'] actual = LayoutHierarchyController.update_hierarchy_data(graph_type) assert actual == excepted + \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/utils/test_graph_utils.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/utils/test_graph_utils.py new file mode 100644 index 000000000..4a0306169 --- /dev/null +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/utils/test_graph_utils.py @@ -0,0 +1,222 @@ +# Copyright (c) 2025, Huawei Technologies. +# All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +import pytest +from server.app.utils.graph_utils import GraphUtils + + +class TestGraphUtils: + + @pytest.mark.parametrize("test_case", + [ + { + "case_id": "1", + "description": "正常的多层节点 A -> B -> C", + "input": { + "graph_data": { + "node": { + "C": {"upnode": "B"}, + "B": {"upnode": "A"}, + "A": {"upnode": None} + } + }, + "node_name": "C" + }, + "expected": ["A", "B", "C"] + }, + { + "case_id": "2", + "description": "单一节点无上级", + "input": { + "graph_data": { + "node": { + "A": {"upnode": None} + } + }, + "node_name": "A" + }, + "expected": ["A"] + }, + { + "case_id": "3", + "description": "节点不存在于图中", + "input": { + "graph_data": { + "node": { + "A": {"upnode": None} + } + }, + "node_name": "B" + }, + "expected": ["B"] + }, + { + "case_id": "4", + "description": "图为空", + "input": { + "graph_data": {}, + "node_name": "A" + }, + "expected": [] + }, + { + "case_id": "5", + "description": "节点名为空", + "input": { + "graph_data": { + "node": { + "A": {"upnode": None} + } + }, + "node_name": "" + }, + "expected": [] + } + ], + ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_get_parent_node_list(self, test_case): + graph_data, node_name = test_case['input'].values() + expected = test_case['expected'] + actual = GraphUtils.get_parent_node_list(graph_data, node_name) + assert actual == expected + + @pytest.mark.parametrize("test_case", + [ + { + "case_id": "1", + "description": "数字大小比较,10 大于 2", + "input": {"a": "file_10", "b": "file_2"}, + "expected": 1 + }, + { + "case_id": "2", + "description": "相同前缀,数字部分较小", + "input": {"a": "item_3_part", "b": "item_12_part"}, + "expected":-1 + }, + { + "case_id": "3", + "description": "路径比较,a/b/c 小于 a/b/d", + "input": {"a": "a/b/c", "b": "a/b/d"}, + "expected":-1 + }, + { + "case_id": "4", + "description": "混合路径和下划线分隔,等价内容", + "input": {"a": "a_b_1", "b": "a/b/1"}, + "expected": 0 + }, + { + "case_id": "5", + "description": "子路径多一级,a/b 小于 a/b/c", + "input": {"a": "a/b", "b": "a/b/c"}, + "expected":-1 + }, + { + "case_id": "6", + "description": "数字 vs 字母,数字优先", + "input": {"a": "file_1", "b": "file_a"}, + "expected":-1 + }, + { + "case_id": "7", + "description": "完全相同", + "input": {"a": "dir/subdir_10/file_5", "b": "dir/subdir_10/file_5"}, + "expected": 0 + }, + { + "case_id": "8", + "description": "字母 vs 数字,字母在后", + "input": {"a": "a2b", "b": "a10"}, + "expected":-1 + } + ], + ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_compare_tag_names(self, test_case): + + def normalize(val: int) -> int: + return 0 if val == 0 else (1 if val > 0 else -1) + + a, b = test_case['input'].values() + expected = test_case['expected'] + actual = GraphUtils.compare_tag_names(a, b) + assert normalize(actual) == expected + + @pytest.mark.parametrize("test_case", + [ + { + "case_id": "1", + "description": "输入为 0 字节", + "input": {"size_bytes": 0}, + "expected": "0 B" + }, + { + "case_id": "2", + "description": "输入为字节(小于 1KB)", + "input": {"size_bytes": 512}, + "expected": "512.00 B" + }, + { + "case_id": "3", + "description": "输入为 1KB", + "input": {"size_bytes": 1024}, + "expected": "1.00 KB" + }, + { + "case_id": "4", + "description": "输入为 1MB", + "input": {"size_bytes": 1024 * 1024}, + "expected": "1.00 MB" + }, + { + "case_id": "5", + "description": "输入为 1.5MB", + "input": {"size_bytes": 1.5 * 1024 * 1024}, + "expected": "1.50 MB" + }, + { + "case_id": "6", + "description": "输入为 1GB,保留 3 位小数", + "input": {"size_bytes": 1024 ** 3, "decimal_places": 3}, + "expected": "1.000 GB" + }, + { + "case_id": "7", + "description": "输入为 2TB", + "input": {"size_bytes": 2 * 1024 ** 4}, + "expected": "2.00 TB" + }, + { + "case_id": "8", + "description": "输入为浮点字节数", + "input": {"size_bytes": 12345678.9}, + "expected": "11.77 MB" + }, + { + "case_id": "9", + "description": "输入为 PB 范围", + "input": {"size_bytes": 1.2 * 1024 ** 5}, + "expected": "1.20 PB" + } + ], + ids=lambda c: f"{c['case_id']}:{c['description']}") + def test_bytes_to_human_readable(self, test_case): + size_bytes = test_case["input"]["size_bytes"] + decimal_places = test_case["input"].get("decimal_places", 2) + expected = test_case['expected'] + actual = GraphUtils.bytes_to_human_readable(size_bytes, decimal_places) + assert actual == expected + -- Gitee From 354f0e113c69715436c1fb8595db47da11f1bdb7 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Fri, 27 Jun 2025 15:43:04 +0800 Subject: [PATCH 11/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20=E4=BF=9D=E5=AD=98?= =?UTF-8?q?=E9=97=AE=E9=A2=98=E4=BF=AE=E5=A4=8D?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../server/app/service/graph_service.py | 2 +- .../st_test_cases/mock_compare_resnet_data | 17298 ---------------- 2 files changed, 1 insertion(+), 17299 deletions(-) delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py index ce67b98f0..7271acb16 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py @@ -331,7 +331,7 @@ class GraphService: config_data_run['colors'] = colors config_data[run] = config_data_run GraphState.set_global_value("config_data", config_data) - GraphUtils.safe_save_data(first_file_data, run, first_run_tag) + GraphUtils.safe_save_data(first_file_data, run, f"{first_run_tag}.vis") return {'success': True, 'error': None, 'data': {}} except Exception as e: return {'success': False, 'error': str(e), 'data': None} diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data deleted file mode 100644 index 0d07190cd..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data +++ /dev/null @@ -1,17298 +0,0 @@ -{ - "NPU": { - "root": "DefaultModel", - "dump_data_dir": null, - "node": { - "DefaultModel": { - "id": "DefaultModel", - "node_type": 0, - "output_data": {}, - "input_data": {}, - "upnode": "None", - "subnodes": [ - "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.Sequential.forward.0", - "Module.layer2.Sequential.forward.0", - "Module.layer3.Sequential.forward.0", - "Module.layer4.Sequential.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.fc.Linear.forward.0", - "Module.fc.Linear.backward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.Sequential.backward.0", - "Module.layer3.Sequential.backward.0", - "Module.layer2.Sequential.backward.0", - "Module.layer1.Sequential.backward.0", - "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.conv1.Conv2d.forward.0": { - "id": "Module.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "1.526799", - "Min": "-1.559762", - "Mean": "-0.000263", - "Norm": "244.860931", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 3, 64, 64]", - "Max": "4.350435", - "Min": "-4.339223", - "Mean": "-0.001572", - "Norm": "350.247772", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 268, in _forward_impl, \n x = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.bn1.BatchNorm2d.forward.0": { - "id": "Module.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "-5.146786", - "Mean": "4.656613e-11", - "Norm": "809.493835", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "1.526799", - "Min": "-1.559762", - "Mean": "-0.000263", - "Norm": "244.860931", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 269, in _forward_impl, \n x = self.bn1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.relu.ReLU.forward.0": { - "id": "Module.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 270, in _forward_impl, \n x = self.relu(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.maxpool.MaxPool2d.forward.0": { - "id": "Module.maxpool.MaxPool2d.forward.0", - "node_type": 0, - "output_data": { - "Module.maxpool.MaxPool2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.maxpool.MaxPool2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 271, in _forward_impl, \n x = self.maxpool(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.BasicBlock.forward.0": { - "id": "Module.layer1.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.Sequential.forward.0", - "subnodes": [ - "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.conv1.Conv2d.forward.0": { - "id": "Module.layer1.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.74388", - "Min": "-7.379547", - "Mean": "-0.12333", - "Norm": "858.103699", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.Sequential.forward.0": { - "id": "Module.layer1.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "1.241406", - "Min diff": "-0.352369", - "Mean diff": "3.252369", - "L2norm diff": "6.914416", - "MaxRelativeErr": "66.663253%", - "MinRelativeErr": "56.663237%", - "MeanRelativeErr": "52.663233%", - "NormRelativeErr": "53.663533%" - } - }, - "input_data": { - "Module.layer1.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.7 - } - }, - "Module.layer1.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "-4.199296", - "Mean": "1.620501e-08", - "Norm": "404.769043", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.74388", - "Min": "-7.379547", - "Mean": "-0.12333", - "Norm": "858.103699", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.relu.ReLU.forward.0": { - "id": "Module.layer1.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.conv2.Conv2d.forward.0": { - "id": "Module.layer1.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.442179", - "Min": "-3.972987", - "Mean": "0.084329", - "Norm": "370.438843", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.605992", - "Min": "-4.646146", - "Mean": "4.284084e-09", - "Norm": "404.767944", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.442179", - "Min": "-3.972987", - "Mean": "0.084329", - "Norm": "370.438843", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.relu.ReLU.forward.1": { - "id": "Module.layer1.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.BasicBlock.forward.0": { - "id": "Module.layer1.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "6.326555", - "Min diff": "5.36963", - "Mean diff": "5.12369", - "L2norm diff": "8.39633", - "MaxRelativeErr": "83.235636%", - "MinRelativeErr": "69.362945%", - "MeanRelativeErr": "72.369548%", - "NormRelativeErr": "71.369612%" - } - }, - "input_data": { - "Module.layer1.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.Sequential.forward.0", - "subnodes": [ - "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer1.1.conv1.Conv2d.forward.0": { - "id": "Module.layer1.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "9.274334", - "Min": "-10.156013", - "Mean": "-0.101834", - "Norm": "975.393066", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "-4.49145", - "Mean": "-2.235174e-09", - "Norm": "404.770447", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "9.274334", - "Min": "-10.156013", - "Mean": "-0.101834", - "Norm": "975.393066", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.relu.ReLU.forward.0": { - "id": "Module.layer1.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.conv2.Conv2d.forward.0": { - "id": "Module.layer1.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.431858", - "Min": "-4.229196", - "Mean": "0.005514", - "Norm": "375.989105", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.475619", - "Min": "-4.364196", - "Mean": "1.396984e-09", - "Norm": "404.76828", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.431858", - "Min": "-4.229196", - "Mean": "0.005514", - "Norm": "375.989105", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.relu.ReLU.forward.1": { - "id": "Module.layer1.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.BasicBlock.forward.0": { - "id": "Module.layer2.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.conv1.Conv2d.forward.0": { - "id": "Module.layer2.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.363841", - "Min": "-8.813498", - "Mean": "0.116351", - "Norm": "582.720398", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.Sequential.forward.0": { - "id": "Module.layer2.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "-4.77158", - "Mean": "1.303852e-09", - "Norm": "286.215912", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.363841", - "Min": "-8.813498", - "Mean": "0.116351", - "Norm": "582.720398", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.relu.ReLU.forward.0": { - "id": "Module.layer2.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.conv2.Conv2d.forward.0": { - "id": "Module.layer2.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.0345", - "Min": "-4.125886", - "Mean": "-0.100337", - "Norm": "260.142944", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.152795", - "Min": "-4.936253", - "Mean": "3.725290e-10", - "Norm": "286.214294", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.0345", - "Min": "-4.125886", - "Mean": "-0.100337", - "Norm": "260.142944", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.downsample.Sequential.forward.0": { - "id": "Module.layer2.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.257706", - "Min": "-4.515994", - "Mean": "-1.117587e-09", - "Norm": "286.215851", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.203266", - "Min": "-9.355068", - "Mean": "-0.02311", - "Norm": "617.127319", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.257706", - "Min": "-4.515994", - "Mean": "-1.117587e-09", - "Norm": "286.215851", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.203266", - "Min": "-9.355068", - "Mean": "-0.02311", - "Norm": "617.127319", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.relu.ReLU.forward.1": { - "id": "Module.layer2.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.BasicBlock.forward.0": { - "id": "Module.layer2.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.conv1.Conv2d.forward.0": { - "id": "Module.layer2.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.62359", - "Min": "-5.580112", - "Mean": "0.074416", - "Norm": "367.649841", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "-4.101557", - "Mean": "-3.818422e-09", - "Norm": "286.215485", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.62359", - "Min": "-5.580112", - "Mean": "0.074416", - "Norm": "367.649841", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.relu.ReLU.forward.0": { - "id": "Module.layer2.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.conv2.Conv2d.forward.0": { - "id": "Module.layer2.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.393562", - "Min": "-4.753343", - "Mean": "-0.078746", - "Norm": "260.969421", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.73594", - "Min": "-4.475933", - "Mean": "2.421439e-09", - "Norm": "286.214294", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.393562", - "Min": "-4.753343", - "Mean": "-0.078746", - "Norm": "260.969421", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.relu.ReLU.forward.1": { - "id": "Module.layer2.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.BasicBlock.forward.0": { - "id": "Module.layer3.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.Sequential.forward.0", - "subnodes": [ - "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.conv1.Conv2d.forward.0": { - "id": "Module.layer3.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.532973", - "Min": "-6.165116", - "Mean": "0.023511", - "Norm": "250.68428", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.Sequential.forward.0": { - "id": "Module.layer3.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.layer3.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "-4.041963", - "Mean": "1.024455e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.532973", - "Min": "-6.165116", - "Mean": "0.023511", - "Norm": "250.68428", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.relu.ReLU.forward.0": { - "id": "Module.layer3.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.conv2.Conv2d.forward.0": { - "id": "Module.layer3.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.085584", - "Min": "-3.535729", - "Mean": "0.009184", - "Norm": "171.884354", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.328585", - "Min": "-4.24462", - "Mean": "-5.587936e-10", - "Norm": "202.383789", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.085584", - "Min": "-3.535729", - "Mean": "0.009184", - "Norm": "171.884354", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.Sequential.forward.0": { - "id": "Module.layer3.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.673633", - "Min": "-4.118578", - "Mean": "2.980232e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.544863", - "Min": "-5.637341", - "Mean": "0.063504", - "Norm": "262.41275", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.673633", - "Min": "-4.118578", - "Mean": "2.980232e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.544863", - "Min": "-5.637341", - "Mean": "0.063504", - "Norm": "262.41275", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.relu.ReLU.forward.1": { - "id": "Module.layer3.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.BasicBlock.forward.0": { - "id": "Module.layer3.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.Sequential.forward.0", - "subnodes": [ - "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.conv1.Conv2d.forward.0": { - "id": "Module.layer3.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.445492", - "Min": "-5.73983", - "Mean": "0.056189", - "Norm": "242.794586", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "-4.302232", - "Mean": "6.053597e-10", - "Norm": "202.384811", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.445492", - "Min": "-5.73983", - "Mean": "0.056189", - "Norm": "242.794586", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.relu.ReLU.forward.0": { - "id": "Module.layer3.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.conv2.Conv2d.forward.0": { - "id": "Module.layer3.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "3.904869", - "Min": "-3.915274", - "Mean": "0.000739", - "Norm": "175.362854", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.820035", - "Min": "-4.248729", - "Mean": "3.725290e-09", - "Norm": "202.38385", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "3.904869", - "Min": "-3.915274", - "Mean": "0.000739", - "Norm": "175.362854", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.relu.ReLU.forward.1": { - "id": "Module.layer3.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.BasicBlock.forward.0": { - "id": "Module.layer4.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.Sequential.forward.0", - "subnodes": [ - "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.conv1.Conv2d.forward.0": { - "id": "Module.layer4.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.17719", - "Min": "-5.021754", - "Mean": "-0.003242", - "Norm": "160.062332", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.Sequential.forward.0": { - "id": "Module.layer4.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.layer4.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "-4.494643", - "Mean": "0.0", - "Norm": "143.107346", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.17719", - "Min": "-5.021754", - "Mean": "-0.003242", - "Norm": "160.062332", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.relu.ReLU.forward.0": { - "id": "Module.layer4.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.conv2.Conv2d.forward.0": { - "id": "Module.layer4.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.548945", - "Min": "-2.623174", - "Mean": "-0.024468", - "Norm": "96.85141", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.43048", - "Min": "-3.390204", - "Mean": "-5.587936e-10", - "Norm": "143.106155", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.548945", - "Min": "-2.623174", - "Mean": "-0.024468", - "Norm": "96.85141", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.Sequential.forward.0": { - "id": "Module.layer4.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.162686", - "Min": "-4.141354", - "Mean": "-1.396984e-09", - "Norm": "143.107498", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "5.574177", - "Min": "-5.778933", - "Mean": "0.001088", - "Norm": "182.966492", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.162686", - "Min": "-4.141354", - "Mean": "-1.396984e-09", - "Norm": "143.107498", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "5.574177", - "Min": "-5.778933", - "Mean": "0.001088", - "Norm": "182.966492", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.relu.ReLU.forward.1": { - "id": "Module.layer4.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.BasicBlock.forward.0": { - "id": "Module.layer4.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.Sequential.forward.0", - "subnodes": [ - "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.conv1.Conv2d.forward.0": { - "id": "Module.layer4.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.864757", - "Min": "-3.787591", - "Mean": "0.002277", - "Norm": "133.55986", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "-3.694792", - "Mean": "1.490116e-09", - "Norm": "143.107239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.864757", - "Min": "-3.787591", - "Mean": "0.002277", - "Norm": "133.55986", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.relu.ReLU.forward.0": { - "id": "Module.layer4.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.conv2.Conv2d.forward.0": { - "id": "Module.layer4.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.484763", - "Min": "-2.720093", - "Mean": "0.013722", - "Norm": "95.469269", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.644991", - "Min": "-3.459976", - "Mean": "-4.656613e-10", - "Norm": "143.106094", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.484763", - "Min": "-2.720093", - "Mean": "0.013722", - "Norm": "95.469269", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.relu.ReLU.forward.1": { - "id": "Module.layer4.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.avgpool.AdaptiveAvgPool2d.forward.0": { - "id": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "node_type": 0, - "output_data": { - "Module.avgpool.AdaptiveAvgPool2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 1, 1]", - "Max": "2.68325", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "66.964317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.avgpool.AdaptiveAvgPool2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 278, in _forward_impl, \n x = self.avgpool(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.fc.Linear.forward.0": { - "id": "Module.fc.Linear.forward.0", - "node_type": 0, - "output_data": { - "Module.fc.Linear.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 10]", - "Max": "1.236255", - "Min": "-1.562365", - "Mean": "-0.12689", - "Norm": "5.357258", - "data_name": "-1" - } - }, - "input_data": { - "Module.fc.Linear.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512]", - "Max": "2.68325", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "66.964317", - "data_name": "-1" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.fc.Linear.backward.0": { - "id": "Module.fc.Linear.backward.0", - "node_type": 0, - "output_data": { - "Module.fc.Linear.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512]", - "Max": "0.006356", - "Min": "-0.00662", - "Mean": "0.000117", - "Norm": "0.176545", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.fc.Linear.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 10]", - "Max": "0.03222", - "Min": "-0.097696", - "Mean": "1.490116e-10", - "Norm": "0.311353", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.backward.0": { - "id": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "node_type": 0, - "output_data": { - "Module.avgpool.AdaptiveAvgPool2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.avgpool.AdaptiveAvgPool2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 1, 1]", - "Max": "0.006356", - "Min": "-0.00662", - "Mean": "0.000117", - "Norm": "0.176545", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.layer4.1.BasicBlock.backward.0": { - "id": "Module.layer4.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.Sequential.backward.0", - "subnodes": [ - "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.relu.ReLU.backward.0": { - "id": "Module.layer4.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.170244e-05", - "Norm": "0.071178", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.Sequential.backward.0": { - "id": "Module.layer4.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00349", - "Min": "-0.003203", - "Mean": "-1.818989e-13", - "Norm": "0.114767", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.170244e-05", - "Norm": "0.071178", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.conv2.Conv2d.backward.0": { - "id": "Module.layer4.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003047", - "Min": "-0.003687", - "Mean": "5.127279e-08", - "Norm": "0.107756", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00349", - "Min": "-0.003203", - "Mean": "-1.818989e-13", - "Norm": "0.114767", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.relu.ReLU.backward.1": { - "id": "Module.layer4.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003023", - "Min": "-0.002646", - "Mean": "9.799842e-08", - "Norm": "0.075418", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003047", - "Min": "-0.003687", - "Mean": "5.127279e-08", - "Norm": "0.107756", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00392", - "Min": "-0.00384", - "Mean": "2.160050e-13", - "Norm": "0.093361", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003023", - "Min": "-0.002646", - "Mean": "9.799842e-08", - "Norm": "0.075418", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.conv1.Conv2d.backward.0": { - "id": "Module.layer4.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.002777", - "Min": "-0.002687", - "Mean": "-1.536876e-06", - "Norm": "0.087284", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00392", - "Min": "-0.00384", - "Mean": "2.160050e-13", - "Norm": "0.093361", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.BasicBlock.backward.0": { - "id": "Module.layer4.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.Sequential.backward.0", - "subnodes": [ - "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.relu.ReLU.backward.0": { - "id": "Module.layer4.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.Sequential.backward.0": { - "id": "Module.layer4.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004114", - "Min": "-0.003346", - "Mean": "-4.547474e-14", - "Norm": "0.087317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004101", - "Min": "-0.003454", - "Mean": "-3.637979e-13", - "Norm": "0.087384", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004114", - "Min": "-0.003346", - "Mean": "-4.547474e-14", - "Norm": "0.087317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004101", - "Min": "-0.003454", - "Mean": "-3.637979e-13", - "Norm": "0.087384", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.006026", - "Min": "-0.006504", - "Mean": "7.275958e-13", - "Norm": "0.138286", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.conv2.Conv2d.backward.0": { - "id": "Module.layer4.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "2.937198e-06", - "Norm": "0.130315", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.006026", - "Min": "-0.006504", - "Mean": "7.275958e-13", - "Norm": "0.138286", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.relu.ReLU.backward.1": { - "id": "Module.layer4.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "-8.934543e-07", - "Norm": "0.092057", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "2.937198e-06", - "Norm": "0.130315", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004244", - "Min": "-0.004086", - "Mean": "-4.547474e-13", - "Norm": "0.106542", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "-8.934543e-07", - "Norm": "0.092057", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.conv1.Conv2d.backward.0": { - "id": "Module.layer4.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.002732", - "Min": "-0.002337", - "Mean": "1.283062e-07", - "Norm": "0.088477", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004244", - "Min": "-0.004086", - "Mean": "-4.547474e-13", - "Norm": "0.106542", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.BasicBlock.backward.0": { - "id": "Module.layer3.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.Sequential.backward.0", - "subnodes": [ - "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.relu.ReLU.backward.0": { - "id": "Module.layer3.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "5.267739e-07", - "Norm": "0.100327", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.Sequential.backward.0": { - "id": "Module.layer3.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005349", - "Min": "-0.00458", - "Mean": "5.456968e-13", - "Norm": "0.134192", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "5.267739e-07", - "Norm": "0.100327", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.conv2.Conv2d.backward.0": { - "id": "Module.layer3.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004227", - "Min": "-0.003777", - "Mean": "-1.105049e-06", - "Norm": "0.161834", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005349", - "Min": "-0.00458", - "Mean": "5.456968e-13", - "Norm": "0.134192", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.relu.ReLU.backward.1": { - "id": "Module.layer3.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003753", - "Min": "-0.003777", - "Mean": "-1.121872e-07", - "Norm": "0.113553", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004227", - "Min": "-0.003777", - "Mean": "-1.105049e-06", - "Norm": "0.161834", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004302", - "Min": "-0.003597", - "Mean": "4.547474e-14", - "Norm": "0.108404", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003753", - "Min": "-0.003777", - "Mean": "-1.121872e-07", - "Norm": "0.113553", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.conv1.Conv2d.backward.0": { - "id": "Module.layer3.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003036", - "Min": "-0.002772", - "Mean": "-2.692081e-07", - "Norm": "0.133319", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004302", - "Min": "-0.003597", - "Mean": "4.547474e-14", - "Norm": "0.108404", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.BasicBlock.backward.0": { - "id": "Module.layer3.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.Sequential.backward.0", - "subnodes": [ - "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.relu.ReLU.backward.0": { - "id": "Module.layer3.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.Sequential.backward.0": { - "id": "Module.layer3.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004002", - "Min": "-0.004525", - "Mean": "3.410605e-13", - "Norm": "0.1262", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004036", - "Min": "-0.005194", - "Mean": "0.0", - "Norm": "0.126903", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004002", - "Min": "-0.004525", - "Mean": "3.410605e-13", - "Norm": "0.1262", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004036", - "Min": "-0.005194", - "Mean": "0.0", - "Norm": "0.126903", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.006225", - "Min": "-0.005798", - "Mean": "-3.637979e-13", - "Norm": "0.166553", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.conv2.Conv2d.backward.0": { - "id": "Module.layer3.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-6.200127e-07", - "Norm": "0.20419", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.006225", - "Min": "-0.005798", - "Mean": "-3.637979e-13", - "Norm": "0.166553", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.relu.ReLU.backward.1": { - "id": "Module.layer3.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-5.361890e-07", - "Norm": "0.144125", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-6.200127e-07", - "Norm": "0.20419", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005433", - "Min": "-0.005011", - "Mean": "0.0", - "Norm": "0.150797", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-5.361890e-07", - "Norm": "0.144125", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.conv1.Conv2d.backward.0": { - "id": "Module.layer3.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.003242", - "Min": "-0.002676", - "Mean": "1.208646e-08", - "Norm": "0.139735", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005433", - "Min": "-0.005011", - "Mean": "0.0", - "Norm": "0.150797", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.BasicBlock.backward.0": { - "id": "Module.layer2.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.Sequential.backward.0", - "subnodes": [ - "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.relu.ReLU.backward.0": { - "id": "Module.layer2.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "6.662881e-07", - "Norm": "0.152697", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.Sequential.backward.0": { - "id": "Module.layer2.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005537", - "Min": "-0.006419", - "Mean": "4.547474e-14", - "Norm": "0.192183", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "6.662881e-07", - "Norm": "0.152697", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.conv2.Conv2d.backward.0": { - "id": "Module.layer2.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004991", - "Mean": "6.954823e-07", - "Norm": "0.250644", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005537", - "Min": "-0.006419", - "Mean": "4.547474e-14", - "Norm": "0.192183", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.relu.ReLU.backward.1": { - "id": "Module.layer2.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004159", - "Mean": "2.355963e-06", - "Norm": "0.177588", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004991", - "Mean": "6.954823e-07", - "Norm": "0.250644", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004246", - "Min": "-0.003801", - "Mean": "3.865353e-13", - "Norm": "0.159253", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004159", - "Mean": "2.355963e-06", - "Norm": "0.177588", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.conv1.Conv2d.backward.0": { - "id": "Module.layer2.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.003947", - "Min": "-0.00409", - "Mean": "1.122175e-06", - "Norm": "0.213347", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004246", - "Min": "-0.003801", - "Mean": "3.865353e-13", - "Norm": "0.159253", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.BasicBlock.backward.0": { - "id": "Module.layer2.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.Sequential.backward.0", - "subnodes": [ - "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.relu.ReLU.backward.0": { - "id": "Module.layer2.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.Sequential.backward.0": { - "id": "Module.layer2.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004066", - "Min": "-0.004851", - "Mean": "4.547474e-14", - "Norm": "0.148232", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004749", - "Min": "-0.004585", - "Mean": "-2.728484e-13", - "Norm": "0.14894", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004066", - "Min": "-0.004851", - "Mean": "4.547474e-14", - "Norm": "0.148232", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004749", - "Min": "-0.004585", - "Mean": "-2.728484e-13", - "Norm": "0.14894", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00708", - "Min": "-0.008085", - "Mean": "-5.456968e-13", - "Norm": "0.246197", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.conv2.Conv2d.backward.0": { - "id": "Module.layer2.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005883", - "Min": "-0.005688", - "Mean": "7.895345e-07", - "Norm": "0.328498", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00708", - "Min": "-0.008085", - "Mean": "-5.456968e-13", - "Norm": "0.246197", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.relu.ReLU.backward.1": { - "id": "Module.layer2.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005686", - "Min": "-0.005685", - "Mean": "1.743164e-06", - "Norm": "0.232839", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005883", - "Min": "-0.005688", - "Mean": "7.895345e-07", - "Norm": "0.328498", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004441", - "Min": "-0.004493", - "Mean": "-3.637979e-13", - "Norm": "0.176547", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005686", - "Min": "-0.005685", - "Mean": "1.743164e-06", - "Norm": "0.232839", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.conv1.Conv2d.backward.0": { - "id": "Module.layer2.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.002586", - "Min": "-0.002816", - "Mean": "-2.737123e-07", - "Norm": "0.171941", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004441", - "Min": "-0.004493", - "Mean": "-3.637979e-13", - "Norm": "0.176547", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.BasicBlock.backward.0": { - "id": "Module.layer1.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.Sequential.backward.0", - "subnodes": [ - "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.relu.ReLU.backward.0": { - "id": "Module.layer1.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "1.113839e-07", - "Norm": "0.209072", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.Sequential.backward.0": { - "id": "Module.layer1.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004873", - "Min": "-0.006985", - "Mean": "6.366463e-13", - "Norm": "0.263476", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "1.113839e-07", - "Norm": "0.209072", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.conv2.Conv2d.backward.0": { - "id": "Module.layer1.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.005144", - "Mean": "5.896727e-08", - "Norm": "0.36269", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004873", - "Min": "-0.006985", - "Mean": "6.366463e-13", - "Norm": "0.263476", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.relu.ReLU.backward.1": { - "id": "Module.layer1.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.004949", - "Mean": "-2.247479e-07", - "Norm": "0.255762", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.005144", - "Mean": "5.896727e-08", - "Norm": "0.36269", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00343", - "Min": "-0.003328", - "Mean": "1.818989e-13", - "Norm": "0.165887", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.004949", - "Mean": "-2.247479e-07", - "Norm": "0.255762", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.conv1.Conv2d.backward.0": { - "id": "Module.layer1.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003166", - "Min": "-0.003639", - "Mean": "-1.210342e-08", - "Norm": "0.229291", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00343", - "Min": "-0.003328", - "Mean": "1.818989e-13", - "Norm": "0.165887", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.BasicBlock.backward.0": { - "id": "Module.layer1.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.Sequential.backward.0", - "subnodes": [ - "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.relu.ReLU.backward.0": { - "id": "Module.layer1.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "3.088644e-07", - "Norm": "0.299243", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007243", - "Min": "-0.006519", - "Mean": "-7.275958e-13", - "Norm": "0.389929", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "3.088644e-07", - "Norm": "0.299243", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.conv2.Conv2d.backward.0": { - "id": "Module.layer1.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "-5.936339e-07", - "Norm": "0.54013", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007243", - "Min": "-0.006519", - "Mean": "-7.275958e-13", - "Norm": "0.389929", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.relu.ReLU.backward.1": { - "id": "Module.layer1.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "2.777797e-07", - "Norm": "0.379333", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "-5.936339e-07", - "Norm": "0.54013", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.009111", - "Min": "-0.009193", - "Mean": "-7.275958e-13", - "Norm": "0.387683", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "2.777797e-07", - "Norm": "0.379333", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.conv1.Conv2d.backward.0": { - "id": "Module.layer1.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007328", - "Min": "-0.008206", - "Mean": "3.342619e-07", - "Norm": "0.538403", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.009111", - "Min": "-0.009193", - "Mean": "-7.275958e-13", - "Norm": "0.387683", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.maxpool.MaxPool2d.backward.0": { - "id": "Module.maxpool.MaxPool2d.backward.0", - "node_type": 0, - "output_data": { - "Module.maxpool.MaxPool2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.607818e-07", - "Norm": "0.615501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.maxpool.MaxPool2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.relu.ReLU.backward.0": { - "id": "Module.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.113458e-07", - "Norm": "0.614639", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.607818e-07", - "Norm": "0.615501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.bn1.BatchNorm2d.backward.0": { - "id": "Module.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.049808", - "Min": "-0.064687", - "Mean": "1.364242e-12", - "Norm": "2.04307", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.113458e-07", - "Norm": "0.614639", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.conv1.Conv2d.backward.0": { - "id": "Module.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.conv1.Conv2d.backward.0.output.0": { - "value": "null" - } - }, - "input_data": { - "Module.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.049808", - "Min": "-0.064687", - "Mean": "1.364242e-12", - "Norm": "2.04307", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - } - } - }, - "Bench": { - "root": "DefaultModel", - "dump_data_dir": null, - "node": { - "DefaultModel": { - "id": "DefaultModel", - "node_type": 0, - "output_data": {}, - "input_data": {}, - "upnode": "None", - "subnodes": [ - "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.Sequential.forward.0", - "Module.layer2.Sequential.forward.0", - "Module.layer3.Sequential.forward.0", - "Module.layer4.Sequential.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.fc.Linear.forward.0", - "Module.fc.Linear.backward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.Sequential.backward.0", - "Module.layer3.Sequential.backward.0", - "Module.layer2.Sequential.backward.0", - "Module.layer1.Sequential.backward.0", - "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.conv1.Conv2d.forward.0": { - "id": "Module.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "1.526799", - "Min": "-1.559762", - "Mean": "-0.000263", - "Norm": "244.860931", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 3, 64, 64]", - "Max": "4.350435", - "Min": "-4.339223", - "Mean": "-0.001572", - "Norm": "350.247772", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 268, in _forward_impl, \n x = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.bn1.BatchNorm2d.forward.0": { - "id": "Module.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "-5.146786", - "Mean": "4.656613e-11", - "Norm": "809.493835", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "1.526799", - "Min": "-1.559762", - "Mean": "-0.000263", - "Norm": "244.860931", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 269, in _forward_impl, \n x = self.bn1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.relu.ReLU.forward.0": { - "id": "Module.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 270, in _forward_impl, \n x = self.relu(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.maxpool.MaxPool2d.forward.0": { - "id": "Module.maxpool.MaxPool2d.forward.0", - "node_type": 0, - "output_data": { - "Module.maxpool.MaxPool2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.maxpool.MaxPool2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 271, in _forward_impl, \n x = self.maxpool(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer1.0.BasicBlock.forward.0": { - "id": "Module.layer1.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.Sequential.forward.0", - "subnodes": [ - "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.conv1.Conv2d.forward.0": { - "id": "Module.layer1.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.74388", - "Min": "-7.379547", - "Mean": "-0.12333", - "Norm": "858.103699", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.Sequential.forward.0": { - "id": "Module.layer1.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer1.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "-4.199296", - "Mean": "1.620501e-08", - "Norm": "404.769043", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.74388", - "Min": "-7.379547", - "Mean": "-0.12333", - "Norm": "858.103699", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.relu.ReLU.forward.0": { - "id": "Module.layer1.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.conv2.Conv2d.forward.0": { - "id": "Module.layer1.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.442179", - "Min": "-3.972987", - "Mean": "0.084329", - "Norm": "370.438843", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.605992", - "Min": "-4.646146", - "Mean": "4.284084e-09", - "Norm": "404.767944", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.442179", - "Min": "-3.972987", - "Mean": "0.084329", - "Norm": "370.438843", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.relu.ReLU.forward.1": { - "id": "Module.layer1.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.BasicBlock.forward.0": { - "id": "Module.layer1.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.Sequential.forward.0", - "subnodes": [ - "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.conv1.Conv2d.forward.0": { - "id": "Module.layer1.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "9.274334", - "Min": "-10.156013", - "Mean": "-0.101834", - "Norm": "975.393066", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "-4.49145", - "Mean": "-2.235174e-09", - "Norm": "404.770447", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "9.274334", - "Min": "-10.156013", - "Mean": "-0.101834", - "Norm": "975.393066", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.relu.ReLU.forward.0": { - "id": "Module.layer1.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.conv2.Conv2d.forward.0": { - "id": "Module.layer1.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.431858", - "Min": "-4.229196", - "Mean": "0.005514", - "Norm": "375.989105", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.475619", - "Min": "-4.364196", - "Mean": "1.396984e-09", - "Norm": "404.76828", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.431858", - "Min": "-4.229196", - "Mean": "0.005514", - "Norm": "375.989105", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.relu.ReLU.forward.1": { - "id": "Module.layer1.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.BasicBlock.forward.0": { - "id": "Module.layer2.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.conv1.Conv2d.forward.0": { - "id": "Module.layer2.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.363841", - "Min": "-8.813498", - "Mean": "0.116351", - "Norm": "582.720398", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.Sequential.forward.0": { - "id": "Module.layer2.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer2.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "-4.77158", - "Mean": "1.303852e-09", - "Norm": "286.215912", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.363841", - "Min": "-8.813498", - "Mean": "0.116351", - "Norm": "582.720398", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.relu.ReLU.forward.0": { - "id": "Module.layer2.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.conv2.Conv2d.forward.0": { - "id": "Module.layer2.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.0345", - "Min": "-4.125886", - "Mean": "-0.100337", - "Norm": "260.142944", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.152795", - "Min": "-4.936253", - "Mean": "3.725290e-10", - "Norm": "286.214294", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.0345", - "Min": "-4.125886", - "Mean": "-0.100337", - "Norm": "260.142944", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.downsample.Sequential.forward.0": { - "id": "Module.layer2.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.257706", - "Min": "-4.515994", - "Mean": "-1.117587e-09", - "Norm": "286.215851", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.203266", - "Min": "-9.355068", - "Mean": "-0.02311", - "Norm": "617.127319", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.257706", - "Min": "-4.515994", - "Mean": "-1.117587e-09", - "Norm": "286.215851", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.203266", - "Min": "-9.355068", - "Mean": "-0.02311", - "Norm": "617.127319", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.relu.ReLU.forward.1": { - "id": "Module.layer2.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.BasicBlock.forward.0": { - "id": "Module.layer2.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.conv1.Conv2d.forward.0": { - "id": "Module.layer2.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.62359", - "Min": "-5.580112", - "Mean": "0.074416", - "Norm": "367.649841", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "-4.101557", - "Mean": "-3.818422e-09", - "Norm": "286.215485", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.62359", - "Min": "-5.580112", - "Mean": "0.074416", - "Norm": "367.649841", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.relu.ReLU.forward.0": { - "id": "Module.layer2.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.conv2.Conv2d.forward.0": { - "id": "Module.layer2.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.393562", - "Min": "-4.753343", - "Mean": "-0.078746", - "Norm": "260.969421", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.73594", - "Min": "-4.475933", - "Mean": "2.421439e-09", - "Norm": "286.214294", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.393562", - "Min": "-4.753343", - "Mean": "-0.078746", - "Norm": "260.969421", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.relu.ReLU.forward.1": { - "id": "Module.layer2.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.BasicBlock.forward.0": { - "id": "Module.layer3.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.Sequential.forward.0", - "subnodes": [ - "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.conv1.Conv2d.forward.0": { - "id": "Module.layer3.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.532973", - "Min": "-6.165116", - "Mean": "0.023511", - "Norm": "250.68428", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.Sequential.forward.0": { - "id": "Module.layer3.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer3.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "-4.041963", - "Mean": "1.024455e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.532973", - "Min": "-6.165116", - "Mean": "0.023511", - "Norm": "250.68428", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.relu.ReLU.forward.0": { - "id": "Module.layer3.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.conv2.Conv2d.forward.0": { - "id": "Module.layer3.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.085584", - "Min": "-3.535729", - "Mean": "0.009184", - "Norm": "171.884354", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.328585", - "Min": "-4.24462", - "Mean": "-5.587936e-10", - "Norm": "202.383789", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.085584", - "Min": "-3.535729", - "Mean": "0.009184", - "Norm": "171.884354", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.downsample.Sequential.forward.0": { - "id": "Module.layer3.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.673633", - "Min": "-4.118578", - "Mean": "2.980232e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.544863", - "Min": "-5.637341", - "Mean": "0.063504", - "Norm": "262.41275", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.673633", - "Min": "-4.118578", - "Mean": "2.980232e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.544863", - "Min": "-5.637341", - "Mean": "0.063504", - "Norm": "262.41275", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.relu.ReLU.forward.1": { - "id": "Module.layer3.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.BasicBlock.forward.0": { - "id": "Module.layer3.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.Sequential.forward.0", - "subnodes": [ - "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.conv1.Conv2d.forward.0": { - "id": "Module.layer3.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.445492", - "Min": "-5.73983", - "Mean": "0.056189", - "Norm": "242.794586", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "-4.302232", - "Mean": "6.053597e-10", - "Norm": "202.384811", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.445492", - "Min": "-5.73983", - "Mean": "0.056189", - "Norm": "242.794586", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.relu.ReLU.forward.0": { - "id": "Module.layer3.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.conv2.Conv2d.forward.0": { - "id": "Module.layer3.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "3.904869", - "Min": "-3.915274", - "Mean": "0.000739", - "Norm": "175.362854", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.820035", - "Min": "-4.248729", - "Mean": "3.725290e-09", - "Norm": "202.38385", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "3.904869", - "Min": "-3.915274", - "Mean": "0.000739", - "Norm": "175.362854", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.relu.ReLU.forward.1": { - "id": "Module.layer3.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.BasicBlock.forward.0": { - "id": "Module.layer4.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.Sequential.forward.0", - "subnodes": [ - "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.conv1.Conv2d.forward.0": { - "id": "Module.layer4.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.17719", - "Min": "-5.021754", - "Mean": "-0.003242", - "Norm": "160.062332", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.Sequential.forward.0": { - "id": "Module.layer4.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer4.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "-4.494643", - "Mean": "0.0", - "Norm": "143.107346", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.17719", - "Min": "-5.021754", - "Mean": "-0.003242", - "Norm": "160.062332", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.relu.ReLU.forward.0": { - "id": "Module.layer4.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.conv2.Conv2d.forward.0": { - "id": "Module.layer4.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.548945", - "Min": "-2.623174", - "Mean": "-0.024468", - "Norm": "96.85141", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.43048", - "Min": "-3.390204", - "Mean": "-5.587936e-10", - "Norm": "143.106155", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.548945", - "Min": "-2.623174", - "Mean": "-0.024468", - "Norm": "96.85141", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.downsample.Sequential.forward.0": { - "id": "Module.layer4.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.162686", - "Min": "-4.141354", - "Mean": "-1.396984e-09", - "Norm": "143.107498", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "5.574177", - "Min": "-5.778933", - "Mean": "0.001088", - "Norm": "182.966492", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.162686", - "Min": "-4.141354", - "Mean": "-1.396984e-09", - "Norm": "143.107498", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "5.574177", - "Min": "-5.778933", - "Mean": "0.001088", - "Norm": "182.966492", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.relu.ReLU.forward.1": { - "id": "Module.layer4.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.BasicBlock.forward.0": { - "id": "Module.layer4.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.Sequential.forward.0", - "subnodes": [ - "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.conv1.Conv2d.forward.0": { - "id": "Module.layer4.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.864757", - "Min": "-3.787591", - "Mean": "0.002277", - "Norm": "133.55986", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "-3.694792", - "Mean": "1.490116e-09", - "Norm": "143.107239", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.864757", - "Min": "-3.787591", - "Mean": "0.002277", - "Norm": "133.55986", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.relu.ReLU.forward.0": { - "id": "Module.layer4.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.conv2.Conv2d.forward.0": { - "id": "Module.layer4.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.484763", - "Min": "-2.720093", - "Mean": "0.013722", - "Norm": "95.469269", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.644991", - "Min": "-3.459976", - "Mean": "-4.656613e-10", - "Norm": "143.106094", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.484763", - "Min": "-2.720093", - "Mean": "0.013722", - "Norm": "95.469269", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.relu.ReLU.forward.1": { - "id": "Module.layer4.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.forward.0": { - "id": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "node_type": 0, - "output_data": { - "Module.avgpool.AdaptiveAvgPool2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 1, 1]", - "Max": "2.68325", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "66.964317", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.avgpool.AdaptiveAvgPool2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 278, in _forward_impl, \n x = self.avgpool(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.fc.Linear.forward.0": { - "id": "Module.fc.Linear.forward.0", - "node_type": 0, - "output_data": { - "Module.fc.Linear.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 10]", - "Max": "1.236255", - "Min": "-1.562365", - "Mean": "-0.12689", - "Norm": "5.357258", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.fc.Linear.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512]", - "Max": "2.68325", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "66.964317", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.fc.Linear.backward.0": { - "id": "Module.fc.Linear.backward.0", - "node_type": 0, - "output_data": { - "Module.fc.Linear.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512]", - "Max": "0.006356", - "Min": "-0.00662", - "Mean": "0.000117", - "Norm": "0.176545", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.fc.Linear.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 10]", - "Max": "0.03222", - "Min": "-0.097696", - "Mean": "1.490116e-10", - "Norm": "0.311353", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.backward.0": { - "id": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "node_type": 0, - "output_data": { - "Module.avgpool.AdaptiveAvgPool2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.avgpool.AdaptiveAvgPool2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 1, 1]", - "Max": "0.006356", - "Min": "-0.00662", - "Mean": "0.000117", - "Norm": "0.176545", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer4.1.BasicBlock.backward.0": { - "id": "Module.layer4.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.Sequential.backward.0", - "subnodes": [ - "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.relu.ReLU.backward.0": { - "id": "Module.layer4.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.170244e-05", - "Norm": "0.071178", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.Sequential.backward.0": { - "id": "Module.layer4.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer4.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00349", - "Min": "-0.003203", - "Mean": "-1.818989e-13", - "Norm": "0.114767", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.170244e-05", - "Norm": "0.071178", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.conv2.Conv2d.backward.0": { - "id": "Module.layer4.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003047", - "Min": "-0.003687", - "Mean": "5.127279e-08", - "Norm": "0.107756", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00349", - "Min": "-0.003203", - "Mean": "-1.818989e-13", - "Norm": "0.114767", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.relu.ReLU.backward.1": { - "id": "Module.layer4.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003023", - "Min": "-0.002646", - "Mean": "9.799842e-08", - "Norm": "0.075418", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003047", - "Min": "-0.003687", - "Mean": "5.127279e-08", - "Norm": "0.107756", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00392", - "Min": "-0.00384", - "Mean": "2.160050e-13", - "Norm": "0.093361", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003023", - "Min": "-0.002646", - "Mean": "9.799842e-08", - "Norm": "0.075418", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.conv1.Conv2d.backward.0": { - "id": "Module.layer4.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.002777", - "Min": "-0.002687", - "Mean": "-1.536876e-06", - "Norm": "0.087284", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00392", - "Min": "-0.00384", - "Mean": "2.160050e-13", - "Norm": "0.093361", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.BasicBlock.backward.0": { - "id": "Module.layer4.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.Sequential.backward.0", - "subnodes": [ - "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.relu.ReLU.backward.0": { - "id": "Module.layer4.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.downsample.Sequential.backward.0": { - "id": "Module.layer4.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004114", - "Min": "-0.003346", - "Mean": "-4.547474e-14", - "Norm": "0.087317", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004101", - "Min": "-0.003454", - "Mean": "-3.637979e-13", - "Norm": "0.087384", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004114", - "Min": "-0.003346", - "Mean": "-4.547474e-14", - "Norm": "0.087317", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004101", - "Min": "-0.003454", - "Mean": "-3.637979e-13", - "Norm": "0.087384", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.006026", - "Min": "-0.006504", - "Mean": "7.275958e-13", - "Norm": "0.138286", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.conv2.Conv2d.backward.0": { - "id": "Module.layer4.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "2.937198e-06", - "Norm": "0.130315", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.006026", - "Min": "-0.006504", - "Mean": "7.275958e-13", - "Norm": "0.138286", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.relu.ReLU.backward.1": { - "id": "Module.layer4.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "-8.934543e-07", - "Norm": "0.092057", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "2.937198e-06", - "Norm": "0.130315", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004244", - "Min": "-0.004086", - "Mean": "-4.547474e-13", - "Norm": "0.106542", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "-8.934543e-07", - "Norm": "0.092057", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.conv1.Conv2d.backward.0": { - "id": "Module.layer4.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.002732", - "Min": "-0.002337", - "Mean": "1.283062e-07", - "Norm": "0.088477", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004244", - "Min": "-0.004086", - "Mean": "-4.547474e-13", - "Norm": "0.106542", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.BasicBlock.backward.0": { - "id": "Module.layer3.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.Sequential.backward.0", - "subnodes": [ - "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.relu.ReLU.backward.0": { - "id": "Module.layer3.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "5.267739e-07", - "Norm": "0.100327", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.Sequential.backward.0": { - "id": "Module.layer3.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer3.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005349", - "Min": "-0.00458", - "Mean": "5.456968e-13", - "Norm": "0.134192", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "5.267739e-07", - "Norm": "0.100327", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.conv2.Conv2d.backward.0": { - "id": "Module.layer3.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004227", - "Min": "-0.003777", - "Mean": "-1.105049e-06", - "Norm": "0.161834", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005349", - "Min": "-0.00458", - "Mean": "5.456968e-13", - "Norm": "0.134192", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.relu.ReLU.backward.1": { - "id": "Module.layer3.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003753", - "Min": "-0.003777", - "Mean": "-1.121872e-07", - "Norm": "0.113553", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004227", - "Min": "-0.003777", - "Mean": "-1.105049e-06", - "Norm": "0.161834", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004302", - "Min": "-0.003597", - "Mean": "4.547474e-14", - "Norm": "0.108404", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003753", - "Min": "-0.003777", - "Mean": "-1.121872e-07", - "Norm": "0.113553", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.conv1.Conv2d.backward.0": { - "id": "Module.layer3.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003036", - "Min": "-0.002772", - "Mean": "-2.692081e-07", - "Norm": "0.133319", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004302", - "Min": "-0.003597", - "Mean": "4.547474e-14", - "Norm": "0.108404", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.BasicBlock.backward.0": { - "id": "Module.layer3.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.Sequential.backward.0", - "subnodes": [ - "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.relu.ReLU.backward.0": { - "id": "Module.layer3.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.downsample.Sequential.backward.0": { - "id": "Module.layer3.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004002", - "Min": "-0.004525", - "Mean": "3.410605e-13", - "Norm": "0.1262", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004036", - "Min": "-0.005194", - "Mean": "0.0", - "Norm": "0.126903", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004002", - "Min": "-0.004525", - "Mean": "3.410605e-13", - "Norm": "0.1262", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004036", - "Min": "-0.005194", - "Mean": "0.0", - "Norm": "0.126903", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.006225", - "Min": "-0.005798", - "Mean": "-3.637979e-13", - "Norm": "0.166553", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.conv2.Conv2d.backward.0": { - "id": "Module.layer3.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-6.200127e-07", - "Norm": "0.20419", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.006225", - "Min": "-0.005798", - "Mean": "-3.637979e-13", - "Norm": "0.166553", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.relu.ReLU.backward.1": { - "id": "Module.layer3.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-5.361890e-07", - "Norm": "0.144125", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-6.200127e-07", - "Norm": "0.20419", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005433", - "Min": "-0.005011", - "Mean": "0.0", - "Norm": "0.150797", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-5.361890e-07", - "Norm": "0.144125", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.conv1.Conv2d.backward.0": { - "id": "Module.layer3.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.003242", - "Min": "-0.002676", - "Mean": "1.208646e-08", - "Norm": "0.139735", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005433", - "Min": "-0.005011", - "Mean": "0.0", - "Norm": "0.150797", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.BasicBlock.backward.0": { - "id": "Module.layer2.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.Sequential.backward.0", - "subnodes": [ - "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.relu.ReLU.backward.0": { - "id": "Module.layer2.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "6.662881e-07", - "Norm": "0.152697", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.Sequential.backward.0": { - "id": "Module.layer2.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer2.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005537", - "Min": "-0.006419", - "Mean": "4.547474e-14", - "Norm": "0.192183", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "6.662881e-07", - "Norm": "0.152697", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.conv2.Conv2d.backward.0": { - "id": "Module.layer2.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004991", - "Mean": "6.954823e-07", - "Norm": "0.250644", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005537", - "Min": "-0.006419", - "Mean": "4.547474e-14", - "Norm": "0.192183", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.relu.ReLU.backward.1": { - "id": "Module.layer2.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004159", - "Mean": "2.355963e-06", - "Norm": "0.177588", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004991", - "Mean": "6.954823e-07", - "Norm": "0.250644", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004246", - "Min": "-0.003801", - "Mean": "3.865353e-13", - "Norm": "0.159253", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004159", - "Mean": "2.355963e-06", - "Norm": "0.177588", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.conv1.Conv2d.backward.0": { - "id": "Module.layer2.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.003947", - "Min": "-0.00409", - "Mean": "1.122175e-06", - "Norm": "0.213347", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004246", - "Min": "-0.003801", - "Mean": "3.865353e-13", - "Norm": "0.159253", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.BasicBlock.backward.0": { - "id": "Module.layer2.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.Sequential.backward.0", - "subnodes": [ - "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.relu.ReLU.backward.0": { - "id": "Module.layer2.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.downsample.Sequential.backward.0": { - "id": "Module.layer2.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004066", - "Min": "-0.004851", - "Mean": "4.547474e-14", - "Norm": "0.148232", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004749", - "Min": "-0.004585", - "Mean": "-2.728484e-13", - "Norm": "0.14894", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004066", - "Min": "-0.004851", - "Mean": "4.547474e-14", - "Norm": "0.148232", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004749", - "Min": "-0.004585", - "Mean": "-2.728484e-13", - "Norm": "0.14894", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00708", - "Min": "-0.008085", - "Mean": "-5.456968e-13", - "Norm": "0.246197", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.conv2.Conv2d.backward.0": { - "id": "Module.layer2.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005883", - "Min": "-0.005688", - "Mean": "7.895345e-07", - "Norm": "0.328498", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00708", - "Min": "-0.008085", - "Mean": "-5.456968e-13", - "Norm": "0.246197", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.relu.ReLU.backward.1": { - "id": "Module.layer2.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005686", - "Min": "-0.005685", - "Mean": "1.743164e-06", - "Norm": "0.232839", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005883", - "Min": "-0.005688", - "Mean": "7.895345e-07", - "Norm": "0.328498", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004441", - "Min": "-0.004493", - "Mean": "-3.637979e-13", - "Norm": "0.176547", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005686", - "Min": "-0.005685", - "Mean": "1.743164e-06", - "Norm": "0.232839", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.conv1.Conv2d.backward.0": { - "id": "Module.layer2.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.002586", - "Min": "-0.002816", - "Mean": "-2.737123e-07", - "Norm": "0.171941", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004441", - "Min": "-0.004493", - "Mean": "-3.637979e-13", - "Norm": "0.176547", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.BasicBlock.backward.0": { - "id": "Module.layer1.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.Sequential.backward.0", - "subnodes": [ - "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.relu.ReLU.backward.0": { - "id": "Module.layer1.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "1.113839e-07", - "Norm": "0.209072", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.Sequential.backward.0": { - "id": "Module.layer1.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer1.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004873", - "Min": "-0.006985", - "Mean": "6.366463e-13", - "Norm": "0.263476", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "1.113839e-07", - "Norm": "0.209072", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.conv2.Conv2d.backward.0": { - "id": "Module.layer1.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.005144", - "Mean": "5.896727e-08", - "Norm": "0.36269", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004873", - "Min": "-0.006985", - "Mean": "6.366463e-13", - "Norm": "0.263476", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.relu.ReLU.backward.1": { - "id": "Module.layer1.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.004949", - "Mean": "-2.247479e-07", - "Norm": "0.255762", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.005144", - "Mean": "5.896727e-08", - "Norm": "0.36269", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00343", - "Min": "-0.003328", - "Mean": "1.818989e-13", - "Norm": "0.165887", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.004949", - "Mean": "-2.247479e-07", - "Norm": "0.255762", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.conv1.Conv2d.backward.0": { - "id": "Module.layer1.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003166", - "Min": "-0.003639", - "Mean": "-1.210342e-08", - "Norm": "0.229291", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00343", - "Min": "-0.003328", - "Mean": "1.818989e-13", - "Norm": "0.165887", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.BasicBlock.backward.0": { - "id": "Module.layer1.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.Sequential.backward.0", - "subnodes": [ - "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.relu.ReLU.backward.0": { - "id": "Module.layer1.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "3.088644e-07", - "Norm": "0.299243", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007243", - "Min": "-0.006519", - "Mean": "-7.275958e-13", - "Norm": "0.389929", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "3.088644e-07", - "Norm": "0.299243", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.conv2.Conv2d.backward.0": { - "id": "Module.layer1.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "-5.936339e-07", - "Norm": "0.54013", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007243", - "Min": "-0.006519", - "Mean": "-7.275958e-13", - "Norm": "0.389929", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.relu.ReLU.backward.1": { - "id": "Module.layer1.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "2.777797e-07", - "Norm": "0.379333", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "-5.936339e-07", - "Norm": "0.54013", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.009111", - "Min": "-0.009193", - "Mean": "-7.275958e-13", - "Norm": "0.387683", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "2.777797e-07", - "Norm": "0.379333", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.conv1.Conv2d.backward.0": { - "id": "Module.layer1.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007328", - "Min": "-0.008206", - "Mean": "3.342619e-07", - "Norm": "0.538403", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.009111", - "Min": "-0.009193", - "Mean": "-7.275958e-13", - "Norm": "0.387683", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.maxpool.MaxPool2d.backward.0": { - "id": "Module.maxpool.MaxPool2d.backward.0", - "node_type": 0, - "output_data": { - "Module.maxpool.MaxPool2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.607818e-07", - "Norm": "0.615501", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.maxpool.MaxPool2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.relu.ReLU.backward.0": { - "id": "Module.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.113458e-07", - "Norm": "0.614639", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.607818e-07", - "Norm": "0.615501", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.bn1.BatchNorm2d.backward.0": { - "id": "Module.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.049808", - "Min": "-0.064687", - "Mean": "1.364242e-12", - "Norm": "2.04307", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.113458e-07", - "Norm": "0.614639", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.conv1.Conv2d.backward.0": { - "id": "Module.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.conv1.Conv2d.backward.0.output.0": { - "value": "null" - } - }, - "input_data": { - "Module.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.049808", - "Min": "-0.064687", - "Mean": "1.364242e-12", - "Norm": "2.04307", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - } - } - }, - "ToolTip": "{\"Max diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5927\\u503c\\u7684\\u5dee\\u503c\", \"Min diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5c0f\\u503c\\u7684\\u5dee\\u503c\", \"Mean diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u5e73\\u5747\\u503c\\u7684\\u5dee\\u503c\", \"L2norm diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c2\\u8303\\u6570\\uff08\\u5e73\\u65b9\\u6839\\uff09\\u7684\\u5dee\\u503c\"}", - "Colors": { - "#FFEDBE": { - "value": [ - 0, - 0.3 - ], - "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#FFC62E": { - "value": [ - 0.3, - 0.9 - ], - "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#FF4118": { - "value": [ - 0.9, - 1 - ], - "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#C7C7C7": { - "value": "无匹配节点", - "description": "对比过程中节点未匹配上" - } - }, - "MicroSteps": 1, - "task": "summary", - "npu_match_nodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" - }, - "bench_match_nodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" - } -} \ No newline at end of file -- Gitee From 36d4c282c0b71af99094fad7b69e784f60e6dc3a Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Fri, 4 Jul 2025 16:27:41 +0800 Subject: [PATCH 12/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20code=20check?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../tb_graph_ascend/fe/src/graph_ascend/index.ts | 4 ++-- .../tb_graph_ascend/fe/src/graph_ascend/type/index.d.ts | 2 +- .../tb_graph_ascend/fe/src/graph_ascend/useGraphAscend.ts | 6 +++--- .../tb_graph_ascend/server/app/utils/graph_utils.py | 4 ++-- 4 files changed, 8 insertions(+), 8 deletions(-) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/index.ts b/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/index.ts index 634d863f3..0bdaa1a2f 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/index.ts +++ b/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/index.ts @@ -17,7 +17,7 @@ import { customElement, observe, property } from '@polymer/decorators'; import { html, PolymerElement } from '@polymer/polymer'; import { LegacyElementMixin } from '../polymer/legacy_element_mixin'; -import { loadGraphFileInfoListType } from './type'; +import { LoadGraphFileInfoListType } from './type'; import useGraphAscend from './useGraphAscend'; import { formatBytes, safeJSONParse } from '../utils'; import { isEmpty } from 'lodash'; @@ -212,7 +212,7 @@ class TfGraphDashboard extends LegacyElementMixin(PolymerElement) { safeDialogOpened: boolean = false; @property({ type: Array }) - fileListError: Array = []; + fileListError: Array = []; private currentSelection: SelectionType | null = null; private useGraphAscend = useGraphAscend(); diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/type/index.d.ts b/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/type/index.d.ts index f27578fae..e763e9734 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/type/index.d.ts +++ b/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/type/index.d.ts @@ -60,7 +60,7 @@ export interface UnmatchedNodeType { benchNodeList: string[]; } -export interface loadGraphFileInfoListType { +export interface LoadGraphFileInfoListType { data: { [string]: string[]; }; diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/useGraphAscend.ts b/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/useGraphAscend.ts index 7610c83ce..88e7d344a 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/useGraphAscend.ts +++ b/plugins/tensorboard-plugins/tb_graph_ascend/fe/src/graph_ascend/useGraphAscend.ts @@ -14,16 +14,16 @@ * limitations under the License. */ import request from '../utils/request'; -import { loadGraphFileInfoListType } from './type'; +import { LoadGraphFileInfoListType } from './type'; const useGraphAscend = () => { - const loadGraphFileInfoList = async (isSafeCheck: boolean): Promise => { + const loadGraphFileInfoList = async (isSafeCheck: boolean): Promise => { try { const params = { isSafeCheck }; const result = await request({ url: 'load_meta_dir', method: 'GET', params: params }); - return result as unknown as loadGraphFileInfoListType; + return result as unknown as LoadGraphFileInfoListType; } catch (err) { return { data: {}, diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py index 51f9db0a4..befbae6da 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/utils/graph_utils.py @@ -312,7 +312,7 @@ class GraphUtils: current_uid = os.getuid() # 如果是root用户,跳过后续权限检查 if current_uid == 0: - return True + return True, None # 属主检查 if st.st_uid != current_uid: raise PermissionError(f"Directory is not owned by the current user") @@ -367,7 +367,7 @@ class GraphUtils: current_uid = os.getuid() # 如果是root用户,跳过后续权限检查 if current_uid == 0: - return True + return True, None # 属主检查 if st.st_uid != current_uid: raise PermissionError(f"Directory is not owned by the current user") -- Gitee From 0ee7dc4398fb699523597682ab4aeb56cae7f303 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Tue, 15 Jul 2025 20:28:52 +0800 Subject: [PATCH 13/22] =?UTF-8?q?=E2=9C=A8=20feat:=20ut=E4=BF=AE=E5=A4=8D?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../tb_graph_ascend/test/integration/views/test_graph_views.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py index ad10fac24..26b97cd1c 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -72,7 +72,7 @@ class TestGraphViews: [ {"case_id": "1", "description": "test_load_meta_dir", - "excepted":{'st_test_cases': [mock_vis_tag]} + "excepted":{'data': {'st_test_cases': ['mock_compare_resnet_data']}, 'error': []} } ], ids=lambda c: f"{c['case_id']}:{c['description']}") @@ -85,6 +85,7 @@ class TestGraphViews: excepted = test_case['excepted'] # 获取响应内容 response_body = json.loads(b''.join(response_iter).decode('utf-8')) + print(response_body) assert response_body == excepted assert TestGraphViews.captured.status == "200 OK" assert TestGraphViews.captured.headers["Content-Type"] == "application/json" -- Gitee From c3f694d3b95376d9ef7d0ba882b4f53b1c913031 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Tue, 15 Jul 2025 20:30:24 +0800 Subject: [PATCH 14/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20=E5=8E=BB=E9=99=A4p?= =?UTF-8?q?rint?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../tb_graph_ascend/test/integration/views/test_graph_views.py | 1 - 1 file changed, 1 deletion(-) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py index 26b97cd1c..3c58ceb5c 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -85,7 +85,6 @@ class TestGraphViews: excepted = test_case['excepted'] # 获取响应内容 response_body = json.loads(b''.join(response_iter).decode('utf-8')) - print(response_body) assert response_body == excepted assert TestGraphViews.captured.status == "200 OK" assert TestGraphViews.captured.headers["Content-Type"] == "application/json" -- Gitee From 92ccf0e99ae61c22ec87699790b2f38772ccd101 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Tue, 15 Jul 2025 20:32:33 +0800 Subject: [PATCH 15/22] =?UTF-8?q?=F0=9F=A7=AA=20test:=20=E5=88=A0=E9=99=A4?= =?UTF-8?q?=E6=B5=8B=E8=AF=95=E7=94=A8=E4=BE=8B?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../mock_compare_resnet_data.vis | 17312 ---------------- .../mock_compare_resnet_data.vis.config | 3 - .../st_test_cases/test_add_match_nodes.json | 318 - .../test_add_match_nodes_by_config.json | 321 - .../test_change_node_expand_state.json | 1650 -- .../test_delete_match_nodes.json | 320 - .../st_test_cases/test_get_node_info.json | 194 - .../test_load_graph_all_node_list.json | 317 - .../test_load_graph_config_info.json | 60 - .../st_test_cases/test_update_colors.json | 12 - .../test_update_hierarchy_data.json | 474 - .../test/data/test_case_factory.py | 115 - .../change_expand_state_case.json | 815 - .../mock_compare_statis_graph.vis | 945 - .../mock_single_statis_graph.vis | 523 - .../update_hierarchy_data_case.json | 245 - .../process_task_add_case.json | 386 - .../process_task_add_child_layer.json | 469 - ...rocess_task_add_child_layer_by_config.json | 448 - .../process_task_delete_case.json | 238 - .../process_task_delete_child_layer.json | 666 - 21 files changed, 25831 deletions(-) delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes_by_config.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_change_node_expand_state.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_delete_match_nodes.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_get_node_info.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_all_node_list.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_colors.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_hierarchy_data.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/change_expand_state_case.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_compare_statis_graph.vis delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_single_statis_graph.vis delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/update_hierarchy_data_case.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_case.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer_by_config.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_case.json delete mode 100644 plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_child_layer.json diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis deleted file mode 100644 index 3dae84fa1..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis +++ /dev/null @@ -1,17312 +0,0 @@ -{ - "NPU": { - "root": "DefaultModel", - "dump_data_dir": null, - "node": { - "DefaultModel": { - "id": "DefaultModel", - "node_type": 0, - "output_data": {}, - "input_data": {}, - "upnode": "None", - "subnodes": [ - "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.Sequential.forward.0", - "Module.layer2.Sequential.forward.0", - "Module.layer3.Sequential.forward.0", - "Module.layer4.Sequential.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.fc.Linear.forward.0", - "Module.fc.Linear.backward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.Sequential.backward.0", - "Module.layer3.Sequential.backward.0", - "Module.layer2.Sequential.backward.0", - "Module.layer1.Sequential.backward.0", - "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.conv1.Conv2d.forward.0": { - "id": "Module.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "1.526799", - "Min": "-1.559762", - "Mean": "-0.000263", - "Norm": "244.860931", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 3, 64, 64]", - "Max": "4.350435", - "Min": "-4.339223", - "Mean": "-0.001572", - "Norm": "350.247772", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 268, in _forward_impl, \n x = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.bn1.BatchNorm2d.forward.0": { - "id": "Module.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "-5.146786", - "Mean": "4.656613e-11", - "Norm": "809.493835", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "1.526799", - "Min": "-1.559762", - "Mean": "-0.000263", - "Norm": "244.860931", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 269, in _forward_impl, \n x = self.bn1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.relu.ReLU.forward.0": { - "id": "Module.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 270, in _forward_impl, \n x = self.relu(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.maxpool.MaxPool2d.forward.0": { - "id": "Module.maxpool.MaxPool2d.forward.0", - "node_type": 0, - "output_data": { - "Module.maxpool.MaxPool2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.maxpool.MaxPool2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 271, in _forward_impl, \n x = self.maxpool(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.BasicBlock.forward.0": { - "id": "Module.layer1.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.Sequential.forward.0", - "subnodes": [ - "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.conv1.Conv2d.forward.0": { - "id": "Module.layer1.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.74388", - "Min": "-7.379547", - "Mean": "-0.12333", - "Norm": "858.103699", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.Sequential.forward.0": { - "id": "Module.layer1.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "1.241406", - "Min diff": "-0.352369", - "Mean diff": "3.252369", - "L2norm diff": "6.914416", - "MaxRelativeErr": "66.663253%", - "MinRelativeErr": "56.663237%", - "MeanRelativeErr": "52.663233%", - "NormRelativeErr": "53.663533%" - } - }, - "input_data": { - "Module.layer1.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.7 - } - }, - "Module.layer1.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "-4.199296", - "Mean": "1.620501e-08", - "Norm": "404.769043", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.74388", - "Min": "-7.379547", - "Mean": "-0.12333", - "Norm": "858.103699", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.relu.ReLU.forward.0": { - "id": "Module.layer1.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.conv2.Conv2d.forward.0": { - "id": "Module.layer1.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.442179", - "Min": "-3.972987", - "Mean": "0.084329", - "Norm": "370.438843", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.605992", - "Min": "-4.646146", - "Mean": "4.284084e-09", - "Norm": "404.767944", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.442179", - "Min": "-3.972987", - "Mean": "0.084329", - "Norm": "370.438843", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.relu.ReLU.forward.1": { - "id": "Module.layer1.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.BasicBlock.forward.0": { - "id": "Module.layer1.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "6.326555", - "Min diff": "5.36963", - "Mean diff": "5.12369", - "L2norm diff": "8.39633", - "MaxRelativeErr": "83.235636%", - "MinRelativeErr": "69.362945%", - "MeanRelativeErr": "72.369548%", - "NormRelativeErr": "71.369612%" - } - }, - "input_data": { - "Module.layer1.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.Sequential.forward.0", - "subnodes": [ - "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer1.1.conv1.Conv2d.forward.0": { - "id": "Module.layer1.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "9.274334", - "Min": "-10.156013", - "Mean": "-0.101834", - "Norm": "975.393066", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "-4.49145", - "Mean": "-2.235174e-09", - "Norm": "404.770447", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "9.274334", - "Min": "-10.156013", - "Mean": "-0.101834", - "Norm": "975.393066", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.relu.ReLU.forward.0": { - "id": "Module.layer1.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.conv2.Conv2d.forward.0": { - "id": "Module.layer1.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.431858", - "Min": "-4.229196", - "Mean": "0.005514", - "Norm": "375.989105", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.475619", - "Min": "-4.364196", - "Mean": "1.396984e-09", - "Norm": "404.76828", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.431858", - "Min": "-4.229196", - "Mean": "0.005514", - "Norm": "375.989105", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.relu.ReLU.forward.1": { - "id": "Module.layer1.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.BasicBlock.forward.0": { - "id": "Module.layer2.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.conv1.Conv2d.forward.0": { - "id": "Module.layer2.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.363841", - "Min": "-8.813498", - "Mean": "0.116351", - "Norm": "582.720398", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.Sequential.forward.0": { - "id": "Module.layer2.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "-4.77158", - "Mean": "1.303852e-09", - "Norm": "286.215912", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.363841", - "Min": "-8.813498", - "Mean": "0.116351", - "Norm": "582.720398", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.relu.ReLU.forward.0": { - "id": "Module.layer2.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.conv2.Conv2d.forward.0": { - "id": "Module.layer2.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.0345", - "Min": "-4.125886", - "Mean": "-0.100337", - "Norm": "260.142944", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.152795", - "Min": "-4.936253", - "Mean": "3.725290e-10", - "Norm": "286.214294", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.0345", - "Min": "-4.125886", - "Mean": "-0.100337", - "Norm": "260.142944", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0.81 - } - }, - "Module.layer2.0.downsample.Sequential.forward.0": { - "id": "Module.layer2.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.257706", - "Min": "-4.515994", - "Mean": "-1.117587e-09", - "Norm": "286.215851", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.203266", - "Min": "-9.355068", - "Mean": "-0.02311", - "Norm": "617.127319", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.257706", - "Min": "-4.515994", - "Mean": "-1.117587e-09", - "Norm": "286.215851", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.203266", - "Min": "-9.355068", - "Mean": "-0.02311", - "Norm": "617.127319", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.relu.ReLU.forward.1": { - "id": "Module.layer2.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.BasicBlock.forward.0": { - "id": "Module.layer2.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.conv1.Conv2d.forward.0": { - "id": "Module.layer2.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.62359", - "Min": "-5.580112", - "Mean": "0.074416", - "Norm": "367.649841", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "-4.101557", - "Mean": "-3.818422e-09", - "Norm": "286.215485", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.62359", - "Min": "-5.580112", - "Mean": "0.074416", - "Norm": "367.649841", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.relu.ReLU.forward.0": { - "id": "Module.layer2.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.conv2.Conv2d.forward.0": { - "id": "Module.layer2.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.393562", - "Min": "-4.753343", - "Mean": "-0.078746", - "Norm": "260.969421", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.73594", - "Min": "-4.475933", - "Mean": "2.421439e-09", - "Norm": "286.214294", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.393562", - "Min": "-4.753343", - "Mean": "-0.078746", - "Norm": "260.969421", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.relu.ReLU.forward.1": { - "id": "Module.layer2.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.BasicBlock.forward.0": { - "id": "Module.layer3.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.Sequential.forward.0", - "subnodes": [ - "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.conv1.Conv2d.forward.0": { - "id": "Module.layer3.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.532973", - "Min": "-6.165116", - "Mean": "0.023511", - "Norm": "250.68428", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.Sequential.forward.0": { - "id": "Module.layer3.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.layer3.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "-4.041963", - "Mean": "1.024455e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.532973", - "Min": "-6.165116", - "Mean": "0.023511", - "Norm": "250.68428", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.relu.ReLU.forward.0": { - "id": "Module.layer3.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.conv2.Conv2d.forward.0": { - "id": "Module.layer3.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.085584", - "Min": "-3.535729", - "Mean": "0.009184", - "Norm": "171.884354", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.328585", - "Min": "-4.24462", - "Mean": "-5.587936e-10", - "Norm": "202.383789", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.085584", - "Min": "-3.535729", - "Mean": "0.009184", - "Norm": "171.884354", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.Sequential.forward.0": { - "id": "Module.layer3.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.673633", - "Min": "-4.118578", - "Mean": "2.980232e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.544863", - "Min": "-5.637341", - "Mean": "0.063504", - "Norm": "262.41275", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.673633", - "Min": "-4.118578", - "Mean": "2.980232e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.544863", - "Min": "-5.637341", - "Mean": "0.063504", - "Norm": "262.41275", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.relu.ReLU.forward.1": { - "id": "Module.layer3.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.BasicBlock.forward.0": { - "id": "Module.layer3.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.Sequential.forward.0", - "subnodes": [ - "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.conv1.Conv2d.forward.0": { - "id": "Module.layer3.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.445492", - "Min": "-5.73983", - "Mean": "0.056189", - "Norm": "242.794586", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "-4.302232", - "Mean": "6.053597e-10", - "Norm": "202.384811", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.445492", - "Min": "-5.73983", - "Mean": "0.056189", - "Norm": "242.794586", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.relu.ReLU.forward.0": { - "id": "Module.layer3.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.conv2.Conv2d.forward.0": { - "id": "Module.layer3.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "3.904869", - "Min": "-3.915274", - "Mean": "0.000739", - "Norm": "175.362854", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.820035", - "Min": "-4.248729", - "Mean": "3.725290e-09", - "Norm": "202.38385", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "3.904869", - "Min": "-3.915274", - "Mean": "0.000739", - "Norm": "175.362854", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.relu.ReLU.forward.1": { - "id": "Module.layer3.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.BasicBlock.forward.0": { - "id": "Module.layer4.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.Sequential.forward.0", - "subnodes": [ - "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.conv1.Conv2d.forward.0": { - "id": "Module.layer4.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.17719", - "Min": "-5.021754", - "Mean": "-0.003242", - "Norm": "160.062332", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.Sequential.forward.0": { - "id": "Module.layer4.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.layer4.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "-4.494643", - "Mean": "0.0", - "Norm": "143.107346", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.17719", - "Min": "-5.021754", - "Mean": "-0.003242", - "Norm": "160.062332", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.relu.ReLU.forward.0": { - "id": "Module.layer4.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.conv2.Conv2d.forward.0": { - "id": "Module.layer4.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.548945", - "Min": "-2.623174", - "Mean": "-0.024468", - "Norm": "96.85141", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.43048", - "Min": "-3.390204", - "Mean": "-5.587936e-10", - "Norm": "143.106155", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.548945", - "Min": "-2.623174", - "Mean": "-0.024468", - "Norm": "96.85141", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.Sequential.forward.0": { - "id": "Module.layer4.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.162686", - "Min": "-4.141354", - "Mean": "-1.396984e-09", - "Norm": "143.107498", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "5.574177", - "Min": "-5.778933", - "Mean": "0.001088", - "Norm": "182.966492", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.162686", - "Min": "-4.141354", - "Mean": "-1.396984e-09", - "Norm": "143.107498", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "5.574177", - "Min": "-5.778933", - "Mean": "0.001088", - "Norm": "182.966492", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.relu.ReLU.forward.1": { - "id": "Module.layer4.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.BasicBlock.forward.0": { - "id": "Module.layer4.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.Sequential.forward.0", - "subnodes": [ - "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.conv1.Conv2d.forward.0": { - "id": "Module.layer4.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.864757", - "Min": "-3.787591", - "Mean": "0.002277", - "Norm": "133.55986", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "-3.694792", - "Mean": "1.490116e-09", - "Norm": "143.107239", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.864757", - "Min": "-3.787591", - "Mean": "0.002277", - "Norm": "133.55986", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.relu.ReLU.forward.0": { - "id": "Module.layer4.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.conv2.Conv2d.forward.0": { - "id": "Module.layer4.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.484763", - "Min": "-2.720093", - "Mean": "0.013722", - "Norm": "95.469269", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.644991", - "Min": "-3.459976", - "Mean": "-4.656613e-10", - "Norm": "143.106094", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.484763", - "Min": "-2.720093", - "Mean": "0.013722", - "Norm": "95.469269", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.relu.ReLU.forward.1": { - "id": "Module.layer4.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "Module.avgpool.AdaptiveAvgPool2d.forward.0": { - "id": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "node_type": 0, - "output_data": { - "Module.avgpool.AdaptiveAvgPool2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 1, 1]", - "Max": "2.68325", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "66.964317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.avgpool.AdaptiveAvgPool2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, 由于Min小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 278, in _forward_impl, \n x = self.avgpool(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.fc.Linear.forward.0": { - "id": "Module.fc.Linear.forward.0", - "node_type": 0, - "output_data": { - "Module.fc.Linear.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 10]", - "Max": "1.236255", - "Min": "-1.562365", - "Mean": "-0.12689", - "Norm": "5.357258", - "data_name": "-1" - } - }, - "input_data": { - "Module.fc.Linear.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512]", - "Max": "2.68325", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "66.964317", - "data_name": "-1" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.fc.Linear.backward.0": { - "id": "Module.fc.Linear.backward.0", - "node_type": 0, - "output_data": { - "Module.fc.Linear.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512]", - "Max": "0.006356", - "Min": "-0.00662", - "Mean": "0.000117", - "Norm": "0.176545", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.fc.Linear.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 10]", - "Max": "0.03222", - "Min": "-0.097696", - "Mean": "1.490116e-10", - "Norm": "0.311353", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.backward.0": { - "id": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "node_type": 0, - "output_data": { - "Module.avgpool.AdaptiveAvgPool2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.avgpool.AdaptiveAvgPool2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 1, 1]", - "Max": "0.006356", - "Min": "-0.00662", - "Mean": "0.000117", - "Norm": "0.176545", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0.81 - } - }, - "Module.layer4.1.BasicBlock.backward.0": { - "id": "Module.layer4.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.Sequential.backward.0", - "subnodes": [ - "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.relu.ReLU.backward.0": { - "id": "Module.layer4.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.170244e-05", - "Norm": "0.071178", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.Sequential.backward.0": { - "id": "Module.layer4.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00349", - "Min": "-0.003203", - "Mean": "-1.818989e-13", - "Norm": "0.114767", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.170244e-05", - "Norm": "0.071178", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.conv2.Conv2d.backward.0": { - "id": "Module.layer4.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003047", - "Min": "-0.003687", - "Mean": "5.127279e-08", - "Norm": "0.107756", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00349", - "Min": "-0.003203", - "Mean": "-1.818989e-13", - "Norm": "0.114767", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.relu.ReLU.backward.1": { - "id": "Module.layer4.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003023", - "Min": "-0.002646", - "Mean": "9.799842e-08", - "Norm": "0.075418", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003047", - "Min": "-0.003687", - "Mean": "5.127279e-08", - "Norm": "0.107756", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00392", - "Min": "-0.00384", - "Mean": "2.160050e-13", - "Norm": "0.093361", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003023", - "Min": "-0.002646", - "Mean": "9.799842e-08", - "Norm": "0.075418", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.1.conv1.Conv2d.backward.0": { - "id": "Module.layer4.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.002777", - "Min": "-0.002687", - "Mean": "-1.536876e-06", - "Norm": "0.087284", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00392", - "Min": "-0.00384", - "Mean": "2.160050e-13", - "Norm": "0.093361", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.BasicBlock.backward.0": { - "id": "Module.layer4.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.Sequential.backward.0", - "subnodes": [ - "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.relu.ReLU.backward.0": { - "id": "Module.layer4.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.Sequential.backward.0": { - "id": "Module.layer4.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004114", - "Min": "-0.003346", - "Mean": "-4.547474e-14", - "Norm": "0.087317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004101", - "Min": "-0.003454", - "Mean": "-3.637979e-13", - "Norm": "0.087384", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004114", - "Min": "-0.003346", - "Mean": "-4.547474e-14", - "Norm": "0.087317", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004101", - "Min": "-0.003454", - "Mean": "-3.637979e-13", - "Norm": "0.087384", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.006026", - "Min": "-0.006504", - "Mean": "7.275958e-13", - "Norm": "0.138286", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.conv2.Conv2d.backward.0": { - "id": "Module.layer4.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "2.937198e-06", - "Norm": "0.130315", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.006026", - "Min": "-0.006504", - "Mean": "7.275958e-13", - "Norm": "0.138286", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.relu.ReLU.backward.1": { - "id": "Module.layer4.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "-8.934543e-07", - "Norm": "0.092057", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "2.937198e-06", - "Norm": "0.130315", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004244", - "Min": "-0.004086", - "Mean": "-4.547474e-13", - "Norm": "0.106542", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "-8.934543e-07", - "Norm": "0.092057", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer4.0.conv1.Conv2d.backward.0": { - "id": "Module.layer4.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.002732", - "Min": "-0.002337", - "Mean": "1.283062e-07", - "Norm": "0.088477", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer4.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004244", - "Min": "-0.004086", - "Mean": "-4.547474e-13", - "Norm": "0.106542", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.BasicBlock.backward.0": { - "id": "Module.layer3.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.Sequential.backward.0", - "subnodes": [ - "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.relu.ReLU.backward.0": { - "id": "Module.layer3.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "5.267739e-07", - "Norm": "0.100327", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.Sequential.backward.0": { - "id": "Module.layer3.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005349", - "Min": "-0.00458", - "Mean": "5.456968e-13", - "Norm": "0.134192", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "5.267739e-07", - "Norm": "0.100327", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.conv2.Conv2d.backward.0": { - "id": "Module.layer3.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004227", - "Min": "-0.003777", - "Mean": "-1.105049e-06", - "Norm": "0.161834", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005349", - "Min": "-0.00458", - "Mean": "5.456968e-13", - "Norm": "0.134192", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.relu.ReLU.backward.1": { - "id": "Module.layer3.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003753", - "Min": "-0.003777", - "Mean": "-1.121872e-07", - "Norm": "0.113553", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004227", - "Min": "-0.003777", - "Mean": "-1.105049e-06", - "Norm": "0.161834", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004302", - "Min": "-0.003597", - "Mean": "4.547474e-14", - "Norm": "0.108404", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003753", - "Min": "-0.003777", - "Mean": "-1.121872e-07", - "Norm": "0.113553", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.1.conv1.Conv2d.backward.0": { - "id": "Module.layer3.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003036", - "Min": "-0.002772", - "Mean": "-2.692081e-07", - "Norm": "0.133319", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004302", - "Min": "-0.003597", - "Mean": "4.547474e-14", - "Norm": "0.108404", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.BasicBlock.backward.0": { - "id": "Module.layer3.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.Sequential.backward.0", - "subnodes": [ - "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.relu.ReLU.backward.0": { - "id": "Module.layer3.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.Sequential.backward.0": { - "id": "Module.layer3.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004002", - "Min": "-0.004525", - "Mean": "3.410605e-13", - "Norm": "0.1262", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004036", - "Min": "-0.005194", - "Mean": "0.0", - "Norm": "0.126903", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004002", - "Min": "-0.004525", - "Mean": "3.410605e-13", - "Norm": "0.1262", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004036", - "Min": "-0.005194", - "Mean": "0.0", - "Norm": "0.126903", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.006225", - "Min": "-0.005798", - "Mean": "-3.637979e-13", - "Norm": "0.166553", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.conv2.Conv2d.backward.0": { - "id": "Module.layer3.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-6.200127e-07", - "Norm": "0.20419", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.006225", - "Min": "-0.005798", - "Mean": "-3.637979e-13", - "Norm": "0.166553", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.relu.ReLU.backward.1": { - "id": "Module.layer3.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-5.361890e-07", - "Norm": "0.144125", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-6.200127e-07", - "Norm": "0.20419", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005433", - "Min": "-0.005011", - "Mean": "0.0", - "Norm": "0.150797", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-5.361890e-07", - "Norm": "0.144125", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer3.0.conv1.Conv2d.backward.0": { - "id": "Module.layer3.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.003242", - "Min": "-0.002676", - "Mean": "1.208646e-08", - "Norm": "0.139735", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer3.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005433", - "Min": "-0.005011", - "Mean": "0.0", - "Norm": "0.150797", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "N/A, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.BasicBlock.backward.0": { - "id": "Module.layer2.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.Sequential.backward.0", - "subnodes": [ - "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.relu.ReLU.backward.0": { - "id": "Module.layer2.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "6.662881e-07", - "Norm": "0.152697", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.Sequential.backward.0": { - "id": "Module.layer2.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005537", - "Min": "-0.006419", - "Mean": "4.547474e-14", - "Norm": "0.192183", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "6.662881e-07", - "Norm": "0.152697", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.conv2.Conv2d.backward.0": { - "id": "Module.layer2.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004991", - "Mean": "6.954823e-07", - "Norm": "0.250644", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005537", - "Min": "-0.006419", - "Mean": "4.547474e-14", - "Norm": "0.192183", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.relu.ReLU.backward.1": { - "id": "Module.layer2.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004159", - "Mean": "2.355963e-06", - "Norm": "0.177588", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004991", - "Mean": "6.954823e-07", - "Norm": "0.250644", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004246", - "Min": "-0.003801", - "Mean": "3.865353e-13", - "Norm": "0.159253", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004159", - "Mean": "2.355963e-06", - "Norm": "0.177588", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.1.conv1.Conv2d.backward.0": { - "id": "Module.layer2.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.003947", - "Min": "-0.00409", - "Mean": "1.122175e-06", - "Norm": "0.213347", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004246", - "Min": "-0.003801", - "Mean": "3.865353e-13", - "Norm": "0.159253", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.BasicBlock.backward.0": { - "id": "Module.layer2.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.Sequential.backward.0", - "subnodes": [ - "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.relu.ReLU.backward.0": { - "id": "Module.layer2.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.Sequential.backward.0": { - "id": "Module.layer2.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004066", - "Min": "-0.004851", - "Mean": "4.547474e-14", - "Norm": "0.148232", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004749", - "Min": "-0.004585", - "Mean": "-2.728484e-13", - "Norm": "0.14894", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004066", - "Min": "-0.004851", - "Mean": "4.547474e-14", - "Norm": "0.148232", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004749", - "Min": "-0.004585", - "Mean": "-2.728484e-13", - "Norm": "0.14894", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00708", - "Min": "-0.008085", - "Mean": "-5.456968e-13", - "Norm": "0.246197", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.conv2.Conv2d.backward.0": { - "id": "Module.layer2.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005883", - "Min": "-0.005688", - "Mean": "7.895345e-07", - "Norm": "0.328498", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00708", - "Min": "-0.008085", - "Mean": "-5.456968e-13", - "Norm": "0.246197", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.relu.ReLU.backward.1": { - "id": "Module.layer2.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005686", - "Min": "-0.005685", - "Mean": "1.743164e-06", - "Norm": "0.232839", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005883", - "Min": "-0.005688", - "Mean": "7.895345e-07", - "Norm": "0.328498", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004441", - "Min": "-0.004493", - "Mean": "-3.637979e-13", - "Norm": "0.176547", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005686", - "Min": "-0.005685", - "Mean": "1.743164e-06", - "Norm": "0.232839", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer2.0.conv1.Conv2d.backward.0": { - "id": "Module.layer2.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.002586", - "Min": "-0.002816", - "Mean": "-2.737123e-07", - "Norm": "0.171941", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004441", - "Min": "-0.004493", - "Mean": "-3.637979e-13", - "Norm": "0.176547", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.BasicBlock.backward.0": { - "id": "Module.layer1.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.Sequential.backward.0", - "subnodes": [ - "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.relu.ReLU.backward.0": { - "id": "Module.layer1.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "1.113839e-07", - "Norm": "0.209072", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.Sequential.backward.0": { - "id": "Module.layer1.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004873", - "Min": "-0.006985", - "Mean": "6.366463e-13", - "Norm": "0.263476", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "1.113839e-07", - "Norm": "0.209072", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.conv2.Conv2d.backward.0": { - "id": "Module.layer1.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.005144", - "Mean": "5.896727e-08", - "Norm": "0.36269", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004873", - "Min": "-0.006985", - "Mean": "6.366463e-13", - "Norm": "0.263476", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.relu.ReLU.backward.1": { - "id": "Module.layer1.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.004949", - "Mean": "-2.247479e-07", - "Norm": "0.255762", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.005144", - "Mean": "5.896727e-08", - "Norm": "0.36269", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00343", - "Min": "-0.003328", - "Mean": "1.818989e-13", - "Norm": "0.165887", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.004949", - "Mean": "-2.247479e-07", - "Norm": "0.255762", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.1.conv1.Conv2d.backward.0": { - "id": "Module.layer1.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003166", - "Min": "-0.003639", - "Mean": "-1.210342e-08", - "Norm": "0.229291", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00343", - "Min": "-0.003328", - "Mean": "1.818989e-13", - "Norm": "0.165887", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.BasicBlock.backward.0": { - "id": "Module.layer1.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.Sequential.backward.0", - "subnodes": [ - "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.relu.ReLU.backward.0": { - "id": "Module.layer1.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "3.088644e-07", - "Norm": "0.299243", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007243", - "Min": "-0.006519", - "Mean": "-7.275958e-13", - "Norm": "0.389929", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "3.088644e-07", - "Norm": "0.299243", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.conv2.Conv2d.backward.0": { - "id": "Module.layer1.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "-5.936339e-07", - "Norm": "0.54013", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007243", - "Min": "-0.006519", - "Mean": "-7.275958e-13", - "Norm": "0.389929", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.relu.ReLU.backward.1": { - "id": "Module.layer1.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "2.777797e-07", - "Norm": "0.379333", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "-5.936339e-07", - "Norm": "0.54013", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.009111", - "Min": "-0.009193", - "Mean": "-7.275958e-13", - "Norm": "0.387683", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "2.777797e-07", - "Norm": "0.379333", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.layer1.0.conv1.Conv2d.backward.0": { - "id": "Module.layer1.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007328", - "Min": "-0.008206", - "Mean": "3.342619e-07", - "Norm": "0.538403", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer1.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.009111", - "Min": "-0.009193", - "Mean": "-7.275958e-13", - "Norm": "0.387683", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": { - "precision_index": 0 - } - }, - "Module.maxpool.MaxPool2d.backward.0": { - "id": "Module.maxpool.MaxPool2d.backward.0", - "node_type": 0, - "output_data": { - "Module.maxpool.MaxPool2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.607818e-07", - "Norm": "0.615501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.maxpool.MaxPool2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.relu.ReLU.backward.0": { - "id": "Module.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.113458e-07", - "Norm": "0.614639", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.607818e-07", - "Norm": "0.615501", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.bn1.BatchNorm2d.backward.0": { - "id": "Module.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.049808", - "Min": "-0.064687", - "Mean": "1.364242e-12", - "Norm": "2.04307", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.113458e-07", - "Norm": "0.614639", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - }, - "Module.conv1.Conv2d.backward.0": { - "id": "Module.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.conv1.Conv2d.backward.0.output.0": { - "value": "null" - } - }, - "input_data": { - "Module.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.049808", - "Min": "-0.064687", - "Mean": "1.364242e-12", - "Norm": "2.04307", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "0.0%", - "MeanRelativeErr": "0.0%, 由于Mean小于1e-06, 建议不参考此相对误差,请参考绝对误差", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": { - "precision_index": 0 - } - } - } - }, - "Bench": { - "root": "DefaultModel", - "dump_data_dir": null, - "node": { - "DefaultModel": { - "id": "DefaultModel", - "node_type": 0, - "output_data": {}, - "input_data": {}, - "upnode": "None", - "subnodes": [ - "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.Sequential.forward.0", - "Module.layer2.Sequential.forward.0", - "Module.layer3.Sequential.forward.0", - "Module.layer4.Sequential.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.fc.Linear.forward.0", - "Module.fc.Linear.backward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.Sequential.backward.0", - "Module.layer3.Sequential.backward.0", - "Module.layer2.Sequential.backward.0", - "Module.layer1.Sequential.backward.0", - "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.conv1.Conv2d.forward.0": { - "id": "Module.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "1.526799", - "Min": "-1.559762", - "Mean": "-0.000263", - "Norm": "244.860931", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 3, 64, 64]", - "Max": "4.350435", - "Min": "-4.339223", - "Mean": "-0.001572", - "Norm": "350.247772", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 268, in _forward_impl, \n x = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.bn1.BatchNorm2d.forward.0": { - "id": "Module.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "-5.146786", - "Mean": "4.656613e-11", - "Norm": "809.493835", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "1.526799", - "Min": "-1.559762", - "Mean": "-0.000263", - "Norm": "244.860931", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 269, in _forward_impl, \n x = self.bn1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.relu.ReLU.forward.0": { - "id": "Module.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 270, in _forward_impl, \n x = self.relu(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.maxpool.MaxPool2d.forward.0": { - "id": "Module.maxpool.MaxPool2d.forward.0", - "node_type": 0, - "output_data": { - "Module.maxpool.MaxPool2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.maxpool.MaxPool2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "0.397851", - "Norm": "572.419128", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 271, in _forward_impl, \n x = self.maxpool(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer1.0.BasicBlock.forward.0": { - "id": "Module.layer1.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.Sequential.forward.0", - "subnodes": [ - "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.conv1.Conv2d.forward.0": { - "id": "Module.layer1.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.74388", - "Min": "-7.379547", - "Mean": "-0.12333", - "Norm": "858.103699", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.Sequential.forward.0": { - "id": "Module.layer1.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.673826", - "Min": "0.0", - "Mean": "1.460092", - "Norm": "641.917297", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer1.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "-4.199296", - "Mean": "1.620501e-08", - "Norm": "404.769043", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.74388", - "Min": "-7.379547", - "Mean": "-0.12333", - "Norm": "858.103699", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.relu.ReLU.forward.0": { - "id": "Module.layer1.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.conv2.Conv2d.forward.0": { - "id": "Module.layer1.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.442179", - "Min": "-3.972987", - "Mean": "0.084329", - "Norm": "370.438843", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.247875", - "Min": "0.0", - "Mean": "0.39636", - "Norm": "286.644501", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.605992", - "Min": "-4.646146", - "Mean": "4.284084e-09", - "Norm": "404.767944", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.442179", - "Min": "-3.972987", - "Mean": "0.084329", - "Norm": "370.438843", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.0.relu.ReLU.forward.1": { - "id": "Module.layer1.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.BasicBlock.forward.0": { - "id": "Module.layer1.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.Sequential.forward.0", - "subnodes": [ - "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.conv1.Conv2d.forward.0": { - "id": "Module.layer1.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "9.274334", - "Min": "-10.156013", - "Mean": "-0.101834", - "Norm": "975.393066", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "7.29416", - "Min": "0.0", - "Mean": "1.517842", - "Norm": "753.920776", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "-4.49145", - "Mean": "-2.235174e-09", - "Norm": "404.770447", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "9.274334", - "Min": "-10.156013", - "Mean": "-0.101834", - "Norm": "975.393066", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.relu.ReLU.forward.0": { - "id": "Module.layer1.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.conv2.Conv2d.forward.0": { - "id": "Module.layer1.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.431858", - "Min": "-4.229196", - "Mean": "0.005514", - "Norm": "375.989105", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.2462", - "Min": "0.0", - "Mean": "0.399545", - "Norm": "286.493317", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.475619", - "Min": "-4.364196", - "Mean": "1.396984e-09", - "Norm": "404.76828", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "4.431858", - "Min": "-4.229196", - "Mean": "0.005514", - "Norm": "375.989105", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer1.1.relu.ReLU.forward.1": { - "id": "Module.layer1.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 273, in _forward_impl, \n x = self.layer1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.BasicBlock.forward.0": { - "id": "Module.layer2.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.conv1.Conv2d.forward.0": { - "id": "Module.layer2.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.363841", - "Min": "-8.813498", - "Mean": "0.116351", - "Norm": "582.720398", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.Sequential.forward.0": { - "id": "Module.layer2.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer2.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "-4.77158", - "Mean": "1.303852e-09", - "Norm": "286.215912", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.363841", - "Min": "-8.813498", - "Mean": "0.116351", - "Norm": "582.720398", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.relu.ReLU.forward.0": { - "id": "Module.layer2.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.conv2.Conv2d.forward.0": { - "id": "Module.layer2.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.0345", - "Min": "-4.125886", - "Mean": "-0.100337", - "Norm": "260.142944", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.469386", - "Min": "0.0", - "Mean": "0.400609", - "Norm": "202.299973", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.152795", - "Min": "-4.936253", - "Mean": "3.725290e-10", - "Norm": "286.214294", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.0345", - "Min": "-4.125886", - "Mean": "-0.100337", - "Norm": "260.142944", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.downsample.Sequential.forward.0": { - "id": "Module.layer2.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.257706", - "Min": "-4.515994", - "Mean": "-1.117587e-09", - "Norm": "286.215851", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.203266", - "Min": "-9.355068", - "Mean": "-0.02311", - "Norm": "617.127319", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "8.480864", - "Min": "0.0", - "Mean": "1.621092", - "Norm": "845.908813", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.257706", - "Min": "-4.515994", - "Mean": "-1.117587e-09", - "Norm": "286.215851", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "9.203266", - "Min": "-9.355068", - "Mean": "-0.02311", - "Norm": "617.127319", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.0.relu.ReLU.forward.1": { - "id": "Module.layer2.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.BasicBlock.forward.0": { - "id": "Module.layer2.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.conv1.Conv2d.forward.0": { - "id": "Module.layer2.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.62359", - "Min": "-5.580112", - "Mean": "0.074416", - "Norm": "367.649841", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "-4.101557", - "Mean": "-3.818422e-09", - "Norm": "286.215485", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.62359", - "Min": "-5.580112", - "Mean": "0.074416", - "Norm": "367.649841", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.relu.ReLU.forward.0": { - "id": "Module.layer2.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.conv2.Conv2d.forward.0": { - "id": "Module.layer2.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.393562", - "Min": "-4.753343", - "Mean": "-0.078746", - "Norm": "260.969421", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.51583", - "Min": "0.0", - "Mean": "0.397453", - "Norm": "202.738693", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.73594", - "Min": "-4.475933", - "Mean": "2.421439e-09", - "Norm": "286.214294", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "4.393562", - "Min": "-4.753343", - "Mean": "-0.078746", - "Norm": "260.969421", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer2.1.relu.ReLU.forward.1": { - "id": "Module.layer2.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.BasicBlock.forward.0": { - "id": "Module.layer3.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.Sequential.forward.0", - "subnodes": [ - "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.conv1.Conv2d.forward.0": { - "id": "Module.layer3.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.532973", - "Min": "-6.165116", - "Mean": "0.023511", - "Norm": "250.68428", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.Sequential.forward.0": { - "id": "Module.layer3.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer3.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "-4.041963", - "Mean": "1.024455e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.532973", - "Min": "-6.165116", - "Mean": "0.023511", - "Norm": "250.68428", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.relu.ReLU.forward.0": { - "id": "Module.layer3.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.conv2.Conv2d.forward.0": { - "id": "Module.layer3.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.085584", - "Min": "-3.535729", - "Mean": "0.009184", - "Norm": "171.884354", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.015517", - "Min": "0.0", - "Mean": "0.397493", - "Norm": "142.493881", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.328585", - "Min": "-4.24462", - "Mean": "-5.587936e-10", - "Norm": "202.383789", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.085584", - "Min": "-3.535729", - "Mean": "0.009184", - "Norm": "171.884354", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.downsample.Sequential.forward.0": { - "id": "Module.layer3.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.673633", - "Min": "-4.118578", - "Mean": "2.980232e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.544863", - "Min": "-5.637341", - "Mean": "0.063504", - "Norm": "262.41275", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.673633", - "Min": "-4.118578", - "Mean": "2.980232e-09", - "Norm": "202.384674", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "5.544863", - "Min": "-5.637341", - "Mean": "0.063504", - "Norm": "262.41275", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.0.relu.ReLU.forward.1": { - "id": "Module.layer3.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.BasicBlock.forward.0": { - "id": "Module.layer3.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.Sequential.forward.0", - "subnodes": [ - "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.conv1.Conv2d.forward.0": { - "id": "Module.layer3.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.445492", - "Min": "-5.73983", - "Mean": "0.056189", - "Norm": "242.794586", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.011552", - "Min": "0.0", - "Mean": "0.558552", - "Norm": "202.094818", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "-4.302232", - "Mean": "6.053597e-10", - "Norm": "202.384811", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "6.445492", - "Min": "-5.73983", - "Mean": "0.056189", - "Norm": "242.794586", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.relu.ReLU.forward.0": { - "id": "Module.layer3.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.conv2.Conv2d.forward.0": { - "id": "Module.layer3.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "3.904869", - "Min": "-3.915274", - "Mean": "0.000739", - "Norm": "175.362854", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.64597", - "Min": "0.0", - "Mean": "0.397107", - "Norm": "143.5979", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "4.820035", - "Min": "-4.248729", - "Mean": "3.725290e-09", - "Norm": "202.38385", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "3.904869", - "Min": "-3.915274", - "Mean": "0.000739", - "Norm": "175.362854", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer3.1.relu.ReLU.forward.1": { - "id": "Module.layer3.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0", - "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 275, in _forward_impl, \n x = self.layer3(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.BasicBlock.forward.0": { - "id": "Module.layer4.0.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.Sequential.forward.0", - "subnodes": [ - "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.conv1.Conv2d.forward.0": { - "id": "Module.layer4.0.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.17719", - "Min": "-5.021754", - "Mean": "-0.003242", - "Norm": "160.062332", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.Sequential.forward.0": { - "id": "Module.layer4.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.1.BasicBlock.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.layer4.0.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "-4.494643", - "Mean": "0.0", - "Norm": "143.107346", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.17719", - "Min": "-5.021754", - "Mean": "-0.003242", - "Norm": "160.062332", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.relu.ReLU.forward.0": { - "id": "Module.layer4.0.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.conv2.Conv2d.forward.0": { - "id": "Module.layer4.0.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.548945", - "Min": "-2.623174", - "Mean": "-0.024468", - "Norm": "96.85141", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.531161", - "Min": "0.0", - "Mean": "0.396782", - "Norm": "101.735374", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.43048", - "Min": "-3.390204", - "Mean": "-5.587936e-10", - "Norm": "143.106155", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.548945", - "Min": "-2.623174", - "Mean": "-0.024468", - "Norm": "96.85141", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.downsample.Sequential.forward.0": { - "id": "Module.layer4.0.downsample.Sequential.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.Sequential.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.162686", - "Min": "-4.141354", - "Mean": "-1.396984e-09", - "Norm": "143.107498", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.Sequential.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [ - "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.downsample.0.Conv2d.forward.0": { - "id": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.0.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "5.574177", - "Min": "-5.778933", - "Mean": "0.001088", - "Norm": "182.966492", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.0.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "7.355758", - "Min": "0.0", - "Mean": "0.81968", - "Norm": "262.51239", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": { - "id": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "4.162686", - "Min": "-4.141354", - "Mean": "-1.396984e-09", - "Norm": "143.107498", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "5.574177", - "Min": "-5.778933", - "Mean": "0.001088", - "Norm": "182.966492", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 100, in forward, \n identity = self.downsample(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.0.relu.ReLU.forward.1": { - "id": "Module.layer4.0.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.BasicBlock.forward.0": { - "id": "Module.layer4.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.Sequential.forward.0", - "subnodes": [ - "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.conv1.Conv2d.forward.0": { - "id": "Module.layer4.1.conv1.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv1.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.864757", - "Min": "-3.787591", - "Mean": "0.002277", - "Norm": "133.55986", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.conv1.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.219019", - "Min": "0.0", - "Mean": "0.561198", - "Norm": "141.888809", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 92, in forward, \n out = self.conv1(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.bn1.BatchNorm2d.forward.0": { - "id": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn1.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "-3.694792", - "Mean": "1.490116e-09", - "Norm": "143.107239", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.bn1.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.864757", - "Min": "-3.787591", - "Mean": "0.002277", - "Norm": "133.55986", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 93, in forward, \n out = self.bn1(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.relu.ReLU.forward.0": { - "id": "Module.layer4.1.relu.ReLU.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.relu.ReLU.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 94, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.conv2.Conv2d.forward.0": { - "id": "Module.layer4.1.conv2.Conv2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv2.Conv2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.484763", - "Min": "-2.720093", - "Mean": "0.013722", - "Norm": "95.469269", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.conv2.Conv2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.722916", - "Min": "0.0", - "Mean": "0.402127", - "Norm": "101.228134", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 96, in forward, \n out = self.conv2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.bn2.BatchNorm2d.forward.0": { - "id": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn2.BatchNorm2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "3.644991", - "Min": "-3.459976", - "Mean": "-4.656613e-10", - "Norm": "143.106094", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.bn2.BatchNorm2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "2.484763", - "Min": "-2.720093", - "Mean": "0.013722", - "Norm": "95.469269", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 97, in forward, \n out = self.bn2(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.layer4.1.relu.ReLU.forward.1": { - "id": "Module.layer4.1.relu.ReLU.forward.1", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.forward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.forward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.forward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0", - "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.relu.ReLU.forward.1" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 103, in forward, \n out = self.relu(out)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 276, in _forward_impl, \n x = self.layer4(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.forward.0": { - "id": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "node_type": 0, - "output_data": { - "Module.avgpool.AdaptiveAvgPool2d.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 1, 1]", - "Max": "2.68325", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "66.964317", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.avgpool.AdaptiveAvgPool2d.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "6.209611", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "184.159729", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 278, in _forward_impl, \n x = self.avgpool(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.fc.Linear.forward.0": { - "id": "Module.fc.Linear.forward.0", - "node_type": 0, - "output_data": { - "Module.fc.Linear.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 10]", - "Max": "1.236255", - "Min": "-1.562365", - "Mean": "-0.12689", - "Norm": "5.357258", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.fc.Linear.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512]", - "Max": "2.68325", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "66.964317", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "Module.fc.Linear.backward.0": { - "id": "Module.fc.Linear.backward.0", - "node_type": 0, - "output_data": { - "Module.fc.Linear.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512]", - "Max": "0.006356", - "Min": "-0.00662", - "Mean": "0.000117", - "Norm": "0.176545", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.fc.Linear.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 10]", - "Max": "0.03222", - "Min": "-0.097696", - "Mean": "1.490116e-10", - "Norm": "0.311353", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.backward.0": { - "id": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "node_type": 0, - "output_data": { - "Module.avgpool.AdaptiveAvgPool2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.avgpool.AdaptiveAvgPool2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 1, 1]", - "Max": "0.006356", - "Min": "-0.00662", - "Mean": "0.000117", - "Norm": "0.176545", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer4.1.BasicBlock.backward.0": { - "id": "Module.layer4.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.Sequential.backward.0", - "subnodes": [ - "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.relu.ReLU.backward.0": { - "id": "Module.layer4.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.170244e-05", - "Norm": "0.071178", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.Sequential.backward.0": { - "id": "Module.layer4.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.922326e-05", - "Norm": "0.088272", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer4.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00349", - "Min": "-0.003203", - "Mean": "-1.818989e-13", - "Norm": "0.114767", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.001589", - "Min": "-0.001655", - "Mean": "2.170244e-05", - "Norm": "0.071178", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.conv2.Conv2d.backward.0": { - "id": "Module.layer4.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003047", - "Min": "-0.003687", - "Mean": "5.127279e-08", - "Norm": "0.107756", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00349", - "Min": "-0.003203", - "Mean": "-1.818989e-13", - "Norm": "0.114767", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.relu.ReLU.backward.1": { - "id": "Module.layer4.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer4.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003023", - "Min": "-0.002646", - "Mean": "9.799842e-08", - "Norm": "0.075418", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003047", - "Min": "-0.003687", - "Mean": "5.127279e-08", - "Norm": "0.107756", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00392", - "Min": "-0.00384", - "Mean": "2.160050e-13", - "Norm": "0.093361", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003023", - "Min": "-0.002646", - "Mean": "9.799842e-08", - "Norm": "0.075418", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.1.conv1.Conv2d.backward.0": { - "id": "Module.layer4.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.002777", - "Min": "-0.002687", - "Mean": "-1.536876e-06", - "Norm": "0.087284", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00392", - "Min": "-0.00384", - "Mean": "2.160050e-13", - "Norm": "0.093361", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.BasicBlock.backward.0": { - "id": "Module.layer4.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.Sequential.backward.0", - "subnodes": [ - "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.relu.ReLU.backward.0": { - "id": "Module.layer4.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "2.016556e-05", - "Norm": "0.112632", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.downsample.Sequential.backward.0": { - "id": "Module.layer4.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004114", - "Min": "-0.003346", - "Mean": "-4.547474e-14", - "Norm": "0.087317", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004101", - "Min": "-0.003454", - "Mean": "-3.637979e-13", - "Norm": "0.087384", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004114", - "Min": "-0.003346", - "Mean": "-4.547474e-14", - "Norm": "0.087317", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004101", - "Min": "-0.003454", - "Mean": "-3.637979e-13", - "Norm": "0.087384", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.006026", - "Min": "-0.006504", - "Mean": "7.275958e-13", - "Norm": "0.138286", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.003044", - "Min": "-0.003159", - "Mean": "1.279740e-05", - "Norm": "0.082885", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.conv2.Conv2d.backward.0": { - "id": "Module.layer4.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "2.937198e-06", - "Norm": "0.130315", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.006026", - "Min": "-0.006504", - "Mean": "7.275958e-13", - "Norm": "0.138286", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.relu.ReLU.backward.1": { - "id": "Module.layer4.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer4.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "-8.934543e-07", - "Norm": "0.092057", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "2.937198e-06", - "Norm": "0.130315", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004244", - "Min": "-0.004086", - "Mean": "-4.547474e-13", - "Norm": "0.106542", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.00354", - "Min": "-0.003561", - "Mean": "-8.934543e-07", - "Norm": "0.092057", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer4.0.conv1.Conv2d.backward.0": { - "id": "Module.layer4.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer4.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.002732", - "Min": "-0.002337", - "Mean": "1.283062e-07", - "Norm": "0.088477", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer4.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512, 2, 2]", - "Max": "0.004244", - "Min": "-0.004086", - "Mean": "-4.547474e-13", - "Norm": "0.106542", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer4.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0", - "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.BasicBlock.backward.0": { - "id": "Module.layer3.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.Sequential.backward.0", - "subnodes": [ - "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.relu.ReLU.backward.0": { - "id": "Module.layer3.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "5.267739e-07", - "Norm": "0.100327", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.Sequential.backward.0": { - "id": "Module.layer3.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "1.283064e-07", - "Norm": "0.12491", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer3.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005349", - "Min": "-0.00458", - "Mean": "5.456968e-13", - "Norm": "0.134192", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004012", - "Min": "-0.003481", - "Mean": "5.267739e-07", - "Norm": "0.100327", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.conv2.Conv2d.backward.0": { - "id": "Module.layer3.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004227", - "Min": "-0.003777", - "Mean": "-1.105049e-06", - "Norm": "0.161834", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005349", - "Min": "-0.00458", - "Mean": "5.456968e-13", - "Norm": "0.134192", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.relu.ReLU.backward.1": { - "id": "Module.layer3.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer3.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003753", - "Min": "-0.003777", - "Mean": "-1.121872e-07", - "Norm": "0.113553", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004227", - "Min": "-0.003777", - "Mean": "-1.105049e-06", - "Norm": "0.161834", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004302", - "Min": "-0.003597", - "Mean": "4.547474e-14", - "Norm": "0.108404", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003753", - "Min": "-0.003777", - "Mean": "-1.121872e-07", - "Norm": "0.113553", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.1.conv1.Conv2d.backward.0": { - "id": "Module.layer3.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.003036", - "Min": "-0.002772", - "Mean": "-2.692081e-07", - "Norm": "0.133319", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004302", - "Min": "-0.003597", - "Mean": "4.547474e-14", - "Norm": "0.108404", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.BasicBlock.backward.0": { - "id": "Module.layer3.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.Sequential.backward.0", - "subnodes": [ - "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.relu.ReLU.backward.0": { - "id": "Module.layer3.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "2.575660e-07", - "Norm": "0.166487", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.downsample.Sequential.backward.0": { - "id": "Module.layer3.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004002", - "Min": "-0.004525", - "Mean": "3.410605e-13", - "Norm": "0.1262", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004036", - "Min": "-0.005194", - "Mean": "0.0", - "Norm": "0.126903", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004002", - "Min": "-0.004525", - "Mean": "3.410605e-13", - "Norm": "0.1262", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004036", - "Min": "-0.005194", - "Mean": "0.0", - "Norm": "0.126903", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.006225", - "Min": "-0.005798", - "Mean": "-3.637979e-13", - "Norm": "0.166553", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.004265", - "Min": "-0.004394", - "Mean": "4.540960e-07", - "Norm": "0.122012", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.conv2.Conv2d.backward.0": { - "id": "Module.layer3.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-6.200127e-07", - "Norm": "0.20419", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.006225", - "Min": "-0.005798", - "Mean": "-3.637979e-13", - "Norm": "0.166553", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.relu.ReLU.backward.1": { - "id": "Module.layer3.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer3.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-5.361890e-07", - "Norm": "0.144125", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-6.200127e-07", - "Norm": "0.20419", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005433", - "Min": "-0.005011", - "Mean": "0.0", - "Norm": "0.150797", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005283", - "Min": "-0.005217", - "Mean": "-5.361890e-07", - "Norm": "0.144125", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer3.0.conv1.Conv2d.backward.0": { - "id": "Module.layer3.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer3.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.003242", - "Min": "-0.002676", - "Mean": "1.208646e-08", - "Norm": "0.139735", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer3.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 256, 4, 4]", - "Max": "0.005433", - "Min": "-0.005011", - "Mean": "0.0", - "Norm": "0.150797", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer3.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0", - "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.BasicBlock.backward.0": { - "id": "Module.layer2.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.Sequential.backward.0", - "subnodes": [ - "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.relu.ReLU.backward.0": { - "id": "Module.layer2.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "6.662881e-07", - "Norm": "0.152697", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.Sequential.backward.0": { - "id": "Module.layer2.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "1.208646e-08", - "Norm": "0.188543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer2.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005537", - "Min": "-0.006419", - "Mean": "4.547474e-14", - "Norm": "0.192183", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004368", - "Min": "-0.004748", - "Mean": "6.662881e-07", - "Norm": "0.152697", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.conv2.Conv2d.backward.0": { - "id": "Module.layer2.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004991", - "Mean": "6.954823e-07", - "Norm": "0.250644", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005537", - "Min": "-0.006419", - "Mean": "4.547474e-14", - "Norm": "0.192183", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.relu.ReLU.backward.1": { - "id": "Module.layer2.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer2.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004159", - "Mean": "2.355963e-06", - "Norm": "0.177588", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004991", - "Mean": "6.954823e-07", - "Norm": "0.250644", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004246", - "Min": "-0.003801", - "Mean": "3.865353e-13", - "Norm": "0.159253", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004543", - "Min": "-0.004159", - "Mean": "2.355963e-06", - "Norm": "0.177588", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.1.conv1.Conv2d.backward.0": { - "id": "Module.layer2.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.003947", - "Min": "-0.00409", - "Mean": "1.122175e-06", - "Norm": "0.213347", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004246", - "Min": "-0.003801", - "Mean": "3.865353e-13", - "Norm": "0.159253", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.BasicBlock.backward.0": { - "id": "Module.layer2.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.Sequential.backward.0", - "subnodes": [ - "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.relu.ReLU.backward.0": { - "id": "Module.layer2.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "1.788464e-06", - "Norm": "0.2636", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.downsample.Sequential.backward.0": { - "id": "Module.layer2.0.downsample.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004066", - "Min": "-0.004851", - "Mean": "4.547474e-14", - "Norm": "0.148232", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [ - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004749", - "Min": "-0.004585", - "Mean": "-2.728484e-13", - "Norm": "0.14894", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.downsample.0.Conv2d.backward.0": { - "id": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.downsample.0.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004066", - "Min": "-0.004851", - "Mean": "4.547474e-14", - "Norm": "0.148232", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.downsample.0.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004749", - "Min": "-0.004585", - "Mean": "-2.728484e-13", - "Norm": "0.14894", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.downsample.Sequential.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00708", - "Min": "-0.008085", - "Mean": "-5.456968e-13", - "Norm": "0.246197", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00595", - "Min": "-0.006032", - "Mean": "2.777311e-06", - "Norm": "0.192543", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.conv2.Conv2d.backward.0": { - "id": "Module.layer2.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005883", - "Min": "-0.005688", - "Mean": "7.895345e-07", - "Norm": "0.328498", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.00708", - "Min": "-0.008085", - "Mean": "-5.456968e-13", - "Norm": "0.246197", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.relu.ReLU.backward.1": { - "id": "Module.layer2.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer2.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005686", - "Min": "-0.005685", - "Mean": "1.743164e-06", - "Norm": "0.232839", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005883", - "Min": "-0.005688", - "Mean": "7.895345e-07", - "Norm": "0.328498", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004441", - "Min": "-0.004493", - "Mean": "-3.637979e-13", - "Norm": "0.176547", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.005686", - "Min": "-0.005685", - "Mean": "1.743164e-06", - "Norm": "0.232839", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer2.0.conv1.Conv2d.backward.0": { - "id": "Module.layer2.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer2.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.002586", - "Min": "-0.002816", - "Mean": "-2.737123e-07", - "Norm": "0.171941", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "0.004441", - "Min": "-0.004493", - "Mean": "-3.637979e-13", - "Norm": "0.176547", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0", - "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.BasicBlock.backward.0": { - "id": "Module.layer1.1.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.Sequential.backward.0", - "subnodes": [ - "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.relu.ReLU.backward.0": { - "id": "Module.layer1.1.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "1.113839e-07", - "Norm": "0.209072", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.Sequential.backward.0": { - "id": "Module.layer1.Sequential.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.Sequential.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.Sequential.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "-2.737119e-07", - "Norm": "0.226761", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [ - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.0.BasicBlock.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.layer1.1.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004873", - "Min": "-0.006985", - "Mean": "6.366463e-13", - "Norm": "0.263476", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003609", - "Min": "-0.005254", - "Mean": "1.113839e-07", - "Norm": "0.209072", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.conv2.Conv2d.backward.0": { - "id": "Module.layer1.1.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.005144", - "Mean": "5.896727e-08", - "Norm": "0.36269", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.004873", - "Min": "-0.006985", - "Mean": "6.366463e-13", - "Norm": "0.263476", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.relu.ReLU.backward.1": { - "id": "Module.layer1.1.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer1.1.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.004949", - "Mean": "-2.247479e-07", - "Norm": "0.255762", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.005144", - "Mean": "5.896727e-08", - "Norm": "0.36269", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00343", - "Min": "-0.003328", - "Mean": "1.818989e-13", - "Norm": "0.165887", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005249", - "Min": "-0.004949", - "Mean": "-2.247479e-07", - "Norm": "0.255762", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.1.conv1.Conv2d.backward.0": { - "id": "Module.layer1.1.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.1.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.003166", - "Min": "-0.003639", - "Mean": "-1.210342e-08", - "Norm": "0.229291", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.1.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00343", - "Min": "-0.003328", - "Mean": "1.818989e-13", - "Norm": "0.165887", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.1.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.BasicBlock.backward.0": { - "id": "Module.layer1.0.BasicBlock.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.BasicBlock.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.BasicBlock.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.Sequential.backward.0", - "subnodes": [ - "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.relu.ReLU.backward.0": { - "id": "Module.layer1.0.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "3.088644e-07", - "Norm": "0.299243", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "9.928035e-08", - "Norm": "0.311783", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.bn2.BatchNorm2d.backward.0": { - "id": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn2.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007243", - "Min": "-0.006519", - "Mean": "-7.275958e-13", - "Norm": "0.389929", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.bn2.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.005186", - "Min": "-0.005365", - "Mean": "3.088644e-07", - "Norm": "0.299243", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.conv2.Conv2d.backward.0": { - "id": "Module.layer1.0.conv2.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv2.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "-5.936339e-07", - "Norm": "0.54013", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.conv2.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007243", - "Min": "-0.006519", - "Mean": "-7.275958e-13", - "Norm": "0.389929", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.relu.ReLU.backward.1": { - "id": "Module.layer1.0.relu.ReLU.backward.1", - "node_type": 0, - "output_data": { - "Module.layer1.0.relu.ReLU.backward.1.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "2.777797e-07", - "Norm": "0.379333", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.relu.ReLU.backward.1.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "-5.936339e-07", - "Norm": "0.54013", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.1" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.bn1.BatchNorm2d.backward.0": { - "id": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.009111", - "Min": "-0.009193", - "Mean": "-7.275958e-13", - "Norm": "0.387683", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007983", - "Min": "-0.00772", - "Mean": "2.777797e-07", - "Norm": "0.379333", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.layer1.0.conv1.Conv2d.backward.0": { - "id": "Module.layer1.0.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.layer1.0.conv1.Conv2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.007328", - "Min": "-0.008206", - "Mean": "3.342619e-07", - "Norm": "0.538403", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer1.0.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.009111", - "Min": "-0.009193", - "Mean": "-7.275958e-13", - "Norm": "0.387683", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer1.0.BasicBlock.backward.0", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0", - "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "data": {} - }, - "Module.maxpool.MaxPool2d.backward.0": { - "id": "Module.maxpool.MaxPool2d.backward.0", - "node_type": 0, - "output_data": { - "Module.maxpool.MaxPool2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.607818e-07", - "Norm": "0.615501", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.maxpool.MaxPool2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 16, 16]", - "Max": "0.00901", - "Min": "-0.009858", - "Mean": "6.431268e-07", - "Norm": "0.614371", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.relu.ReLU.backward.0": { - "id": "Module.relu.ReLU.backward.0", - "node_type": 0, - "output_data": { - "Module.relu.ReLU.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.113458e-07", - "Norm": "0.614639", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.relu.ReLU.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.607818e-07", - "Norm": "0.615501", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.relu.ReLU.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.bn1.BatchNorm2d.backward.0": { - "id": "Module.bn1.BatchNorm2d.backward.0", - "node_type": 0, - "output_data": { - "Module.bn1.BatchNorm2d.backward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.049808", - "Min": "-0.064687", - "Mean": "1.364242e-12", - "Norm": "2.04307", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.bn1.BatchNorm2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.01485", - "Min": "-0.019076", - "Mean": "1.113458e-07", - "Norm": "0.614639", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - }, - "Module.conv1.Conv2d.backward.0": { - "id": "Module.conv1.Conv2d.backward.0", - "node_type": 0, - "output_data": { - "Module.conv1.Conv2d.backward.0.output.0": { - "value": "null" - } - }, - "input_data": { - "Module.conv1.Conv2d.backward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 64, 32, 32]", - "Max": "0.049808", - "Min": "-0.064687", - "Mean": "1.364242e-12", - "Norm": "2.04307", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [ - "DefaultModel", - "Module.conv1.Conv2d.backward.0" - ], - "suggestions": {}, - "stack_info": [], - "micro_step_id": 0, - "data": {} - } - } - }, - "ToolTip": "{\"Max diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5927\\u503c\\u7684\\u5dee\\u503c\", \"Min diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5c0f\\u503c\\u7684\\u5dee\\u503c\", \"Mean diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u5e73\\u5747\\u503c\\u7684\\u5dee\\u503c\", \"L2norm diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c2\\u8303\\u6570\\uff08\\u5e73\\u65b9\\u6839\\uff09\\u7684\\u5dee\\u503c\"}", - "Colors": { - "#FFFCF3": { - "value": [ - 0, - 0.2 - ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#FFEDBE": { - "value": [ - 0.2, - 0.4 - ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#FFDC7F": { - "value": [ - 0.4, - 0.6 - ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#FFC62E": { - "value": [ - 0.6, - 0.8 - ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#FF704D": { - "value": [ - 0.8, - 1 - ], - "description": "此节点所有输入输出的统计量相对误差, 值越大代表测量值与标杆值的偏差越大, 相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#C7C7C7": { - "value": [], - "description": "比对过程中节点未匹配上" - } - }, - "MicroSteps": 1, - "task": "summary", - "npu_match_nodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" - }, - "bench_match_nodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" - } -} \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config deleted file mode 100644 index f0cb92aa4..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/mock_compare_resnet_data.vis.config +++ /dev/null @@ -1,3 +0,0 @@ -{ - "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" -} \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes.json deleted file mode 100644 index 2662bf3a4..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes.json +++ /dev/null @@ -1,318 +0,0 @@ -[ - { - "case_id": "1", - "description": "测试删除匹配节点", - "input": "data/plugin/graph_ascend/addMatchNodes?npuNodeName=Module.fc.Linear.forward.0&benchNodeName=Module.fc.Linear.forward.0&metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}", - "expected": { - "success": true, - "data": { - "npuMatchNodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0", - "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" - }, - "benchMatchNodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0", - "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes_by_config.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes_by_config.json deleted file mode 100644 index ef9d9cb80..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_add_match_nodes_by_config.json +++ /dev/null @@ -1,321 +0,0 @@ -[ - { - "case_id": "1", - "description": "测试根据匹配文件添加节点", - "input": "data/plugin/graph_ascend/addMatchNodesByConfig?configFile=mock_compare_resnet_data.vis.config&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", - "expected": { - "success": true, - "data": { - "matchReslut": [ - true - ], - "npuMatchNodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0", - "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" - }, - "benchMatchNodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0", - "Module.fc.Linear.forward.0": "Module.fc.Linear.forward.0" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_change_node_expand_state.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_change_node_expand_state.json deleted file mode 100644 index da8c16519..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_change_node_expand_state.json +++ /dev/null @@ -1,1650 +0,0 @@ -[ - { - "case_id": "1", - "description": "测试展开NPU侧根节点", - "input": "/data/plugin/graph_ascend/changeNodeExpandState?nodeInfo={\"nodeName\":\"root\",\"nodeType\":\"NPU\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", - "expected": { - "success": true, - "data": { - "DefaultModel": { - "x": 0, - "y": 0, - "width": 230, - "height": 300, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "DefaultModel", - "name": "N___DefaultModel", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.forward.0": { - "x": 7, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.forward.0", - "name": "N___Module.conv1.Conv2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.forward.0": { - "x": 62, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.forward.0", - "name": "N___Module.bn1.BatchNorm2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.forward.0": { - "x": 117, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.forward.0", - "name": "N___Module.relu.ReLU.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.forward.0": { - "x": 172, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.forward.0", - "name": "N___Module.maxpool.MaxPool2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.forward.0": { - "x": 8, - "y": 50, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.forward.0", - "name": "N___Module.layer1.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0" - ], - "precisionIndex": 0.7, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.forward.0": { - "x": 8, - "y": 75, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.forward.0", - "name": "N___Module.layer2.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.forward.0": { - "x": 8, - "y": 100, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.forward.0", - "name": "N___Module.layer3.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.forward.0": { - "x": 8, - "y": 125, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.forward.0", - "name": "N___Module.layer4.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.forward.0": { - "x": 7, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "name": "N___Module.avgpool.AdaptiveAvgPool2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.forward.0": { - "x": 62, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.forward.0", - "name": "N___Module.fc.Linear.forward.0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.backward.0": { - "x": 117, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.backward.0", - "name": "N___Module.fc.Linear.backward.0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.backward.0": { - "x": 172, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "name": "N___Module.avgpool.AdaptiveAvgPool2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.backward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.backward.0": { - "x": 5, - "y": 175, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.backward.0", - "name": "N___Module.layer4.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.backward.0": { - "x": 5, - "y": 200, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.backward.0", - "name": "N___Module.layer3.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.backward.0": { - "x": 5, - "y": 225, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.backward.0", - "name": "N___Module.layer2.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.backward.0": { - "x": 5, - "y": 250, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.backward.0", - "name": "N___Module.layer1.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.backward.0": { - "x": 7, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.backward.0", - "name": "N___Module.maxpool.MaxPool2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.backward.0": { - "x": 62, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.backward.0", - "name": "N___Module.relu.ReLU.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.backward.0": { - "x": 117, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.backward.0", - "name": "N___Module.bn1.BatchNorm2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.backward.0": { - "x": 172, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.backward.0", - "name": "N___Module.conv1.Conv2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - } - }, - { - "case_id": "2", - "description": "测试展开Bench侧根节点", - "input": "/data/plugin/graph_ascend/changeNodeExpandState?nodeInfo={\"nodeName\":\"root\",\"nodeType\":\"Bench\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", - "expected": { - "success": true, - "data": { - "DefaultModel": { - "x": 0, - "y": 0, - "width": 230, - "height": 300, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "DefaultModel", - "name": "B___DefaultModel", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.forward.0": { - "x": 7, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.forward.0", - "name": "B___Module.conv1.Conv2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.forward.0": { - "x": 62, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.forward.0", - "name": "B___Module.bn1.BatchNorm2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.forward.0": { - "x": 117, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.forward.0", - "name": "B___Module.relu.ReLU.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.forward.0": { - "x": 172, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.forward.0", - "name": "B___Module.maxpool.MaxPool2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.forward.0": { - "x": 8, - "y": 50, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.forward.0", - "name": "B___Module.layer1.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.forward.0": { - "x": 8, - "y": 75, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.forward.0", - "name": "B___Module.layer2.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.forward.0": { - "x": 8, - "y": 100, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.forward.0", - "name": "B___Module.layer3.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.forward.0": { - "x": 8, - "y": 125, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.forward.0", - "name": "B___Module.layer4.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.forward.0": { - "x": 7, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "name": "B___Module.avgpool.AdaptiveAvgPool2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.forward.0": { - "x": 62, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.forward.0", - "name": "B___Module.fc.Linear.forward.0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.backward.0": { - "x": 117, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.backward.0", - "name": "B___Module.fc.Linear.backward.0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.backward.0": { - "x": 172, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "name": "B___Module.avgpool.AdaptiveAvgPool2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.backward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.backward.0": { - "x": 5, - "y": 175, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.backward.0", - "name": "B___Module.layer4.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.backward.0": { - "x": 5, - "y": 200, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.backward.0", - "name": "B___Module.layer3.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.backward.0": { - "x": 5, - "y": 225, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.backward.0", - "name": "B___Module.layer2.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.backward.0": { - "x": 5, - "y": 250, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.backward.0", - "name": "B___Module.layer1.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.backward.0": { - "x": 7, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.backward.0", - "name": "B___Module.maxpool.MaxPool2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.backward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.backward.0": { - "x": 62, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.backward.0", - "name": "B___Module.relu.ReLU.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.backward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.backward.0": { - "x": 117, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.backward.0", - "name": "B___Module.bn1.BatchNorm2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.backward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.backward.0": { - "x": 172, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.backward.0", - "name": "B___Module.conv1.Conv2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.backward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - } - }, - { - "case_id": "3", - "description": "测试展开NPU侧子节点", - "input": "/data/plugin/graph_ascend/changeNodeExpandState?nodeInfo={\"nodeName\":\"Module.layer1.Sequential.forward.0\",\"nodeType\":\"NPU\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", - "expected": { - "success": true, - "data": { - "DefaultModel": { - "x": 0, - "y": 0, - "width": 230, - "height": 360, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "DefaultModel", - "name": "N___DefaultModel", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.forward.0": { - "x": 7, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.forward.0", - "name": "N___Module.conv1.Conv2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.forward.0": { - "x": 62, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.forward.0", - "name": "N___Module.bn1.BatchNorm2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.forward.0": { - "x": 117, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.forward.0", - "name": "N___Module.relu.ReLU.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.forward.0": { - "x": 172, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.forward.0", - "name": "N___Module.maxpool.MaxPool2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.forward.0": { - "x": 8, - "y": 50, - "width": 214, - "height": 75, - "expand": true, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.forward.0", - "name": "N___Module.layer1.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0" - ], - "precisionIndex": 0.7, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.0.BasicBlock.forward.0": { - "x": 23, - "y": 75, - "width": 184, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Module.layer1.Sequential.forward.0", - "label": "layer1.0.BasicBlock.forward.0", - "name": "N___Module.layer1.0.BasicBlock.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.0.BasicBlock.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.1.BasicBlock.forward.0": { - "x": 23, - "y": 100, - "width": 184, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Module.layer1.Sequential.forward.0", - "label": "layer1.1.BasicBlock.forward.0", - "name": "N___Module.layer1.1.BasicBlock.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.forward.0": { - "x": 8, - "y": 135, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.forward.0", - "name": "N___Module.layer2.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.forward.0": { - "x": 8, - "y": 160, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.forward.0", - "name": "N___Module.layer3.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.forward.0": { - "x": 8, - "y": 185, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.forward.0", - "name": "N___Module.layer4.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.forward.0": { - "x": 7, - "y": 210, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "name": "N___Module.avgpool.AdaptiveAvgPool2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.forward.0": { - "x": 62, - "y": 210, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.forward.0", - "name": "N___Module.fc.Linear.forward.0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.backward.0": { - "x": 117, - "y": 210, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.backward.0", - "name": "N___Module.fc.Linear.backward.0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.backward.0": { - "x": 172, - "y": 210, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "name": "N___Module.avgpool.AdaptiveAvgPool2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.backward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.backward.0": { - "x": 5, - "y": 235, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.backward.0", - "name": "N___Module.layer4.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.backward.0": { - "x": 5, - "y": 260, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.backward.0", - "name": "N___Module.layer3.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.backward.0": { - "x": 5, - "y": 285, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.backward.0", - "name": "N___Module.layer2.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.backward.0": { - "x": 5, - "y": 310, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.backward.0", - "name": "N___Module.layer1.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.backward.0": { - "x": 7, - "y": 335, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.backward.0", - "name": "N___Module.maxpool.MaxPool2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.backward.0": { - "x": 62, - "y": 335, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.backward.0", - "name": "N___Module.relu.ReLU.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.backward.0": { - "x": 117, - "y": 335, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.backward.0", - "name": "N___Module.bn1.BatchNorm2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.backward.0": { - "x": 172, - "y": 335, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.backward.0", - "name": "N___Module.conv1.Conv2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - } - }, - { - "case_id": "4", - "description": "测试折叠NPU侧子节点", - "input": "/data/plugin/graph_ascend/changeNodeExpandState?nodeInfo={\"nodeName\":\"Module.layer1.Sequential.forward.0\",\"nodeType\":\"NPU\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", - "expected": { - "success": true, - "data": { - "DefaultModel": { - "x": 0, - "y": 0, - "width": 230, - "height": 300, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "DefaultModel", - "name": "N___DefaultModel", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.forward.0": { - "x": 7, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.forward.0", - "name": "N___Module.conv1.Conv2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.forward.0": { - "x": 62, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.forward.0", - "name": "N___Module.bn1.BatchNorm2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.forward.0": { - "x": 117, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.forward.0", - "name": "N___Module.relu.ReLU.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.forward.0": { - "x": 172, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.forward.0", - "name": "N___Module.maxpool.MaxPool2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.forward.0": { - "x": 8, - "y": 50, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.forward.0", - "name": "N___Module.layer1.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0" - ], - "precisionIndex": 0.7, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.forward.0": { - "x": 8, - "y": 75, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.forward.0", - "name": "N___Module.layer2.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.forward.0": { - "x": 8, - "y": 100, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.forward.0", - "name": "N___Module.layer3.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.forward.0": { - "x": 8, - "y": 125, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.forward.0", - "name": "N___Module.layer4.Sequential.forward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.forward.0": { - "x": 7, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "name": "N___Module.avgpool.AdaptiveAvgPool2d.forward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.forward.0": { - "x": 62, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.forward.0", - "name": "N___Module.fc.Linear.forward.0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.backward.0": { - "x": 117, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.backward.0", - "name": "N___Module.fc.Linear.backward.0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.backward.0": { - "x": 172, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "name": "N___Module.avgpool.AdaptiveAvgPool2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.backward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.backward.0": { - "x": 5, - "y": 175, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.backward.0", - "name": "N___Module.layer4.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.backward.0": { - "x": 5, - "y": 200, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.backward.0", - "name": "N___Module.layer3.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.backward.0": { - "x": 5, - "y": 225, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.backward.0", - "name": "N___Module.layer2.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.backward.0": { - "x": 5, - "y": 250, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.backward.0", - "name": "N___Module.layer1.Sequential.backward.0", - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.backward.0": { - "x": 7, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.backward.0", - "name": "N___Module.maxpool.MaxPool2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.backward.0": { - "x": 62, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.backward.0", - "name": "N___Module.relu.ReLU.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.backward.0": { - "x": 117, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.backward.0", - "name": "N___Module.bn1.BatchNorm2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.backward.0": { - "x": 172, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.backward.0", - "name": "N___Module.conv1.Conv2d.backward.0", - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_delete_match_nodes.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_delete_match_nodes.json deleted file mode 100644 index 89185fc8a..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_delete_match_nodes.json +++ /dev/null @@ -1,320 +0,0 @@ -[ - { - "case_id": "1", - "description": "测试删除匹配节点", - "input": "data/plugin/graph_ascend/addMatchNodes?npuNodeName=Module.fc.Linear.forward.0&benchNodeName=Module.fc.Linear.forward.0&metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}", - "expected": { - "success": true, - "data": { - "npuMatchNodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" - }, - "benchMatchNodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" - }, - "npuUnMatchNodes": [ - "Module.fc.Linear.forward.0" - ], - "benchUnMatchNodes": [ - "Module.fc.Linear.forward.0" - ] - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_get_node_info.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_get_node_info.json deleted file mode 100644 index fb19100d6..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_get_node_info.json +++ /dev/null @@ -1,194 +0,0 @@ -[ - { - "case_id": "1", - "description": "测试获取匹配节点信息", - "input": "/data/plugin/graph_ascend/getNodeInfo?nodeInfo={\"nodeType\":\"NPU\",\"nodeName\":\"Module.layer2.1.BasicBlock.forward.0\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", - "expected": { - "success": true, - "data": { - "npu": { - "id": "Module.layer2.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000", - "Max diff": "0.0", - "Min diff": "0.0", - "Mean diff": "0.0", - "L2norm diff": "0.0", - "MaxRelativeErr": "0.0%", - "MinRelativeErr": "N/A, \u7531\u4e8eMin\u5c0f\u4e8e1e-06, \u5efa\u8bae\u4e0d\u53c2\u8003\u6b64\u76f8\u5bf9\u8bef\u5dee\uff0c\u8bf7\u53c2\u8003\u7edd\u5bf9\u8bef\u5dee", - "MeanRelativeErr": "0.0%", - "NormRelativeErr": "0.0%" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": { - "precision_index": 0 - } - }, - "bench": { - "id": "Module.layer2.1.BasicBlock.forward.0", - "node_type": 0, - "output_data": { - "Module.layer2.1.BasicBlock.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "7.306092", - "Min": "0.0", - "Mean": "0.830152", - "Norm": "372.837189", - "data_name": "-1", - "md5": "00000000" - } - }, - "input_data": { - "Module.layer2.1.BasicBlock.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 128, 8, 8]", - "Max": "6.058126", - "Min": "0.0", - "Mean": "0.569005", - "Norm": "288.38382", - "data_name": "-1", - "md5": "00000000" - } - }, - "upnode": "Module.layer2.Sequential.forward.0", - "subnodes": [ - "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1" - ], - "matched_node_link": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/container.py, line 215, in forward, \n input = module(input)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1568, in _call_impl, \n result = forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 274, in _forward_impl, \n x = self.layer2(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "data": {} - } - } - } - }, - { - "case_id": "2", - "description": "测试获取未匹配节点信息", - "input": "/data/plugin/graph_ascend/getNodeInfo?nodeInfo={\"nodeType\":\"NPU\",\"nodeName\":\"Module.fc.Linear.forward.0\"}&metaData={\"tag\":\"mock_compare_resnet_data\",\"microStep\":-1,\"run\":\"st_test_cases\"}", - "expected": { - "success": true, - "data": { - "npu": { - "id": "Module.fc.Linear.forward.0", - "node_type": 0, - "output_data": { - "Module.fc.Linear.forward.0.output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 10]", - "Max": "1.236255", - "Min": "-1.562365", - "Mean": "-0.12689", - "Norm": "5.357258", - "data_name": "-1" - } - }, - "input_data": { - "Module.fc.Linear.forward.0.input.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[10, 512]", - "Max": "2.68325", - "Min": "0.0", - "Mean": "0.82681", - "Norm": "66.964317", - "data_name": "-1" - } - }, - "upnode": "DefaultModel", - "subnodes": [], - "matched_node_link": [], - "suggestions": {}, - "stack_info": [ - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 280, in _forward_impl, \n x = self.fc(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torchvision/models/resnet.py, line 285, in forward, \n return self._forward_impl(x)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1527, in _call_impl, \n return forward_call(*args, **kwargs)", - "File /home/louyujing/miniconda3/lib/python3.9/site-packages/torch/nn/modules/module.py, line 1518, in _wrapped_call_impl, \n return self._call_impl(*args, **kwargs)", - "File /home/louyujing/visualization/resnet18.py, line 40, in , \n outputs = model(inputs)" - ], - "micro_step_id": 0, - "data": {} - }, - "bench": null - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_all_node_list.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_all_node_list.json deleted file mode 100644 index 31d53cd58..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_all_node_list.json +++ /dev/null @@ -1,317 +0,0 @@ -[ - { - "case_id": "1", - "description": "test load_graph_all_node_list", - "expected": { - "success": true, - "data": { - "npuNodeList": [], - "benchNodeList": [], - "npuUnMatchNodes": [], - "benchUnMatchNodes": [], - "npuMatchNodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" - }, - "benchMatchNodes": { - "DefaultModel": "DefaultModel", - "Module.conv1.Conv2d.forward.0": "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0": "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0": "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0": "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.0.BasicBlock.forward.0": "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.0.conv1.Conv2d.forward.0": "Module.layer1.0.conv1.Conv2d.forward.0", - "Module.layer1.Sequential.forward.0": "Module.layer1.Sequential.forward.0", - "Module.layer1.0.bn1.BatchNorm2d.forward.0": "Module.layer1.0.bn1.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.0": "Module.layer1.0.relu.ReLU.forward.0", - "Module.layer1.0.conv2.Conv2d.forward.0": "Module.layer1.0.conv2.Conv2d.forward.0", - "Module.layer1.0.bn2.BatchNorm2d.forward.0": "Module.layer1.0.bn2.BatchNorm2d.forward.0", - "Module.layer1.0.relu.ReLU.forward.1": "Module.layer1.0.relu.ReLU.forward.1", - "Module.layer1.1.BasicBlock.forward.0": "Module.layer1.1.BasicBlock.forward.0", - "Module.layer1.1.conv1.Conv2d.forward.0": "Module.layer1.1.conv1.Conv2d.forward.0", - "Module.layer1.1.bn1.BatchNorm2d.forward.0": "Module.layer1.1.bn1.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.0": "Module.layer1.1.relu.ReLU.forward.0", - "Module.layer1.1.conv2.Conv2d.forward.0": "Module.layer1.1.conv2.Conv2d.forward.0", - "Module.layer1.1.bn2.BatchNorm2d.forward.0": "Module.layer1.1.bn2.BatchNorm2d.forward.0", - "Module.layer1.1.relu.ReLU.forward.1": "Module.layer1.1.relu.ReLU.forward.1", - "Module.layer2.0.BasicBlock.forward.0": "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.0.conv1.Conv2d.forward.0": "Module.layer2.0.conv1.Conv2d.forward.0", - "Module.layer2.Sequential.forward.0": "Module.layer2.Sequential.forward.0", - "Module.layer2.0.bn1.BatchNorm2d.forward.0": "Module.layer2.0.bn1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.0": "Module.layer2.0.relu.ReLU.forward.0", - "Module.layer2.0.conv2.Conv2d.forward.0": "Module.layer2.0.conv2.Conv2d.forward.0", - "Module.layer2.0.bn2.BatchNorm2d.forward.0": "Module.layer2.0.bn2.BatchNorm2d.forward.0", - "Module.layer2.0.downsample.Sequential.forward.0": "Module.layer2.0.downsample.Sequential.forward.0", - "Module.layer2.0.downsample.0.Conv2d.forward.0": "Module.layer2.0.downsample.0.Conv2d.forward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.forward.0": "Module.layer2.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer2.0.relu.ReLU.forward.1": "Module.layer2.0.relu.ReLU.forward.1", - "Module.layer2.1.BasicBlock.forward.0": "Module.layer2.1.BasicBlock.forward.0", - "Module.layer2.1.conv1.Conv2d.forward.0": "Module.layer2.1.conv1.Conv2d.forward.0", - "Module.layer2.1.bn1.BatchNorm2d.forward.0": "Module.layer2.1.bn1.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.0": "Module.layer2.1.relu.ReLU.forward.0", - "Module.layer2.1.conv2.Conv2d.forward.0": "Module.layer2.1.conv2.Conv2d.forward.0", - "Module.layer2.1.bn2.BatchNorm2d.forward.0": "Module.layer2.1.bn2.BatchNorm2d.forward.0", - "Module.layer2.1.relu.ReLU.forward.1": "Module.layer2.1.relu.ReLU.forward.1", - "Module.layer3.0.BasicBlock.forward.0": "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.0.conv1.Conv2d.forward.0": "Module.layer3.0.conv1.Conv2d.forward.0", - "Module.layer3.Sequential.forward.0": "Module.layer3.Sequential.forward.0", - "Module.layer3.0.bn1.BatchNorm2d.forward.0": "Module.layer3.0.bn1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.0": "Module.layer3.0.relu.ReLU.forward.0", - "Module.layer3.0.conv2.Conv2d.forward.0": "Module.layer3.0.conv2.Conv2d.forward.0", - "Module.layer3.0.bn2.BatchNorm2d.forward.0": "Module.layer3.0.bn2.BatchNorm2d.forward.0", - "Module.layer3.0.downsample.Sequential.forward.0": "Module.layer3.0.downsample.Sequential.forward.0", - "Module.layer3.0.downsample.0.Conv2d.forward.0": "Module.layer3.0.downsample.0.Conv2d.forward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.forward.0": "Module.layer3.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer3.0.relu.ReLU.forward.1": "Module.layer3.0.relu.ReLU.forward.1", - "Module.layer3.1.BasicBlock.forward.0": "Module.layer3.1.BasicBlock.forward.0", - "Module.layer3.1.conv1.Conv2d.forward.0": "Module.layer3.1.conv1.Conv2d.forward.0", - "Module.layer3.1.bn1.BatchNorm2d.forward.0": "Module.layer3.1.bn1.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.0": "Module.layer3.1.relu.ReLU.forward.0", - "Module.layer3.1.conv2.Conv2d.forward.0": "Module.layer3.1.conv2.Conv2d.forward.0", - "Module.layer3.1.bn2.BatchNorm2d.forward.0": "Module.layer3.1.bn2.BatchNorm2d.forward.0", - "Module.layer3.1.relu.ReLU.forward.1": "Module.layer3.1.relu.ReLU.forward.1", - "Module.layer4.0.BasicBlock.forward.0": "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.0.conv1.Conv2d.forward.0": "Module.layer4.0.conv1.Conv2d.forward.0", - "Module.layer4.Sequential.forward.0": "Module.layer4.Sequential.forward.0", - "Module.layer4.0.bn1.BatchNorm2d.forward.0": "Module.layer4.0.bn1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.0": "Module.layer4.0.relu.ReLU.forward.0", - "Module.layer4.0.conv2.Conv2d.forward.0": "Module.layer4.0.conv2.Conv2d.forward.0", - "Module.layer4.0.bn2.BatchNorm2d.forward.0": "Module.layer4.0.bn2.BatchNorm2d.forward.0", - "Module.layer4.0.downsample.Sequential.forward.0": "Module.layer4.0.downsample.Sequential.forward.0", - "Module.layer4.0.downsample.0.Conv2d.forward.0": "Module.layer4.0.downsample.0.Conv2d.forward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.forward.0": "Module.layer4.0.downsample.1.BatchNorm2d.forward.0", - "Module.layer4.0.relu.ReLU.forward.1": "Module.layer4.0.relu.ReLU.forward.1", - "Module.layer4.1.BasicBlock.forward.0": "Module.layer4.1.BasicBlock.forward.0", - "Module.layer4.1.conv1.Conv2d.forward.0": "Module.layer4.1.conv1.Conv2d.forward.0", - "Module.layer4.1.bn1.BatchNorm2d.forward.0": "Module.layer4.1.bn1.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.0": "Module.layer4.1.relu.ReLU.forward.0", - "Module.layer4.1.conv2.Conv2d.forward.0": "Module.layer4.1.conv2.Conv2d.forward.0", - "Module.layer4.1.bn2.BatchNorm2d.forward.0": "Module.layer4.1.bn2.BatchNorm2d.forward.0", - "Module.layer4.1.relu.ReLU.forward.1": "Module.layer4.1.relu.ReLU.forward.1", - "Module.avgpool.AdaptiveAvgPool2d.forward.0": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.1.BasicBlock.backward.0": "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.1.relu.ReLU.backward.0": "Module.layer4.1.relu.ReLU.backward.0", - "Module.layer4.Sequential.backward.0": "Module.layer4.Sequential.backward.0", - "Module.layer4.1.bn2.BatchNorm2d.backward.0": "Module.layer4.1.bn2.BatchNorm2d.backward.0", - "Module.layer4.1.conv2.Conv2d.backward.0": "Module.layer4.1.conv2.Conv2d.backward.0", - "Module.layer4.1.relu.ReLU.backward.1": "Module.layer4.1.relu.ReLU.backward.1", - "Module.layer4.1.bn1.BatchNorm2d.backward.0": "Module.layer4.1.bn1.BatchNorm2d.backward.0", - "Module.layer4.1.conv1.Conv2d.backward.0": "Module.layer4.1.conv1.Conv2d.backward.0", - "Module.layer4.0.BasicBlock.backward.0": "Module.layer4.0.BasicBlock.backward.0", - "Module.layer4.0.relu.ReLU.backward.0": "Module.layer4.0.relu.ReLU.backward.0", - "Module.layer4.0.downsample.Sequential.backward.0": "Module.layer4.0.downsample.Sequential.backward.0", - "Module.layer4.0.downsample.1.BatchNorm2d.backward.0": "Module.layer4.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer4.0.downsample.0.Conv2d.backward.0": "Module.layer4.0.downsample.0.Conv2d.backward.0", - "Module.layer4.0.bn2.BatchNorm2d.backward.0": "Module.layer4.0.bn2.BatchNorm2d.backward.0", - "Module.layer4.0.conv2.Conv2d.backward.0": "Module.layer4.0.conv2.Conv2d.backward.0", - "Module.layer4.0.relu.ReLU.backward.1": "Module.layer4.0.relu.ReLU.backward.1", - "Module.layer4.0.bn1.BatchNorm2d.backward.0": "Module.layer4.0.bn1.BatchNorm2d.backward.0", - "Module.layer4.0.conv1.Conv2d.backward.0": "Module.layer4.0.conv1.Conv2d.backward.0", - "Module.layer3.1.BasicBlock.backward.0": "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.1.relu.ReLU.backward.0": "Module.layer3.1.relu.ReLU.backward.0", - "Module.layer3.Sequential.backward.0": "Module.layer3.Sequential.backward.0", - "Module.layer3.1.bn2.BatchNorm2d.backward.0": "Module.layer3.1.bn2.BatchNorm2d.backward.0", - "Module.layer3.1.conv2.Conv2d.backward.0": "Module.layer3.1.conv2.Conv2d.backward.0", - "Module.layer3.1.relu.ReLU.backward.1": "Module.layer3.1.relu.ReLU.backward.1", - "Module.layer3.1.bn1.BatchNorm2d.backward.0": "Module.layer3.1.bn1.BatchNorm2d.backward.0", - "Module.layer3.1.conv1.Conv2d.backward.0": "Module.layer3.1.conv1.Conv2d.backward.0", - "Module.layer3.0.BasicBlock.backward.0": "Module.layer3.0.BasicBlock.backward.0", - "Module.layer3.0.relu.ReLU.backward.0": "Module.layer3.0.relu.ReLU.backward.0", - "Module.layer3.0.downsample.Sequential.backward.0": "Module.layer3.0.downsample.Sequential.backward.0", - "Module.layer3.0.downsample.1.BatchNorm2d.backward.0": "Module.layer3.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer3.0.downsample.0.Conv2d.backward.0": "Module.layer3.0.downsample.0.Conv2d.backward.0", - "Module.layer3.0.bn2.BatchNorm2d.backward.0": "Module.layer3.0.bn2.BatchNorm2d.backward.0", - "Module.layer3.0.conv2.Conv2d.backward.0": "Module.layer3.0.conv2.Conv2d.backward.0", - "Module.layer3.0.relu.ReLU.backward.1": "Module.layer3.0.relu.ReLU.backward.1", - "Module.layer3.0.bn1.BatchNorm2d.backward.0": "Module.layer3.0.bn1.BatchNorm2d.backward.0", - "Module.layer3.0.conv1.Conv2d.backward.0": "Module.layer3.0.conv1.Conv2d.backward.0", - "Module.layer2.1.BasicBlock.backward.0": "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.1.relu.ReLU.backward.0": "Module.layer2.1.relu.ReLU.backward.0", - "Module.layer2.Sequential.backward.0": "Module.layer2.Sequential.backward.0", - "Module.layer2.1.bn2.BatchNorm2d.backward.0": "Module.layer2.1.bn2.BatchNorm2d.backward.0", - "Module.layer2.1.conv2.Conv2d.backward.0": "Module.layer2.1.conv2.Conv2d.backward.0", - "Module.layer2.1.relu.ReLU.backward.1": "Module.layer2.1.relu.ReLU.backward.1", - "Module.layer2.1.bn1.BatchNorm2d.backward.0": "Module.layer2.1.bn1.BatchNorm2d.backward.0", - "Module.layer2.1.conv1.Conv2d.backward.0": "Module.layer2.1.conv1.Conv2d.backward.0", - "Module.layer2.0.BasicBlock.backward.0": "Module.layer2.0.BasicBlock.backward.0", - "Module.layer2.0.relu.ReLU.backward.0": "Module.layer2.0.relu.ReLU.backward.0", - "Module.layer2.0.downsample.Sequential.backward.0": "Module.layer2.0.downsample.Sequential.backward.0", - "Module.layer2.0.downsample.1.BatchNorm2d.backward.0": "Module.layer2.0.downsample.1.BatchNorm2d.backward.0", - "Module.layer2.0.downsample.0.Conv2d.backward.0": "Module.layer2.0.downsample.0.Conv2d.backward.0", - "Module.layer2.0.bn2.BatchNorm2d.backward.0": "Module.layer2.0.bn2.BatchNorm2d.backward.0", - "Module.layer2.0.conv2.Conv2d.backward.0": "Module.layer2.0.conv2.Conv2d.backward.0", - "Module.layer2.0.relu.ReLU.backward.1": "Module.layer2.0.relu.ReLU.backward.1", - "Module.layer2.0.bn1.BatchNorm2d.backward.0": "Module.layer2.0.bn1.BatchNorm2d.backward.0", - "Module.layer2.0.conv1.Conv2d.backward.0": "Module.layer2.0.conv1.Conv2d.backward.0", - "Module.layer1.1.BasicBlock.backward.0": "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.1.relu.ReLU.backward.0": "Module.layer1.1.relu.ReLU.backward.0", - "Module.layer1.Sequential.backward.0": "Module.layer1.Sequential.backward.0", - "Module.layer1.1.bn2.BatchNorm2d.backward.0": "Module.layer1.1.bn2.BatchNorm2d.backward.0", - "Module.layer1.1.conv2.Conv2d.backward.0": "Module.layer1.1.conv2.Conv2d.backward.0", - "Module.layer1.1.relu.ReLU.backward.1": "Module.layer1.1.relu.ReLU.backward.1", - "Module.layer1.1.bn1.BatchNorm2d.backward.0": "Module.layer1.1.bn1.BatchNorm2d.backward.0", - "Module.layer1.1.conv1.Conv2d.backward.0": "Module.layer1.1.conv1.Conv2d.backward.0", - "Module.layer1.0.BasicBlock.backward.0": "Module.layer1.0.BasicBlock.backward.0", - "Module.layer1.0.relu.ReLU.backward.0": "Module.layer1.0.relu.ReLU.backward.0", - "Module.layer1.0.bn2.BatchNorm2d.backward.0": "Module.layer1.0.bn2.BatchNorm2d.backward.0", - "Module.layer1.0.conv2.Conv2d.backward.0": "Module.layer1.0.conv2.Conv2d.backward.0", - "Module.layer1.0.relu.ReLU.backward.1": "Module.layer1.0.relu.ReLU.backward.1", - "Module.layer1.0.bn1.BatchNorm2d.backward.0": "Module.layer1.0.bn1.BatchNorm2d.backward.0", - "Module.layer1.0.conv1.Conv2d.backward.0": "Module.layer1.0.conv1.Conv2d.backward.0", - "Module.maxpool.MaxPool2d.backward.0": "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0": "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0": "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0": "Module.conv1.Conv2d.backward.0" - } - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json deleted file mode 100644 index b1947dd13..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_load_graph_config_info.json +++ /dev/null @@ -1,60 +0,0 @@ -[ - { - "case_id": "1", - "description": "test load_graph_config_info", - "expected": { - "success": true, - "data": { - "microSteps": 1, - "tooltips": "{\"Max diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5927\\u503c\\u7684\\u5dee\\u503c\", \"Min diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u6700\\u5c0f\\u503c\\u7684\\u5dee\\u503c\", \"Mean diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c\\u5e73\\u5747\\u503c\\u7684\\u5dee\\u503c\", \"L2norm diff\": \"NPU\\u4e0e\\u6807\\u6746API\\u7edf\\u8ba1\\u4fe1\\u606f\\u6bd4\\u5bf9\\uff0c2\\u8303\\u6570\\uff08\\u5e73\\u65b9\\u6839\\uff09\\u7684\\u5dee\\u503c\"}", - "overflowCheck": true, - "isSingleGraph": false, - "colors": { - "#FFFCF3": { - "value": [ - 0, - 0.2 - ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" - }, - "#FFEDBE": { - "value": [ - 0.2, - 0.4 - ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" - }, - "#FFDC7F": { - "value": [ - 0.4, - 0.6 - ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" - }, - "#FFC62E": { - "value": [ - 0.6, - 0.8 - ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" - }, - "#FF704D": { - "value": [ - 0.8, - 1 - ], - "description": "\u6b64\u8282\u70b9\u6240\u6709\u8f93\u5165\u8f93\u51fa\u7684\u7edf\u8ba1\u91cf\u76f8\u5bf9\u8bef\u5dee, \u503c\u8d8a\u5927\u4ee3\u8868\u6d4b\u91cf\u503c\u4e0e\u6807\u6746\u503c\u7684\u504f\u5dee\u8d8a\u5927, \u76f8\u5bf9\u8bef\u5dee\u8ba1\u7b97\u65b9\u5f0f:|(\u6d4b\u91cf\u503c-\u6807\u6746\u503c)/\u6807\u6746\u503c|" - }, - "#C7C7C7": { - "value": [], - "description": "\u6bd4\u5bf9\u8fc7\u7a0b\u4e2d\u8282\u70b9\u672a\u5339\u914d\u4e0a" - } - }, - "matchedConfigFiles": [ - "mock_compare_resnet_data.vis.config" - ], - "task": "summary" - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_colors.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_colors.json deleted file mode 100644 index f218537b5..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_colors.json +++ /dev/null @@ -1,12 +0,0 @@ -[ - { - "case_id": "1", - "description": "测试删除匹配节点", - "input": "data/plugin/graph_ascend/updateColors?colors={\"%23FFEDBE\":{\"value\":[0,0.3],\"description\":\"此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|\"},\"%23FFC62E\":{\"value\":[0.3,0.9],\"description\":\"此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|\"},\"%23FF4118\":{\"value\":[0.9,1],\"description\":\"此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|\"},\"%23C7C7C7\":{\"value\":\"无匹配节点\",\"description\":\"对比过程中节点未匹配上\"}}&run=st_test_cases", - "expected": { - "success": true, - "error": null, - "data": {} - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_hierarchy_data.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_hierarchy_data.json deleted file mode 100644 index 8883046f1..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/st_test_cases/test_update_hierarchy_data.json +++ /dev/null @@ -1,474 +0,0 @@ -[ - { - "case_id": "1", - "description": "测试 updateHierarchyData 接口", - "input": "data/plugin/graph_ascend/updateHierarchyData?graphType=NPU", - "expected": { - "success": true, - "data": { - "DefaultModel": { - "x": 0, - "y": 0, - "width": 230, - "height": 300, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "DefaultModel", - "name": "N___DefaultModel", - "children": [ - "Module.conv1.Conv2d.forward.0", - "Module.bn1.BatchNorm2d.forward.0", - "Module.relu.ReLU.forward.0", - "Module.maxpool.MaxPool2d.forward.0", - "Module.layer1.Sequential.forward.0", - "Module.layer2.Sequential.forward.0", - "Module.layer3.Sequential.forward.0", - "Module.layer4.Sequential.forward.0", - "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "Module.fc.Linear.forward.0", - "Module.fc.Linear.backward.0", - "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "Module.layer4.Sequential.backward.0", - "Module.layer3.Sequential.backward.0", - "Module.layer2.Sequential.backward.0", - "Module.layer1.Sequential.backward.0", - "Module.maxpool.MaxPool2d.backward.0", - "Module.relu.ReLU.backward.0", - "Module.bn1.BatchNorm2d.backward.0", - "Module.conv1.Conv2d.backward.0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.forward.0": { - "x": 7, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.forward.0", - "name": "N___Module.conv1.Conv2d.forward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.forward.0": { - "x": 62, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.forward.0", - "name": "N___Module.bn1.BatchNorm2d.forward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.forward.0": { - "x": 117, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.forward.0", - "name": "N___Module.relu.ReLU.forward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.forward.0": { - "x": 172, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.forward.0", - "name": "N___Module.maxpool.MaxPool2d.forward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.forward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.forward.0": { - "x": 8, - "y": 50, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.forward.0", - "name": "N___Module.layer1.Sequential.forward.0", - "children": [ - "Module.layer1.0.BasicBlock.forward.0", - "Module.layer1.1.BasicBlock.forward.0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.forward.0" - ], - "precisionIndex": 0.7, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.forward.0": { - "x": 8, - "y": 75, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.forward.0", - "name": "N___Module.layer2.Sequential.forward.0", - "children": [ - "Module.layer2.0.BasicBlock.forward.0", - "Module.layer2.1.BasicBlock.forward.0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.forward.0": { - "x": 8, - "y": 100, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.forward.0", - "name": "N___Module.layer3.Sequential.forward.0", - "children": [ - "Module.layer3.0.BasicBlock.forward.0", - "Module.layer3.1.BasicBlock.forward.0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.forward.0": { - "x": 8, - "y": 125, - "width": 214, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.forward.0", - "name": "N___Module.layer4.Sequential.forward.0", - "children": [ - "Module.layer4.0.BasicBlock.forward.0", - "Module.layer4.1.BasicBlock.forward.0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.forward.0": { - "x": 7, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.forward.0", - "name": "N___Module.avgpool.AdaptiveAvgPool2d.forward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.forward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.forward.0": { - "x": 62, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.forward.0", - "name": "N___Module.fc.Linear.forward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "None", - "DefaultModel", - "Module.fc.Linear.forward.0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.fc.Linear.backward.0": { - "x": 117, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.fc.Linear.backward.0", - "name": "N___Module.fc.Linear.backward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.avgpool.AdaptiveAvgPool2d.backward.0": { - "x": 172, - "y": 150, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.avgpool.AdaptiveAvgPool2d.backward.0", - "name": "N___Module.avgpool.AdaptiveAvgPool2d.backward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.avgpool.AdaptiveAvgPool2d.backward.0" - ], - "precisionIndex": 0.81, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer4.Sequential.backward.0": { - "x": 5, - "y": 175, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer4.Sequential.backward.0", - "name": "N___Module.layer4.Sequential.backward.0", - "children": [ - "Module.layer4.1.BasicBlock.backward.0", - "Module.layer4.0.BasicBlock.backward.0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer4.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer3.Sequential.backward.0": { - "x": 5, - "y": 200, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer3.Sequential.backward.0", - "name": "N___Module.layer3.Sequential.backward.0", - "children": [ - "Module.layer3.1.BasicBlock.backward.0", - "Module.layer3.0.BasicBlock.backward.0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer3.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer2.Sequential.backward.0": { - "x": 5, - "y": 225, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer2.Sequential.backward.0", - "name": "N___Module.layer2.Sequential.backward.0", - "children": [ - "Module.layer2.1.BasicBlock.backward.0", - "Module.layer2.0.BasicBlock.backward.0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer2.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.layer1.Sequential.backward.0": { - "x": 5, - "y": 250, - "width": 220, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.layer1.Sequential.backward.0", - "name": "N___Module.layer1.Sequential.backward.0", - "children": [ - "Module.layer1.1.BasicBlock.backward.0", - "Module.layer1.0.BasicBlock.backward.0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "DefaultModel", - "Module.layer1.Sequential.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.maxpool.MaxPool2d.backward.0": { - "x": 7, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.maxpool.MaxPool2d.backward.0", - "name": "N___Module.maxpool.MaxPool2d.backward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.maxpool.MaxPool2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.relu.ReLU.backward.0": { - "x": 62, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.relu.ReLU.backward.0", - "name": "N___Module.relu.ReLU.backward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.relu.ReLU.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.bn1.BatchNorm2d.backward.0": { - "x": 117, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.bn1.BatchNorm2d.backward.0", - "name": "N___Module.bn1.BatchNorm2d.backward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.bn1.BatchNorm2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Module.conv1.Conv2d.backward.0": { - "x": 172, - "y": 275, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "DefaultModel", - "label": "Module.conv1.Conv2d.backward.0", - "name": "N___Module.conv1.Conv2d.backward.0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [ - "DefaultModel", - "Module.conv1.Conv2d.backward.0" - ], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py deleted file mode 100644 index 9e13bb431..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/test_case_factory.py +++ /dev/null @@ -1,115 +0,0 @@ -# Copyright (c) 2025, Huawei Technologies. -# All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -import json -import os - - -class TestCaseFactory: - """管理所有测试用例的统一工厂""" - - UT_CASE_DIR = os.path.join(os.path.dirname(__file__), 'ut_test_cases') - ST_CASE_DIR = os.path.join(os.path.dirname(__file__), 'st_test_cases') - - @classmethod - def get_process_task_add_cases(cls): - return cls._load_ut_cases('test_match_node_controller/process_task_add_case.json') - - @classmethod - def get_process_task_delete_cases(cls): - return cls._load_ut_cases('test_match_node_controller/process_task_delete_case.json') - - @classmethod - def get_process_task_add_child_layer_cases(cls): - return cls._load_ut_cases('test_match_node_controller/process_task_add_child_layer.json') - - @classmethod - def get_process_task_delete_child_layer_cases(cls): - return cls._load_ut_cases('test_match_node_controller/process_task_delete_child_layer.json') - - @classmethod - def get_process_task_add_child_layer_by_config_cases(cls): - return cls._load_ut_cases('test_match_node_controller/process_task_add_child_layer_by_config.json') - - @classmethod - def get_change_expand_state_cases(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller/change_expand_state_case.json') - - @classmethod - def get_update_hierarchy_data_cases(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller/update_hierarchy_data_case.json') - - @classmethod - def load_single_graph_test_data(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller/mock_single_statis_graph.vis') - - @classmethod - def load_compare_graph_test_data(cls): - return cls._load_ut_cases('test_layout_hierarchy_controller/mock_compare_statis_graph.vis') - - @classmethod - def _load_ut_cases(cls, filename): - """从JSON文件加载测试用例""" - path = os.path.join(cls.UT_CASE_DIR, filename) - with open(path, 'r', encoding='utf-8') as f: - return json.load(f) - - # ST - @classmethod - def get_load_graph_config_info_cases(cls): - return cls._load_st_cases('test_load_graph_config_info.json') - - @classmethod - def get_load_graph_all_node_list_cases(cls): - return cls._load_st_cases('test_load_graph_all_node_list.json') - - @classmethod - def get_change_node_expand_state_cases(cls): - return cls._load_st_cases('test_change_node_expand_state.json') - - @classmethod - def get_test_add_match_nodes_cases(cls): - return cls._load_st_cases('test_add_match_nodes.json') - - @classmethod - def get_test_update_hierarchy_data_cases(cls): - return cls._load_st_cases('test_update_hierarchy_data.json') - - @classmethod - def get_test_delete_match_nodes_cases(cls): - return cls._load_st_cases('test_delete_match_nodes.json') - - @classmethod - def get_test_get_node_info_cases(cls): - return cls._load_st_cases('test_get_node_info.json') - - @classmethod - def get_test_add_match_nodes_by_config_cases(cls): - return cls._load_st_cases('test_add_match_nodes_by_config.json') - - @classmethod - def get_test_update_colors_cases(cls): - return cls._load_st_cases('test_update_colors.json') - - @classmethod - def load_compare_resnet_test_data(cls): - return cls._load_st_cases('mock_compare_resnet_data.vis') - - @classmethod - def _load_st_cases(cls, filename): - """从JSON文件加载测试用例""" - path = os.path.join(cls.ST_CASE_DIR, filename) - with open(path, 'r', encoding='utf-8') as f: - return json.load(f) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/change_expand_state_case.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/change_expand_state_case.json deleted file mode 100644 index 5536e45f2..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/change_expand_state_case.json +++ /dev/null @@ -1,815 +0,0 @@ -[ - { - "case_id": "0", - "description": "测试无效graph_type", - "input": { - "node_name": "invalid", - "graph_type": "invalid", - "graph": {}, - "micro_step": -1 - }, - "expected": {} - }, - { - "case_id": "1", - "description": "测试展开NPU根节点", - "input": { - "node_name": "root", - "graph_type": "NPU", - "graph": {}, - "micro_step": -1 - }, - "expected": { - "AddThree_0": { - "x": 0, - "y": 0, - "width": 386, - "height": 125, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "AddThree_0", - "name": "N___AddThree_0", - "nodeType": 0, - "matchedNodeLink": [ - "B___AddThree_0" - ], - "precisionIndex": 0.5, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "arg0_1_0": { - "x": 168, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "arg0_1_0", - "name": "N___arg0_1_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": { - "communications_type": "send", - "nodes_info": { - "0": [ - "0.3", - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - ], - "1": [ - "Nan", - "Tensor.__api__0.forward" - ], - "2": [ - "0.3", - "arg0_1_0" - ], - "3": [ - "0.3", - "arg0_1_0" - ], - "4": [ - "0.3", - "arg0_1_0" - ] - } - } - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "x": 80, - "y": 50, - "width": 226, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "name": "N___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "nodeType": 9, - "matchedNodeLink": [ - "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - ], - "precisionIndex": "NaN", - "overflowLevel": "medium", - "matchedDistributed": {} - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "x": 5, - "y": 75, - "width": 376, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "name": "N___Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "nodeType": 8, - "matchedNodeLink": [], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "output_0": { - "x": 168, - "y": 100, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "output_0", - "name": "N___output_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - }, - { - "case_id": "2", - "description": "测试展开Bench根节点", - "input": { - "node_name": "root", - "graph_type": "Bench", - "graph": {}, - "micro_step": -1 - }, - "expected": { - "AddThree_0": { - "x": 0, - "y": 0, - "width": 386, - "height": 125, - "expand": true, - "isRoot": true, - "parentNode": "root", - "label": "AddThree_0", - "name": "B___AddThree_0", - "nodeType": 0, - "matchedNodeLink": [ - "N___AddThree_0" - ], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "arg0_1_0": { - "x": 168, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "arg0_1_0", - "name": "B___arg0_1_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "x": 80, - "y": 50, - "width": 226, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "name": "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "nodeType": 0, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "x": 5, - "y": 75, - "width": 376, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "name": "B___Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "nodeType": 0, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "output_0": { - "x": 168, - "y": 100, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "output_0", - "name": "B___output_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - }, - { - "case_id": "3", - "description": "测试展开单图根节点", - "input": { - "node_name": "root", - "graph_type": "Single", - "graph": {}, - "micro_step": -1 - }, - "expected": { - "AddThree_0": { - "x": 0, - "y": 0, - "width": 386, - "height": 150, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "AddThree_0", - "name": "AddThree_0", - "nodeType": 0, - "matchedNodeLink": [ - "B___AddThree_0" - ], - "precisionIndex": 0.5, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "arg0_1_0": { - "x": 168, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "arg0_1_0", - "name": "arg0_1_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Apis_Between_Modules.0": { - "x": 122, - "y": 50, - "width": 142, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Apis_Between_Modules.0", - "name": "Apis_Between_Modules.0", - "nodeType": 9, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "x": 80, - "y": 75, - "width": 226, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "name": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "nodeType": 9, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "medium", - "matchedDistributed": {} - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "x": 5, - "y": 100, - "width": 376, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "name": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "nodeType": 0, - "matchedNodeLink": [], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "output_0": { - "x": 168, - "y": 125, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "output_0", - "name": "output_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - }, - { - "case_id": "4", - "description": "测试点击展开多图NPU节点", - "input": { - "node_name": "AddThree_0", - "graph_type": "NPU", - "graph": {}, - "micro_step": -1 - }, - "expected": { - "AddThree_0": { - "x": 0, - "y": 0, - "width": 386, - "height": 125, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "AddThree_0", - "name": "N___AddThree_0", - "nodeType": 0, - "matchedNodeLink": [ - "B___AddThree_0" - ], - "precisionIndex": 0.5, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "arg0_1_0": { - "x": 168, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "arg0_1_0", - "name": "N___arg0_1_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": { - "communications_type": "send", - "nodes_info": { - "0": [ - "0.3", - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - ], - "1": [ - "Nan", - "Tensor.__api__0.forward" - ], - "2": [ - "0.3", - "arg0_1_0" - ], - "3": [ - "0.3", - "arg0_1_0" - ], - "4": [ - "0.3", - "arg0_1_0" - ] - } - } - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "x": 80, - "y": 50, - "width": 226, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "name": "N___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "nodeType": 9, - "matchedNodeLink": [ - "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - ], - "precisionIndex": "NaN", - "overflowLevel": "medium", - "matchedDistributed": {} - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "x": 5, - "y": 75, - "width": 376, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "name": "N___Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "nodeType": 8, - "matchedNodeLink": [], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "output_0": { - "x": 168, - "y": 100, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "output_0", - "name": "N___output_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - }, - { - "case_id": "5", - "description": "测试选择展开多图NPU节点", - "input": { - "node_name": "add_1", - "graph_type": "NPU", - "graph": {}, - "micro_step": -1 - }, - "expected": { - "AddThree_0": { - "x": 0, - "y": 0, - "width": 386, - "height": 220, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "AddThree_0", - "name": "N___AddThree_0", - "nodeType": 0, - "matchedNodeLink": [ - "B___AddThree_0" - ], - "precisionIndex": 0.5, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "arg0_1_0": { - "x": 168, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "arg0_1_0", - "name": "N___arg0_1_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": { - "communications_type": "send", - "nodes_info": { - "0": [ - "0.3", - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - ], - "1": [ - "Nan", - "Tensor.__api__0.forward" - ], - "2": [ - "0.3", - "arg0_1_0" - ], - "3": [ - "0.3", - "arg0_1_0" - ], - "4": [ - "0.3", - "arg0_1_0" - ] - } - } - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "x": 80, - "y": 50, - "width": 226, - "height": 110, - "expand": true, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "name": "N___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "nodeType": 9, - "matchedNodeLink": [ - "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - ], - "precisionIndex": "NaN", - "overflowLevel": "medium", - "matchedDistributed": {} - }, - "AddOne_0": { - "x": 164, - "y": 75, - "width": 58, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "label": "AddOne_0", - "name": "N___AddOne_0", - "nodeType": 0, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "AddOne_1": { - "x": 135, - "y": 100, - "width": 115, - "height": 50, - "expand": true, - "isRoot": false, - "parentNode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "label": "AddOne_1", - "name": "N___AddOne_1", - "nodeType": 9, - "matchedNodeLink": [], - "precisionIndex": 0.8, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "add_1": { - "x": 140, - "y": 125, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddOne_1", - "label": "add_1", - "name": "N___add_1", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "add_4": { - "x": 195, - "y": 125, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddOne_1", - "label": "add_4", - "name": "N___add_4", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "x": 5, - "y": 170, - "width": 376, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "name": "N___Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "nodeType": 8, - "matchedNodeLink": [], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "output_0": { - "x": 168, - "y": 195, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "output_0", - "name": "N___output_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - }, - { - "case_id": 6, - "description": "测试展开单图子节点", - "input": { - "node_name": "Apis_Between_Modules.0", - "graph_type": "Single", - "graph": {}, - "micro_step": -1 - }, - "expected": { - "AddThree_0": { - "x": 0, - "y": 0, - "width": 386, - "height": 185, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "AddThree_0", - "name": "AddThree_0", - "nodeType": 0, - "matchedNodeLink": [ - "B___AddThree_0" - ], - "precisionIndex": 0.5, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "arg0_1_0": { - "x": 168, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "arg0_1_0", - "name": "arg0_1_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Apis_Between_Modules.0": { - "x": 80, - "y": 50, - "width": 225, - "height": 50, - "expand": true, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Apis_Between_Modules.0", - "name": "Apis_Between_Modules.0", - "nodeType": 9, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Tensor.__api__0.forward": { - "x": 85, - "y": 75, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Apis_Between_Modules.0", - "label": "__api__0.forward", - "name": "Tensor.__api__0.forward", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Tensor.__api__1.forward": { - "x": 140, - "y": 75, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Apis_Between_Modules.0", - "label": "__api__1.forward", - "name": "Tensor.__api__1.forward", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Tensor.__api__2.forward": { - "x": 195, - "y": 75, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Apis_Between_Modules.0", - "label": "__api__2.forward", - "name": "Tensor.__api__2.forward", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Tensor.__api__3.forward": { - "x": 250, - "y": 75, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Apis_Between_Modules.0", - "label": "__api__3.forward", - "name": "Tensor.__api__3.forward", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "x": 80, - "y": 110, - "width": 226, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "name": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "nodeType": 9, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "medium", - "matchedDistributed": {} - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "x": 5, - "y": 135, - "width": 376, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "name": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "nodeType": 0, - "matchedNodeLink": [], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "output_0": { - "x": 168, - "y": 160, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "output_0", - "name": "output_0", - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_compare_statis_graph.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_compare_statis_graph.vis deleted file mode 100644 index 410cc2fc9..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_compare_statis_graph.vis +++ /dev/null @@ -1,945 +0,0 @@ -{ - "ToolTip": "{\"shape\": \"\\u6570\"}", - "NPU": { - "edge": [], - "node": { - "AddOne_0": { - "matched_node_link": [], - "data": {}, - "id": "AddOne_0", - "inputs": [], - "input_data": { - "AddOne_0.input_arg.0": { - "type": "torch.Tensor", - "dtype": "", - "shape": [ - 32, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "AddOne_0.input_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "AddOne_0.1": {}, - "AddOne_0.2": {} - }, - "output_data": { - "AddOne_0.output_arg.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 32, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "AddOne_0.output_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "AddOne_0.1": {}, - "AddOne_0.2": {} - }, - "is_forward": true, - "node_type": 0, - "outputs": [], - "pair": "None", - "subnodes": [ - "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", - "add_51111" - ], - "type": "AddOne", - "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - }, - "AddOne_1": { - "matched_node_link": [], - "data": { - "precision_index": 0.8 - }, - "id": "AddOne_1", - "inputs": [], - "input_data": { - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.input_arg.0": { - "data_name": "-10", - "longlonglonglonglonglongName": "hah", - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[32, 512, 2, 2]", - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406", - "error_key": [ - "type", - "shape" - ] - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.kwrag_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "is_forward": true, - "node_type": 9, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "add_1", - "add_4" - ], - "type": "AddOne", - "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "matched_node_link": [], - "data": { - "precision_index": 0 - }, - "id": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "inputs": [], - "is_forward": true, - "node_type": 8, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "add_2" - ], - "type": "AddOne", - "upnode": "AddThree_0", - "micro_step_id": "3" - }, - "AddThree_0": { - "matched_node_link": [ - "B___AddThree_0" - ], - "data": { - "precision_index": 0.5 - }, - "id": "AddThree_0", - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "arg0_1_0", - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "output_0" - ], - "type": "AddThree", - "upnode": "None" - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "matched_node_link": [ - "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - ], - "data": { - "precision_status": false, - "Host Self Duration(us)": 56.24, - "Host Total Duration(us)": 56.24, - "Device Self Duration(us)": 0, - "Device Total Duration(us)": 0, - "overflow_level": "medium" - }, - "id": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "inputs": [], - "input_data": { - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.input_arg.0": { - "data_name": "-10", - "longlonglonglonglonglongName": "hah", - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[32, 512, 2, 2]", - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406", - "error_key": [ - "type", - "shape" - ] - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.kwrag_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "is_forward": true, - "node_type": 9, - "outputs": [], - "output_data": { - "output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 128, - 512, - 2, - 2 - ], - "Max": "538.2343242", - "Min": "-234.124124234", - "Mean": "-510.23432654", - "Norm": "3555.3406" - }, - "output.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 16, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "pair": "None", - "subnodes": [ - "AddOne_0", - "AddOne_1" - ], - "suggestions": { - "text": "test ptdbg工具 with longlong tenm tensldjta te alsejtka gaew jtljae tet jsdklfj.", - "ptdbg工具": "https://gitee.com/ascend/att/tree/master/debug/accuracy_tools/ptdbg_ascend" - }, - "stack_info": [ - "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)", - "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)", - "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)" - ], - "type": "AddTwo", - "upnode": "AddThree_0", - "micro_step_id": "0" - }, - "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee": { - "matched_node_link": [ - "B___AddThree_0", - "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "B___AddOne_0", - "B___Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee" - ], - "data": { - "precision_index": 0.35 - }, - "id": "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", - "inputs": [], - "input_data": { - "input_arg.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 32, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "input_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "input_arg.2": "None" - }, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": { - "output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 128, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "output.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 16, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "pair": "None", - "subnodes": [], - "type": "addlongtingmelasidngkonklajelkjsakljgskadtest", - "upnode": "AddOne_0" - }, - "add_51111": { - "matched_node_link": [], - "data": { - "precision_status": true, - "precision_index": 1, - "md5 Compare Result": "Pass" - }, - "id": "add_51111", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 1, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "AddOne_0" - }, - "add_1": { - "matched_node_link": [], - "data": { - "precision_status": false, - "precision_index": 0, - "md5 Compare Result": "Pass" - }, - "id": "add_1", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "AddOne_1" - }, - "add_4": { - "matched_node_link": [], - "data": {}, - "id": "add_4", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "AddOne_1" - }, - "add_2": { - "matched_node_link": [], - "data": {}, - "id": "add_2", - "inputs": [], - "input_data": { - "add_2.input_arg.0": { - "longlonglonglonglonglongName": "hah", - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[32, 512, 2, 2]", - "Max": "6408.2343242", - "Min": "-3134.124124234", - "Mean": "-501.23432654", - "Norm": "3555.3406", - "error_key": [ - "type", - "shape" - ] - }, - "add_2.kwrag_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee" - }, - "arg0_1_0": { - "matched_node_link": [], - "data": {}, - "id": "arg0_1_0", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "arg0_1", - "upnode": "AddThree_0", - "micro_step_id": "2", - "suggestions": { - "text": "test ptdbg工" - }, - "stack_info": [ - "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)" - ], - "matched_distributed": { - "communications_type": "send", - "nodes_info": { - "0": [ - "0.3", - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - ], - "1": [ - "Nan", - "Tensor.__api__0.forward" - ], - "2": [ - "0.3", - "arg0_1_0" - ], - "3": [ - "0.3", - "arg0_1_0" - ], - "4": [ - "0.3", - "arg0_1_0" - ] - } - } - }, - "output_0": { - "matched_node_link": [], - "data": {}, - "id": "output_0", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "output", - "upnode": "AddThree_0", - "micro_step_id": "3" - } - }, - "root": "AddThree_0" - }, - "Bench": { - "edge": [], - "node": { - "AddOne_0": { - "matched_node_link": [], - "data": {}, - "id": "AddOne_0", - "inputs": [], - "input_data": { - "AddOne_0.input_arg.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 32, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "AddOne_0.input_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "output_data": { - "AddOne_0.output_arg.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 32, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "AddOne_0.output_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "is_forward": true, - "node_type": 0, - "outputs": [], - "pair": "None", - "subnodes": [ - "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee" - ], - "type": "AddOne", - "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - }, - "AddOne_1": { - "matched_node_link": [], - "data": {}, - "id": "AddOne_1", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "add_1" - ], - "type": "AddOne", - "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "matched_node_link": [], - "data": {}, - "id": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "add_2" - ], - "type": "AddOne", - "upnode": "AddThree_0" - }, - "AddThree_0": { - "matched_node_link": [ - "N___AddThree_0" - ], - "data": {}, - "id": "AddThree_0", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "arg0_1_0", - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "output_0" - ], - "type": "AddThree", - "upnode": "root" - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "matched_node_link": [], - "data": {}, - "id": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "inputs": [], - "input_data": { - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.input_arg.0": { - "longlonglonglonglonglongName": "hah", - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[32, 512, 2, 2]", - "Max": "548.2343242", - "Min": "-234.124124234", - "Mean": "-5.23432654", - "Norm": "35555.3406", - "error_key": [ - "type", - "shape" - ] - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.kwrag_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": { - "output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 128, - 512, - 2, - 2 - ], - "Max": "5038.2343242", - "Min": "-1234.124124234", - "Mean": "-410.23432654", - "Norm": "3255.3406" - }, - "output.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 16, - 256, - 2, - 2 - ], - "Max": "538.2343242", - "Min": "-234.124124234", - "Mean": "-51.23432654", - "Norm": "35555.3406" - } - }, - "pair": "None", - "subnodes": [ - "AddOne_0", - "AddOne_1" - ], - "type": "AddTwo", - "upnode": "AddThree_0" - }, - "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee": { - "matched_node_link": [ - "N___AddThree_0", - "N___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "N___AddOne_0", - "N___Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee" - ], - "data": {}, - "id": "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", - "inputs": [], - "input_data": { - "input_arg.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 32, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "input_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "is_forward": true, - "node_type": 1, - "outputs": [], - "output_data": { - "output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 128, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "output.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 16, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "AddOne_0" - }, - "add_1": { - "matched_node_link": [], - "data": {}, - "id": "add_1", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 1, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "AddOne_1" - }, - "add_2": { - "matched_node_link": [], - "data": {}, - "id": "add_2", - "inputs": [], - "input_data": { - "add_2.input_arg.0": { - "longlonglonglonglonglongName": "hah", - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[32, 512, 2, 2]", - "Max": "548.2343242", - "Min": "-234.124124234", - "Mean": "-5.23432654", - "Norm": "35555.3406", - "error_key": [ - "type", - "shape" - ] - }, - "add_2.kwrag_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "is_forward": true, - "node_type": 1, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee" - }, - "arg0_1_0": { - "matched_node_link": [], - "data": {}, - "id": "arg0_1_0", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 1, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "arg0_1", - "upnode": "AddThree_0" - }, - "output_0": { - "matched_node_link": [], - "data": {}, - "id": "output_0", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 1, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "output", - "upnode": "AddThree_0" - } - }, - "root": "AddThree_0" - }, - "Colors": { - "#FFFCF3": { - "value": [ - 0, - 0.2 - ], - "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#FFEDBE": { - "value": [ - 0.2, - 0.4 - ], - "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#FFDC7F": { - "value": [ - 0.4, - 0.6 - ], - "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#FFC62E": { - "value": [ - 0.6, - 0.8 - ], - "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#ff704d": { - "value": [ - 0.8, - 1 - ], - "description": "此节点所有输入输出的统计量相对误差,值越大代表测量值与标杆值的偏差越大,相对误差计算方式:|(测量值-标杆值)/标杆值|" - }, - "#C7C7C7": { - "value": "无匹配节点", - "description": "对比过程中节点未匹配上" - } - }, - "MicroSteps": 5, - "task": "summary", - "match": [], - "OverflowCheck": true, - "npu_match_nodes": {}, - "bench_match_nodes": {} -} \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_single_statis_graph.vis b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_single_statis_graph.vis deleted file mode 100644 index 323db0b2a..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/mock_single_statis_graph.vis +++ /dev/null @@ -1,523 +0,0 @@ -{ - "ToolTip": "{\"OneTwoThree\": \"\\u6570\"}", - - "node": { - "AddOne_0": { - "matched_node_link": [], - "data": { - "precision_index": 1 - }, - "id": "AddOne_0", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", - "add_5" - ], - "type": "AddOne", - "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - }, - "AddOne_1": { - "matched_node_link": [], - "data": { - "precision_index": 0.8 - }, - "id": "AddOne_1", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 9, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "add_1", - "add_4" - ], - "type": "AddOne", - "upnode": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee" - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "matched_node_link": [], - "data": { - "precision_index": 0 - }, - "id": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "add_2" - ], - "type": "AddOne", - "upnode": "AddThree_0", - "micro_step_id": "3" - }, - "Apis_Between_Modules.0": { - "matched_node_link": [], - "data": {}, - "id": "Apis_Between_Modules.0", - "inputs": [], - "input_data": {}, - "node_type": 9, - "outputs": [], - "output_data": {}, - "subnodes": [ - "Tensor.__api__0.forward", - "Tensor.__api__1.forward", - "Tensor.__api__2.forward", - "Tensor.__api__3.forward", - "Tensor.__api__4.forward", - "Tensor.__api__5.forward", - "Tensor.__api__6.forward", - "Tensor.__api__7.forward", - "Tensor.__api__8.forward", - "Tensor.__api__9.forward", - "api__10", - "Tensor.__api__11.forward", - "Tensor.__api__12.forward", - "Tensor.__api__13.forward", - "Tensor.__api__14.forward", - "Tensor.__api__15.forward", - "Tensor.__api__16.forward", - "api__17", - "Tensor.__api__18.forward", - "Tensor.__api__19.forward", - "Tensor.__api__20.forward", - "Tensor.__apis__0.forward", - "Tensor.__apis__1.forward", - "Tensor.__apis__2.forward", - "Tensor.__apis__3.forward", - "Tensor.__apis__4.forward", - "Tensor.__apis__5.forward", - "Tensor.__apis__6.forward", - "Tensor.__apis__7.forward", - "Tensor.__apis__8.forward", - "Tensor.__apis__9.forward", - "apis__10", - "Tensor.__apis__11.forward", - "Tensor.__apis__12.forward", - "Tensor.__apis__13.forward", - "Tensor.__apis__14.forward", - "Tensor.__apis__15.forward", - "Tensor.__apis__16.forward", - "apis__17", - "Tensor.__apis__18.forward", - "Tensor.__apis__19.forward", - "Tensor.__apis__20.forward" - ], - "upnode": "AddThree_0", - "micro_step_id": "3" - }, - "Tensor.__api__0.forward": { - "matched_node_link": [], - "id": "Tensor.__api__0.forward", - "inputs": [], - "input_data": {}, - "node_type": 1, - "outputs": [], - "output_data": {}, - "subnodes": [], - "upnode": "Apis_Between_Modules.0" - }, - "Tensor.__api__1.forward": { - "matched_node_link": [], - "id": "Tensor.__api__1.forward", - "inputs": [], - "input_data": {}, - "node_type": 1, - "outputs": [], - "output_data": {}, - "subnodes": [], - "upnode": "Apis_Between_Modules.0" - }, - "Tensor.__api__2.forward": { - "matched_node_link": [], - "id": "Tensor.__api__2.forward", - "inputs": [], - "input_data": {}, - "node_type": 1, - "outputs": [], - "output_data": {}, - "subnodes": [], - "upnode": "Apis_Between_Modules.0" - }, - "Tensor.__api__3.forward": { - "matched_node_link": [], - "id": "Tensor.__api__3.forward", - "inputs": [], - "input_data": {}, - "node_type": 1, - "outputs": [], - "output_data": {}, - "subnodes": [], - "upnode": "Apis_Between_Modules.0" - }, - "AddThree_0": { - "matched_node_link": [ - "B___AddThree_0" - ], - "data": { - "precision_index": 0.5 - }, - "id": "AddThree_0", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [ - "arg0_1_0", - "Apis_Between_Modules.0", - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "output_0" - ], - "type": "AddThree", - "upnode": "None" - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "matched_node_link": [], - "data": { - "precision_status": false, - "Host Self Duration(us)": 56.24, - "Host Total Duration(us)": 56.24, - "Device Self Duration(us)": 0, - "Device Total Duration(us)": 0, - "overflow_level": "medium" - }, - "id": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "inputs": [], - "input_data": { - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.input_arg.0": { - "longlonglonglonglonglongName": "hah", - "type": "torch.Tensorzhishihsihsaoidfhisjdflksjdflkjsklgjskldjfkls阿斯利康大姐夫克里斯丁剪发卡老大说发了跨境电商付了款大", - "dtype": "torch.float32", - "shape": "[32, 512, 2, 2]", - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406", - "error_key": [ - "type", - "shape" - ] - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee.kwrag_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "is_forward": true, - "node_type": 9, - "outputs": [], - "output_data": { - "output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 128, - 512, - 2, - 2 - ], - "Max": "538.2343242", - "Min": "-234.124124234", - "Mean": "-510.23432654", - "Norm": "3555.3406" - }, - "output.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 16, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "pair": "None", - "subnodes": [ - "AddOne_0", - "AddOne_1" - ], - "suggestions": { - "text": "test ptdbg工具 with longlong tenm tensldjta te alsejtka gaew jtljae tet jsdklfj.", - "ptdbg工具": "https://gitee.com/ascend/att/tree/master/debug/accuracy_tools/ptdbg_ascend" - }, - "stack_info": [ - "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)", - "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)", - "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)" - ], - "type": "AddTwo", - "upnode": "AddThree_0", - "micro_step_id": "0" - }, - "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee": { - "matched_node_link": [ - "B___AddThree_0", - "B___Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "B___AddOne_0", - "B___Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee" - ], - "data": { - "precision_index": 0.35 - }, - "id": "Test.add_0_withlonglonglonglonglonglonglonglongname.tt.ee", - "inputs": [], - "input_data": { - "input_arg.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 32, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "input_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "input_arg.2": "None" - }, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": { - "output.0": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 128, - 512, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - }, - "output.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 16, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406" - } - }, - "pair": "None", - "subnodes": [], - "type": "addlongtingmelasidngkonklajelkjsakljgskadtest", - "upnode": "AddOne_0" - }, - "add_5": { - "matched_node_link": [], - "data": { - "precision_status": true, - "precision_index": 1, - "md5 Compare Result": "Pass" - }, - "id": "add_5", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "AddOne_0" - }, - "add_1": { - "matched_node_link": [], - "data": { - "precision_status": false, - "precision_index": 0, - "md5 Compare Result": "Pass" - }, - "id": "add_1", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "AddOne_1" - }, - "add_4": { - "matched_node_link": [], - "data": {}, - "id": "add_4", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "AddOne_1" - }, - "add_2": { - "matched_node_link": [ - "add_2" - ], - "data": { - "precision_index": 9475.908623767291 - }, - "id": "add_2", - "inputs": [], - "input_data": { - "add_2.input_arg.0": { - "longlonglonglonglonglongName": "hah", - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": "[32, 512, 2, 2]", - "Max": "6408.2343242", - "Min": "-3134.124124234", - "Mean": "-501.23432654", - "Norm": "3555.3406", - "error_key": [ - "type", - "shape" - ], - "Max diff": 5860, - "Min diff": -2900, - "Mean diff": -496, - "L2norm diff": -32000.000000000004, - "MaxRelativeErr": "1068.886011%", - "MinRelativeErr": "1238.659198%", - "MeanRelativeErr": "9475.908624%", - "NormRelativeErr": "90.000544%" - }, - "add_2.kwrag_arg.1": { - "type": "torch.Tensor", - "dtype": "torch.float32", - "shape": [ - 64, - 256, - 2, - 2 - ], - "Max": "5348.2343242", - "Min": "-2344.124124234", - "Mean": "-51.23432654", - "Norm": "355555.3406", - "Max diff": 0, - "Min diff": 0, - "Mean diff": 0, - "L2norm diff": 0, - "MaxRelativeErr": "0.000000%", - "MinRelativeErr": "0.000000%", - "MeanRelativeErr": "0.000000%", - "NormRelativeErr": "0.000000%" - } - }, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "add", - "upnode": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee" - }, - "arg0_1_0": { - "matched_node_link": [], - "data": {}, - "id": "arg0_1_0", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "arg0_1", - "upnode": "AddThree_0", - "micro_step_id": "2", - "suggestions": { - "text": "test ptdbg工" - }, - "stack_info": [ - "File /home/w3000/xxxx/subnodes/sdd/adad/srit-sda/artar/prased, line 136. om het, \n dada = rtens/sda.ddd(asdw)" - ] - }, - "output_0": { - "matched_node_link": [], - "data": {}, - "id": "output_0", - "inputs": [], - "input_data": {}, - "is_forward": true, - "node_type": 0, - "outputs": [], - "output_data": {}, - "pair": "None", - "subnodes": [], - "type": "output", - "upnode": "AddThree_0", - "micro_step_id": "3" - } - }, - "root": "AddThree_0", - "MicroSteps": 5, - "task": "summary" -} diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/update_hierarchy_data_case.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/update_hierarchy_data_case.json deleted file mode 100644 index 1aba4c270..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_layout_hierarchy_controller/update_hierarchy_data_case.json +++ /dev/null @@ -1,245 +0,0 @@ -[ - { - "case_id": "1", - "description": "测试无效graph type", - "input": { - "graph_type": "invaild" - }, - "expected": {} - }, - { - "case_id": "2", - "description": "测试单图", - "input": { - "graph_type": "Single" - }, - "expected": { - "AddThree_0": { - "x": 0, - "y": 0, - "width": 386, - "height": 185, - "expand": true, - "isRoot": true, - "parentNode": "None", - "label": "AddThree_0", - "name": "AddThree_0", - "children": [ - "arg0_1_0", - "Apis_Between_Modules.0", - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "output_0" - ], - "nodeType": 0, - "matchedNodeLink": [ - "B___AddThree_0" - ], - "precisionIndex": 0.5, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "arg0_1_0": { - "x": 168, - "y": 25, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "arg0_1_0", - "name": "arg0_1_0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Apis_Between_Modules.0": { - "x": 80, - "y": 50, - "width": 225, - "height": 50, - "expand": true, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Apis_Between_Modules.0", - "name": "Apis_Between_Modules.0", - "children": [ - "Tensor.__api__0.forward", - "Tensor.__api__1.forward", - "Tensor.__api__2.forward", - "Tensor.__api__3.forward", - "Tensor.__api__4.forward", - "Tensor.__api__5.forward", - "Tensor.__api__6.forward", - "Tensor.__api__7.forward", - "Tensor.__api__8.forward", - "Tensor.__api__9.forward", - "api__10", - "Tensor.__api__11.forward", - "Tensor.__api__12.forward", - "Tensor.__api__13.forward", - "Tensor.__api__14.forward", - "Tensor.__api__15.forward", - "Tensor.__api__16.forward", - "api__17", - "Tensor.__api__18.forward", - "Tensor.__api__19.forward", - "Tensor.__api__20.forward", - "Tensor.__apis__0.forward", - "Tensor.__apis__1.forward", - "Tensor.__apis__2.forward", - "Tensor.__apis__3.forward", - "Tensor.__apis__4.forward", - "Tensor.__apis__5.forward", - "Tensor.__apis__6.forward", - "Tensor.__apis__7.forward", - "Tensor.__apis__8.forward", - "Tensor.__apis__9.forward", - "apis__10", - "Tensor.__apis__11.forward", - "Tensor.__apis__12.forward", - "Tensor.__apis__13.forward", - "Tensor.__apis__14.forward", - "Tensor.__apis__15.forward", - "Tensor.__apis__16.forward", - "apis__17", - "Tensor.__apis__18.forward", - "Tensor.__apis__19.forward", - "Tensor.__apis__20.forward" - ], - "nodeType": 9, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Tensor.__api__0.forward": { - "x": 85, - "y": 75, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Apis_Between_Modules.0", - "label": "__api__0.forward", - "name": "Tensor.__api__0.forward", - "children": [], - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Tensor.__api__1.forward": { - "x": 140, - "y": 75, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Apis_Between_Modules.0", - "label": "__api__1.forward", - "name": "Tensor.__api__1.forward", - "children": [], - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Tensor.__api__2.forward": { - "x": 195, - "y": 75, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Apis_Between_Modules.0", - "label": "__api__2.forward", - "name": "Tensor.__api__2.forward", - "children": [], - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Tensor.__api__3.forward": { - "x": 250, - "y": 75, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "Apis_Between_Modules.0", - "label": "__api__3.forward", - "name": "Tensor.__api__3.forward", - "children": [], - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "Test.maxpoolMaxPool2.maxpoolpo.tt.ee": { - "x": 80, - "y": 110, - "width": 226, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "name": "Test.maxpoolMaxPool2.maxpoolpo.tt.ee", - "children": [ - "AddOne_0", - "AddOne_1" - ], - "nodeType": 9, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "medium", - "matchedDistributed": {} - }, - "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee": { - "x": 5, - "y": 135, - "width": 376, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "name": "Test.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.tt.ee", - "children": [ - "add_2" - ], - "nodeType": 0, - "matchedNodeLink": [], - "precisionIndex": 0, - "overflowLevel": "NaN", - "matchedDistributed": {} - }, - "output_0": { - "x": 168, - "y": 160, - "width": 50, - "height": 15, - "expand": false, - "isRoot": false, - "parentNode": "AddThree_0", - "label": "output_0", - "name": "output_0", - "children": [], - "nodeType": 1, - "matchedNodeLink": [], - "precisionIndex": "NaN", - "overflowLevel": "NaN", - "matchedDistributed": {} - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_case.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_case.json deleted file mode 100644 index 5590aca05..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_case.json +++ /dev/null @@ -1,386 +0,0 @@ -[ - { - "case_id": 1, - "description": "测试无效任务类型", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abcd1234" - } - }, - "output_data": { - "output1": { - "md5": "efgh5678" - } - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abcd1234" - } - }, - "output_data": { - "output1": { - "md5": "efgh5678" - } - } - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "invalid_task" - }, - "expected": { - "success": false, - "error": "task类型错误" - } - }, - { - "case_id": 2, - "description": "测试MD5任务匹配成功", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "matched_node_link": [], - "data": {}, - "input_data": { - "input_arg0": { - "md5": "1234567890abcdef" - }, - "input_arg1": { - "md5": "abcdef1234567890" - }, - "output_data": { - "output_arg0": { - "md5": "abcdef1234567890" - }, - "output_arg1": { - "md5": "1234567890abcdef" - } - } - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "matched_node_link": [], - "input_data": { - "input_arg0": { - "md5": "1234567890abcdef" - }, - "input_arg1": { - "md5": "abcdef1234567890" - }, - "output_data": { - "output_arg0": { - "md5": "1234567890abcdef" - }, - "output_arg1": { - "md5": "1234567890abcdef" - } - } - } - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "md5" - }, - "expected": { - "success": true - } - }, - { - "case_id": 3, - "description": "测试MD5任务添加失败(节点数据缺失)", - "input": { - "graph_data": { - "NPU": { - "node": {} - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abcd1234" - } - }, - "output_data": { - "output1": { - "md5": "efgh5678" - } - } - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "md5" - }, - "expected": { - "success": false, - "error": "节点类型不一致,无法添加匹配关系" - } - }, - { - "case_id": 4, - "description": "summary任务匹配", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node_summary": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7 - }, - "input2": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7 - } - }, - "output_data": { - "output1": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4 - }, - "output2": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4 - } - }, - "matched_node_link": [] - } - } - }, - "Bench": { - "node": { - "bench_node_summary": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7 - }, - "input2": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7 - } - }, - "output_data": { - "output1": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4 - }, - "output2": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4 - } - }, - "matched_node_link": [] - } - } - } - }, - "npu_node_name": "npu_node_summary", - "bench_node_name": "bench_node_summary", - "task": "summary" - }, - "expected": { - "success": true - } - }, - { - "case_id": 5, - "description": "测试SUMMARY任务添加失败(输入输出数据异常)", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "input_data": {}, - "output_data": { - "output1": { - "Max": "1.0" - } - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": "1.0" - } - }, - "output_data": {} - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "summary" - }, - "expected": { - "success": false, - "error": "输入或输出统计误差值为空(Input and output statistical error calculation failed)" - } - }, - { - "case_id": 6, - "description": "测试SUMMARY任务添加失败(精度计算异常)", - "type": "process_task_add", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": "1.0" - } - }, - "output_data": { - "output1": { - "Max": "invalid_value" - } - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": "1.0" - } - }, - "output_data": { - "output1": { - "Max": "1.0" - } - } - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "summary" - }, - "expected": { - "success": false, - "error": "输出统计误差值为空,计算精度误差失败(Calculation of precision error failed)" - } - }, - { - "case_id": 7, - "description": "测试SUMMARY任务添加成功(避免除零错误)", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": "1.0", - "Min": "0.1", - "Norm": "0.5", - "Mean": "0.5" - } - }, - "output_data": { - "output1": { - "Max": "0.0", - "Min": "0.0", - "Norm": "0.0", - "Mean": "0.0" - } - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": "1.0", - "Min": "0.1", - "Norm": "0.5", - "Mean": "0.5" - } - }, - "output_data": { - "output1": { - "Max": "0.0", - "Min": "0.0", - "Norm": "0.0", - "Mean": "0.0" - } - } - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "summary" - }, - "expected": { - "success": true - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer.json deleted file mode 100644 index d03b9fd26..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer.json +++ /dev/null @@ -1,469 +0,0 @@ -[ - { - "case_id": 1, - "description": "测试参数不全", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "subnodes": [ - "npu_child1" - ] - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "subnodes": [ - "bench_child1" - ] - } - } - } - }, - "npu_node_name": "", - "bench_node_name": "bench_node", - "task": "md5" - }, - "expected": { - "success": false, - "error": "参数错误" - } - }, - { - "case_id": 2, - "description": "测试节点类型不一致", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "subnodes": [ - "npu_child1" - ] - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "API", - "subnodes": [ - "bench_child1" - ] - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "md5" - }, - "expected": { - "success": false, - "error": "节点类型不一致,无法添加匹配关系" - } - }, - { - "case_id": 3, - "description": "测试无子节点", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abcd1234" - } - }, - "output_data": { - "output1": { - "md5": "efgh5678" - } - }, - "subnodes": [] - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abcd1234" - } - }, - "output_data": { - "output1": { - "md5": "efgh5678" - } - }, - "subnodes": [] - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "md5" - }, - "expected": { - "success": true, - "data": { - "npuMatchNodes": { - "npu_node": "bench_node" - }, - "benchMatchNodes": { - "bench_node": "npu_node" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - }, - { - "case_id": 4, - "description": "测试多层递归子节点匹配(符合命名规则)", - "type": "process_task_add_child_layer", - "input": { - "graph_data": { - "NPU": { - "node": { - "model.npu_node": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abcd1234" - } - }, - "output_data": { - "output1": { - "md5": "efgh5678" - } - }, - "subnodes": [ - "model.layer1.npu_child_module", - "model.layer1.npu_child_api" - ] - }, - "model.layer1.npu_child_module": { - "node_type": "Module", - "matched_node_link": [], - "subnodes": [ - "model.layer1.sub.npu_grandchild_module", - "model.layer1.sub.npu_grandchild_api" - ] - }, - "model.layer1.npu_child_api": { - "node_type": "API", - "matched_node_link": [] - }, - "model.layer1.sub.npu_grandchild_module": { - "node_type": "Module", - "matched_node_link": [] - }, - "model.layer1.sub.npu_grandchild_api": { - "node_type": "API", - "matched_node_link": [] - } - } - }, - "Bench": { - "node": { - "model.bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abcd1234" - } - }, - "output_data": { - "output1": { - "md5": "efgh5678" - } - }, - "subnodes": [ - "model.layer1.bench_child_module", - "model.layer1.bench_child_api" - ] - }, - "model.layer1.bench_child_module": { - "node_type": "Module", - "matched_node_link": [], - "subnodes": [ - "model.layer1.sub.bench_grandchild_module", - "model.layer1.sub.bench_grandchild_api" - ] - }, - "model.layer1.bench_child_api": { - "node_type": "API", - "matched_node_link": [] - }, - "model.layer1.sub.bench_grandchild_module": { - "node_type": "Module", - "matched_node_link": [] - }, - "model.layer1.sub.bench_grandchild_api": { - "node_type": "API", - "matched_node_link": [] - } - } - } - }, - "npu_node_name": "model.npu_node", - "bench_node_name": "model.bench_node", - "task": "md5" - }, - "expected": { - "success": true, - "data": { - "npuMatchNodes": { - "model.npu_node": "model.bench_node", - "model.layer1.npu_child_api": "model.layer1.bench_child_api", - "model.layer1.npu_child_module": "model.layer1.bench_child_module", - "model.layer1.sub.npu_grandchild_api": "model.layer1.sub.bench_grandchild_api", - "model.layer1.sub.npu_grandchild_module": "model.layer1.sub.bench_grandchild_module" - }, - "benchMatchNodes": { - "model.bench_node": "model.npu_node", - "model.layer1.bench_child_api": "model.layer1.npu_child_api", - "model.layer1.bench_child_module": "model.layer1.npu_child_module", - "model.layer1.sub.bench_grandchild_api": "model.layer1.sub.npu_grandchild_api", - "model.layer1.sub.bench_grandchild_module": "model.layer1.sub.npu_grandchild_module" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - }, - { - "case_id": 5, - "description": "测试部分子节点匹配(不符合命名规则)", - "type": "process_task_add_child_layer", - "input": { - "graph_data": { - "NPU": { - "node": { - "model.npu_node": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abcd1234" - } - }, - "output_data": { - "output1": { - "md5": "efgh5678" - } - }, - "subnodes": [ - "model.layer1.sub.npu_child1", - "model.layer1.npu_short_child" - ] - }, - "model.layer1.sub.npu_child1": { - "node_type": "Module", - "matched_node_link": [] - }, - "model.layer1.npu_short_child": { - "node_type": "API", - "matched_node_link": [] - } - } - }, - "Bench": { - "node": { - "model.bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abcd1234" - } - }, - "output_data": { - "output1": { - "md5": "efgh5678" - } - }, - "subnodes": [ - "model.layer1.sub.bench_child1" - ] - }, - "model.layer1.sub.bench_child1": { - "node_type": "Module", - "matched_node_link": [] - } - } - } - }, - "npu_node_name": "model.npu_node", - "bench_node_name": "model.bench_node", - "task": "md5" - }, - "expected": { - "success": true, - "data": { - "npuMatchNodes": { - "model.npu_node": "model.bench_node", - "model.layer1.sub.npu_child1": "model.layer1.sub.bench_child1" - }, - "benchMatchNodes": { - "model.bench_node": "model.npu_node", - "model.layer1.sub.bench_child1": "model.layer1.sub.npu_child1" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - }, - { - "case_id": 6, - "description": "测试SUMMARY任务类型递归(符合命名规则)", - "input": { - "graph_data": { - "NPU": { - "node": { - "model.npu_node": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "output_data": { - "output1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "subnodes": [ - "model.layer1.sub.npu_child" - ] - }, - "model.layer1.sub.npu_child": { - "node_type": "API", - "matched_node_link": [], - "input_data": { - "input1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "output_data": { - "output1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "subnodes": [ - "model.layer1.sub.deep.npu_grandchild" - ] - }, - "model.layer1.sub.deep.npu_grandchild": { - "node_type": "Module", - "matched_node_link": [], - "input_data": { - "input1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "output_data": { - "output1": { - "Max": "1.0", - "Min": "0.1" - } - } - } - } - }, - "Bench": { - "node": { - "model.bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "output_data": { - "output1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "subnodes": [ - "model.layer1.sub.bench_child" - ] - }, - "model.layer1.sub.bench_child": { - "node_type": "API", - "matched_node_link": [], - "input_data": { - "input1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "output_data": { - "output1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "subnodes": [ - "model.layer1.sub.deep.bench_grandchild" - ] - }, - "model.layer1.sub.deep.bench_grandchild": { - "node_type": "Module", - "matched_node_link": [], - "input_data": { - "input1": { - "Max": "1.0", - "Min": "0.1" - } - }, - "output_data": { - "output1": { - "Max": "1.0", - "Min": "0.1" - } - } - } - } - } - }, - "npu_node_name": "model.npu_node", - "bench_node_name": "model.bench_node", - "task": "summary" - }, - "expected": { - "success": true, - "data": { - "npuMatchNodes": { - "model.npu_node": "model.bench_node", - "model.layer1.sub.npu_child": "model.layer1.sub.bench_child", - "model.layer1.sub.deep.npu_grandchild": "model.layer1.sub.deep.bench_grandchild" - }, - "benchMatchNodes": { - "model.bench_node": "model.npu_node", - "model.layer1.sub.bench_child": "model.layer1.sub.npu_child", - "model.layer1.sub.deep.bench_grandchild": "model.layer1.sub.deep.npu_grandchild" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer_by_config.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer_by_config.json deleted file mode 100644 index 934d1b3b9..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_add_child_layer_by_config.json +++ /dev/null @@ -1,448 +0,0 @@ -[ - { - "case_id": 1, - "description": "批量添加成功 - 所有节点匹配成功", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node1": { - "node_type": "Module", - "input_data": { - "in1": { - "md5": "abc123" - } - }, - "output_data": { - "out1": { - "md5": "def456" - } - } - }, - "npu_node2": { - "node_type": "API", - "input_data": { - "in2": { - "md5": "ghij789" - } - }, - "output_data": { - "out2": { - "md5": "klm012" - } - } - } - } - }, - "Bench": { - "node": { - "bench_node1": { - "node_type": "Module", - "input_data": { - "in1": { - "md5": "abc123" - } - }, - "output_data": { - "out1": { - "md5": "def456" - } - } - }, - "bench_node2": { - "node_type": "API", - "input_data": { - "in2": { - "md5": "ghij789" - } - }, - "output_data": { - "out2": { - "md5": "klm012" - } - } - } - } - } - }, - "match_node_links": { - "npu_node1": "bench_node1", - "npu_node2": "bench_node2" - }, - "task": "md5" - }, - "expected": { - "success": true, - "data": { - "matchReslut": [ - true, - true - ], - "npuMatchNodes": { - "npu_node1": "bench_node1", - "npu_node2": "bench_node2" - }, - "benchMatchNodes": { - "bench_node1": "npu_node1", - "bench_node2": "npu_node2" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - }, - { - "case_id": 2, - "description": "批量添加成功 - md值不同", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node1": { - "node_type": "Module", - "input_data": { - "in1": { - "md5": "abc123" - } - }, - "output_data": { - "out1": { - "md5": "def456" - } - } - }, - "npu_node2": { - "node_type": "API", - "input_data": { - "in2": { - "md5": "ghij789" - } - }, - "output_data": { - "out2": { - "md5": "klm012" - } - } - } - } - }, - "Bench": { - "node": { - "bench_node1": { - "node_type": "Module", - "input_data": { - "in1": { - "md5": "abc123" - } - }, - "output_data": { - "out1": { - "md5": "def456" - } - } - }, - "bench_node2": { - "node_type": "API", - "input_data": { - "in2": { - "md5": "different" - } - }, - "output_data": { - "out2": { - "md5": "klm012" - } - } - } - } - } - }, - "match_node_links": { - "npu_node1": "bench_node1", - "npu_node2": "bench_node2" - }, - "task": "md5" - }, - "expected": { - "success": true, - "data": { - "matchReslut": [ - true, - true - ], - "benchMatchNodes": { - "bench_node1": "npu_node1", - "bench_node2": "npu_node2" - }, - "npuMatchNodes": { - "npu_node1": "bench_node1", - "npu_node2": "bench_node2" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - }, - { - "case_id": 3, - "description": "部分失败 - 节点不存在导致失败", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node1": { - "node_type": "Module", - "input_data": { - "in1": { - "Max": 1.0, - "Min": 0.1 - } - }, - "output_data": { - "out1": { - "Max": 2.0, - "Min": 0.2 - } - } - } - } - }, - "Bench": { - "node": { - "bench_node1": { - "node_type": "Module", - "input_data": { - "in1": { - "Max": 1.0, - "Min": 0.1 - } - }, - "output_data": { - "out1": { - "Max": 2.0, - "Min": 0.2 - } - } - }, - "bench_node2": { - "node_type": "API", - "input_data": { - "in2": { - "Max": 3.0, - "Min": 0.3 - } - }, - "output_data": { - "out2": { - "Max": 4.0, - "Min": 0.4 - } - } - } - } - } - }, - "match_node_links": { - "npu_node1": "bench_node1", - "invalid_node": "bench_node2", - "npu_node2": "invalid_node" - }, - "task": "summary" - }, - "expected": { - "success": true, - "data": { - "matchReslut": [ - true, - false, - false - ], - "npuMatchNodes": { - "npu_node1": "bench_node1" - }, - "benchMatchNodes": { - "bench_node1": "npu_node1" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - }, - { - "case_id": 4, - "description": "统计计算失败 - 输入数据不匹配", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "input_data": { - "in1": { - "Max": 1.0, - "Min": 0.1 - } - }, - "output_data": { - "out1": { - "Max": 2.0, - "Min": 0.2 - } - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "input_data": null, - "output_data": { - "out1": { - "Max": 2.0, - "Min": 0.2 - } - } - } - } - } - }, - "match_node_links": { - "npu_node": "bench_node" - }, - "task": "summary" - }, - "expected": { - "success": true, - "data": { - "matchReslut": [ - false - ], - "npuMatchNodes": {}, - "benchMatchNodes": {}, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - }, - { - "case_id": 5, - "description": "节点类型不匹配导致失败", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "input_data": { - "in1": { - "md5": "abc123" - } - }, - "output_data": { - "out1": { - "md5": "def456" - } - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "API", - "input_data": { - "in1": { - "md5": "abc123" - } - }, - "output_data": { - "out1": { - "md5": "def456" - } - } - } - } - } - }, - "match_node_links": { - "npu_node": "bench_node" - }, - "task": "md5" - }, - "expected": { - "success": true, - "data": { - "matchReslut": [ - false - ], - "npuMatchNodes": {}, - "benchMatchNodes": {}, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - }, - { - "case_id": 7, - "description": "计算精度错误 - 统计计算失败", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "input_data": { - "in1": { - "Max": 1.0, - "Min": 0.1 - } - }, - "output_data": { - "out1": { - "Max": "invalid", - "Min": "value" - } - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "input_data": { - "in1": { - "Max": 1.0, - "Min": 0.1 - } - }, - "output_data": { - "out1": { - "Max": 2.0, - "Min": 0.2 - } - } - } - } - } - }, - "match_node_links": { - "npu_node": "bench_node" - }, - "task": "summary" - }, - "expected": { - "success": true, - "data": { - "matchReslut": [ - false - ], - "npuMatchNodes": {}, - "benchMatchNodes": {}, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - } - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_case.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_case.json deleted file mode 100644 index 0a74fbded..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_case.json +++ /dev/null @@ -1,238 +0,0 @@ -[ - { - "case_id": 1, - "description": "测试无效任务类型", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "matched_node_link": [ - "bench_node" - ], - "data": { - "precision_index": 0.95 - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "matched_node_link": [ - "npu_node" - ] - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "invalid_task" - }, - "expected": { - "success": false, - "error": "task类型错误" - } - }, - { - "case_id": 2, - "description": "测试MD5任务删除成功", - "config": { - "npuMatchNodes": { - "npu_node": "bench_node" - }, - "benchMatchNodes": { - "bench_node": "npu_node" - } - }, - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "matched_node_link": [ - "bench_node" - ], - "data": { - "precision_index": 0.95 - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "matched_node_link": [ - "npu_node" - ] - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "md5" - }, - "expected": { - "success": true, - "data": {} - } - }, - { - "case_id": 3, - "description": "测试MD5任务删除失败(节点未匹配)", - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "matched_node_link": [], - "data": { - "precision_index": 0.95 - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "matched_node_link": [] - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "md5" - }, - "expected": { - "success": false, - "error": "操作失败:节点未匹配,请先匹配节点" - } - }, - { - "case_id": 4, - "description": "测试SUMMARY任务删除成功(节点已匹配)", - "config": { - "npuMatchNodes": { - "npu_node_summary": "bench_node_summary" - }, - "benchMatchNodes": { - "bench_node_summary": "npu_node_summary" - } - }, - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node_summary": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7, - "MaxAbsErr": 0.1, - "MinAbsErr": 0.05, - "MeanAbsErr": 0.1, - "NormAbsErr": 0.1 - }, - "input2": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7, - "MaxAbsErr": 0.1, - "MinAbsErr": 0.05, - "MeanAbsErr": 0.1, - "NormAbsErr": 0.1 - } - }, - "output_data": { - "output1": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4, - "MaxAbsErr": 0.1, - "MinAbsErr": 0.05, - "MeanAbsErr": 0.1, - "NormAbsErr": 0.1 - }, - "output2": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4, - "MaxAbsErr": 0.1, - "MinAbsErr": 0.05, - "MeanAbsErr": 0.1, - "NormAbsErr": 0.1 - } - }, - "matched_node_link": [ - "bench_node_summary" - ], - "data": { - "precision_index": 0.95 - } - } - } - }, - "Bench": { - "node": { - "bench_node_summary": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7 - }, - "input2": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7 - } - }, - "output_data": { - "output1": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4 - }, - "output2": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4 - } - }, - "matched_node_link": [ - "npu_node_summary" - ] - } - } - } - }, - "npu_node_name": "npu_node_summary", - "bench_node_name": "bench_node_summary", - "task": "summary" - }, - "expected": { - "success": true, - "data": {} - } - } -] \ No newline at end of file diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_child_layer.json b/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_child_layer.json deleted file mode 100644 index a595cd4c3..000000000 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/data/ut_test_cases/test_match_node_controller/process_task_delete_child_layer.json +++ /dev/null @@ -1,666 +0,0 @@ -[ - { - "case_id": 1, - "description": "参数错误(缺少graph_data)", - "input": { - "graph_data": null, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "summary" - }, - "expected": { - "success": false, - "error": "参数错误" - } - }, - { - "case_id": 2, - "description": "节点未匹配(配置中无匹配关系)", - "config": { - "npuMatchNodes": {}, - "benchMatchNodes": {} - }, - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "matched_node_link": [ - "bench_node" - ], - "data": { - "precision_index": 0.95 - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "matched_node_link": [ - "npu_node" - ] - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "summary" - }, - "expected": { - "success": false, - "error": "操作失败:节点未匹配,请先匹配节点" - } - }, - { - "case_id": 3, - "description": "SUMMARY任务删除成功(无子节点)", - "config": { - "npuMatchNodes": { - "npu_node": "bench_node" - }, - "benchMatchNodes": { - "bench_node": "npu_node" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - }, - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": 1.0, - "MaxAbsErr": 0.1 - } - }, - "output_data": { - "output1": { - "Max": 2.0, - "MaxAbsErr": 0.1 - } - }, - "matched_node_link": [ - "bench_node" - ], - "data": { - "precision_index": 0.95 - } - } - } - }, - "Bench": { - "node": { - "bench_node": { - "node_type": "Module", - "input_data": { - "input1": { - "Max": 1.0 - } - }, - "output_data": { - "output1": { - "Max": 2.0 - } - }, - "matched_node_link": [ - "npu_node" - ] - } - } - } - }, - "npu_node_name": "npu_node", - "bench_node_name": "bench_node", - "task": "summary" - }, - "expected": { - "success": true, - "data": { - "npuMatchNodes": {}, - "benchMatchNodes": {}, - "npuUnMatchNodes": [ - "npu_node" - ], - "benchUnMatchNodes": [ - "bench_node" - ] - } - } - }, - { - "case_id": 4, - "description": "SUMMARY任务递归删除子节点", - "config": { - "npuMatchNodes": { - "npu_parent": "bench_parent", - "npu_child1": "bench_child1", - "npu_child2": "bench_child2" - }, - "benchMatchNodes": { - "bench_parent": "npu_parent", - "bench_child1": "npu_child1", - "bench_child2": "npu_child2" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - }, - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_parent": { - "node_type": "Module", - "subnodes": [ - "npu_child1", - "npu_child2" - ], - "input_data": { - "parent_input": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7, - "MaxAbsErr": 0.1, - "MinAbsErr": 0.05, - "MeanAbsErr": 0.1, - "NormAbsErr": 0.1 - } - }, - "output_data": { - "parent_output": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4, - "MaxAbsErr": 0.1, - "MinAbsErr": 0.05, - "MeanAbsErr": 0.1, - "NormAbsErr": 0.1 - } - }, - "matched_node_link": [ - "bench_parent" - ], - "data": { - "precision_index": 0.95 - } - }, - "npu_child1": { - "node_type": "Module", - "subnodes": [], - "input_data": { - "child1_input": { - "Max": 0.8, - "Min": 0.08, - "Mean": 0.4, - "Norm": 0.56, - "MaxAbsErr": 0.08, - "MinAbsErr": 0.04, - "MeanAbsErr": 0.08, - "NormAbsErr": 0.08 - } - }, - "output_data": { - "child1_output": { - "Max": 1.8, - "Min": 0.18, - "Mean": 0.9, - "Norm": 1.26, - "MaxAbsErr": 0.09, - "MinAbsErr": 0.045, - "MeanAbsErr": 0.09, - "NormAbsErr": 0.09 - } - }, - "matched_node_link": [ - "bench_child1" - ], - "data": { - "precision_index": 0.97 - } - }, - "npu_child2": { - "node_type": "Module", - "subnodes": [], - "input_data": { - "child2_input": { - "Max": 0.9, - "Min": 0.09, - "Mean": 0.45, - "Norm": 0.63, - "MaxAbsErr": 0.09, - "MinAbsErr": 0.045, - "MeanAbsErr": 0.09, - "NormAbsErr": 0.09 - } - }, - "output_data": { - "child2_output": { - "Max": 1.9, - "Min": 0.19, - "Mean": 0.95, - "Norm": 1.33, - "MaxAbsErr": 0.095, - "MinAbsErr": 0.0475, - "MeanAbsErr": 0.095, - "NormAbsErr": 0.095 - } - }, - "matched_node_link": [ - "bench_child2" - ], - "data": { - "precision_index": 0.96 - } - } - } - }, - "Bench": { - "node": { - "bench_parent": { - "node_type": "Module", - "subnodes": [ - "bench_child1", - "bench_child2" - ], - "input_data": { - "parent_input": { - "Max": 1.0, - "Min": 0.1, - "Mean": 0.5, - "Norm": 0.7 - } - }, - "output_data": { - "parent_output": { - "Max": 2.0, - "Min": 0.2, - "Mean": 1.0, - "Norm": 1.4 - } - }, - "matched_node_link": [ - "npu_parent" - ] - }, - "bench_child1": { - "node_type": "Module", - "subnodes": [], - "input_data": { - "child1_input": { - "Max": 0.8, - "Min": 0.08, - "Mean": 0.4, - "Norm": 0.56 - } - }, - "output_data": { - "child1_output": { - "Max": 1.8, - "Min": 0.18, - "Mean": 0.9, - "Norm": 1.26 - } - }, - "matched_node_link": [ - "npu_child1" - ] - }, - "bench_child2": { - "node_type": "Module", - "subnodes": [], - "input_data": { - "child2_input": { - "Max": 0.9, - "Min": 0.09, - "Mean": 0.45, - "Norm": 0.63 - } - }, - "output_data": { - "child2_output": { - "Max": 1.9, - "Min": 0.19, - "Mean": 0.95, - "Norm": 1.33 - } - }, - "matched_node_link": [ - "npu_child2" - ] - } - } - } - }, - "npu_node_name": "npu_parent", - "bench_node_name": "bench_parent", - "task": "summary" - }, - "expected": { - "success": true, - "data": { - "npuMatchNodes": {}, - "benchMatchNodes": {}, - "npuUnMatchNodes": [ - "npu_parent", - "npu_child1", - "npu_child2" - ], - "benchUnMatchNodes": [ - "bench_parent", - "bench_child1", - "bench_child2" - ] - } - } - }, - { - "case_id": 5, - "description": "MD5任务删除成功", - "config": { - "npuMatchNodes": { - "npu_node_md5": "bench_node_md5" - }, - "benchMatchNodes": { - "bench_node_md5": "npu_node_md5" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - }, - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_node_md5": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abc123", - "shape": [ - 1, - 3, - 224, - 224 - ] - } - }, - "output_data": { - "output1": { - "md5": "def456", - "shape": [ - 1, - 1000 - ] - } - }, - "matched_node_link": [ - "bench_node_md5" - ], - "data": { - "precision_index": 1 - } - } - } - }, - "Bench": { - "node": { - "bench_node_md5": { - "node_type": "Module", - "input_data": { - "input1": { - "md5": "abc123", - "shape": [ - 1, - 3, - 224, - 224 - ] - } - }, - "output_data": { - "output1": { - "md5": "def456", - "shape": [ - 1, - 1000 - ] - } - }, - "matched_node_link": [ - "npu_node_md5" - ] - } - } - } - }, - "npu_node_name": "npu_node_md5", - "bench_node_name": "bench_node_md5", - "task": "md5" - }, - "expected": { - "success": true, - "data": { - "npuMatchNodes": {}, - "benchMatchNodes": {}, - "npuUnMatchNodes": [ - "npu_node_md5" - ], - "benchUnMatchNodes": [ - "bench_node_md5" - ] - } - } - }, - { - "case_id": 6, - "description": "MD5任务递归删除多层子节点", - "config": { - "npuMatchNodes": { - "npu_parent": "bench_parent", - "npu_child": "bench_child", - "npu_grandchild": "bench_grandchild" - }, - "benchMatchNodes": { - "bench_parent": "npu_parent", - "bench_child": "npu_child", - "bench_grandchild": "npu_grandchild" - }, - "npuUnMatchNodes": [], - "benchUnMatchNodes": [] - }, - "input": { - "graph_data": { - "NPU": { - "node": { - "npu_parent": { - "node_type": "Module", - "subnodes": [ - "npu_child" - ], - "input_data": { - "parent_input": { - "md5": "parent_in", - "shape": [ - 10 - ] - } - }, - "output_data": { - "parent_output": { - "md5": "parent_out", - "shape": [ - 10 - ] - } - }, - "matched_node_link": [ - "bench_parent" - ], - "data": { - "precision_index": 1 - } - }, - "npu_child": { - "node_type": "Module", - "subnodes": [ - "npu_grandchild" - ], - "input_data": { - "child_input": { - "md5": "child_in", - "shape": [ - 20 - ] - } - }, - "output_data": { - "child_output": { - "md5": "child_out", - "shape": [ - 20 - ] - } - }, - "matched_node_link": [ - "bench_child" - ], - "data": { - "precision_index": 1 - } - }, - "npu_grandchild": { - "node_type": "API", - "subnodes": [], - "input_data": { - "grandchild_input": { - "md5": "grand_in", - "shape": [ - 30 - ] - } - }, - "output_data": { - "grandchild_output": { - "md5": "grand_out", - "shape": [ - 30 - ] - } - }, - "matched_node_link": [ - "bench_grandchild" - ], - "data": { - "precision_index": 1 - } - } - } - }, - "Bench": { - "node": { - "bench_parent": { - "node_type": "Module", - "subnodes": [ - "bench_child" - ], - "input_data": { - "parent_input": { - "md5": "parent_in", - "shape": [ - 10 - ] - } - }, - "output_data": { - "parent_output": { - "md5": "parent_out", - "shape": [ - 10 - ] - } - }, - "matched_node_link": [ - "npu_parent" - ] - }, - "bench_child": { - "node_type": "Module", - "subnodes": [ - "bench_grandchild" - ], - "input_data": { - "child_input": { - "md5": "child_in", - "shape": [ - 20 - ] - } - }, - "output_data": { - "child_output": { - "md5": "child_out", - "shape": [ - 20 - ] - } - }, - "matched_node_link": [ - "npu_child" - ] - }, - "bench_grandchild": { - "node_type": "API", - "subnodes": [], - "input_data": { - "grandchild_input": { - "md5": "grand_in", - "shape": [ - 30 - ] - } - }, - "output_data": { - "grandchild_output": { - "md5": "grand_out", - "shape": [ - 30 - ] - } - }, - "matched_node_link": [ - "npu_grandchild" - ] - } - } - } - }, - "npu_node_name": "npu_parent", - "bench_node_name": "bench_parent", - "task": "md5" - }, - "expected": { - "success": true, - "data": { - "npuMatchNodes": {}, - "benchMatchNodes": {}, - "npuUnMatchNodes": [ - "npu_parent", - "npu_child", - "npu_grandchild" - ], - "benchUnMatchNodes": [ - "bench_parent", - "bench_child", - "bench_grandchild" - ] - } - } - } -] \ No newline at end of file -- Gitee From ac9e9147ec88d0547051e3d6e84aa44f44d9250c Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Wed, 16 Jul 2025 10:16:03 +0800 Subject: [PATCH 16/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20code=20check?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../server/app/controllers/match_nodes_controller.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py index f5a01f0e1..0b7e955c2 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py @@ -33,10 +33,10 @@ class MatchNodesController: @staticmethod def process_task_add(graph_data, npu_node_name, bench_node_name, task): if not MatchNodesController.is_same_node_type(graph_data, npu_node_name, bench_node_name): - return { - 'success': False, - 'error': '节点类型不一致,无法添加匹配关系' - } + return { + 'success': False, + 'error': '节点类型不一致,无法添加匹配关系' + } result = {} if task == 'md5': -- Gitee From 9efb747019ec817be26ccb9780a6123ef9ce2a7b Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Wed, 16 Jul 2025 14:37:18 +0800 Subject: [PATCH 17/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20code=20check?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../integration/views/test_graph_views.py | 79 +++++++++++-------- .../test/unit/utils/test_graph_utils.py | 12 +-- 2 files changed, 52 insertions(+), 39 deletions(-) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py index 3c58ceb5c..e3d25ddf5 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -14,10 +14,12 @@ # limitations under the License. # ============================================================================== -import pytest import json -from types import SimpleNamespace from pathlib import Path +from types import SimpleNamespace + +import pytest + from werkzeug.wrappers import Request from werkzeug.test import EnvironBuilder from data.test_case_factory import TestCaseFactory @@ -72,10 +74,10 @@ class TestGraphViews: [ {"case_id": "1", "description": "test_load_meta_dir", - "excepted":{'data': {'st_test_cases': ['mock_compare_resnet_data']}, 'error': []} + "excepted": {'data': {'st_test_cases': ['mock_compare_resnet_data']}, 'error': []} } ], - ids=lambda c: f"{c['case_id']}:{c['description']}") + ids=lambda c: f"{c['case_id']}: {c['description']}") def test_load_meta_dir(self, test_case): logdir = Path(__file__).resolve().parent.parent.parent / 'data' / 'st_test_cases' GraphState.set_global_value('logdir', str(logdir)) @@ -89,9 +91,11 @@ class TestGraphViews: assert TestGraphViews.captured.status == "200 OK" assert TestGraphViews.captured.headers["Content-Type"] == "application/json" - @pytest.mark.parametrize("test_case", [{"case_id": "2", "description": "test_load_graph_data"}], ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", [{"case_id": "2", "description": "test_load_graph_data"}], + ids=lambda c: f"{c['case_id']}:{c['description']}") def test_load_graph_data(self, test_case): - request = TestGraphViews.create_mock_request(f"/data/plugin/graph_ascend/load_graph_data?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") + request = TestGraphViews.create_mock_request( + f"/data/plugin/graph_ascend/load_graph_data?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") response_iter = GraphView.load_graph_data(request, TestGraphViews.start_response) response_body = b''.join(response_iter) runs = GraphState.get_global_value('runs') @@ -102,45 +106,49 @@ class TestGraphViews: assert TestGraphViews.captured.status == "200 OK" assert TestGraphViews.captured.headers["Content-Type"] == "text/event-stream; charset=utf-8" - @pytest.mark.parametrize("test_case", TestCaseFactory.get_load_graph_config_info_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_load_graph_config_info_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_load_graph_config_info(self, test_case): - request = TestGraphViews.create_mock_request(f"/data/plugin/graph_ascend/load_graph_config_info?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") + request = TestGraphViews.create_mock_request( + f"/data/plugin/graph_ascend/load_graph_config_info?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") response_iter = GraphView.load_graph_config_info(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') excepted = test_case['expected'] assert response_body == json.dumps(excepted) - @pytest.mark.parametrize("test_case", TestCaseFactory.get_load_graph_all_node_list_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_load_graph_all_node_list_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_load_graph_all_node_list(self, test_case): - request = TestGraphViews.create_mock_request(f"/data/plugin/graph_ascend/load_graph_all_node_list?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") + request = TestGraphViews.create_mock_request( + f"/data/plugin/graph_ascend/load_graph_all_node_list?run=st_test_cases&tag={TestGraphViews.mock_vis_tag}") response_iter = GraphView.load_graph_all_node_list(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') excepted = test_case['expected'] assert response_body == json.dumps(excepted) - @pytest.mark.parametrize("test_case", TestCaseFactory.get_change_node_expand_state_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_change_node_expand_state_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_change_node_expand_state(self, test_case): - input = test_case['input'] excepted = test_case['expected'] - request = TestGraphViews.create_mock_request(input) + request = TestGraphViews.create_mock_request(test_case['input']) response_iter = GraphView.change_node_expand_state(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) - @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_add_match_nodes_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_test_add_match_nodes_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_add_match_nodes(self, test_case): - input = test_case['input'] excepted = test_case['expected'] - request = TestGraphViews.create_mock_request(input) + request = TestGraphViews.create_mock_request(test_case['input']) response_iter = GraphView.add_match_nodes(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) - @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_update_hierarchy_data_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_test_update_hierarchy_data_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_update_hierarchy_data(self, test_case): - input = test_case['input'] excepted = test_case['expected'] - request = TestGraphViews.create_mock_request(input) + request = TestGraphViews.create_mock_request(test_case['input']) response_iter = GraphView.update_hierarchy_data(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) @@ -154,44 +162,48 @@ class TestGraphViews: } ], ids=lambda c: f"{c['case_id']}:{c['description']}") def test_save_matched_relations(self, test_case): - request = TestGraphViews.create_mock_request("/data/plugin/graph_ascend/saveMatchedRelations?metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}") + url = """ + data/plugin/graph_ascend/saveMatchedRelations? + metaData={"run":"st_test_cases","tag":"mock_compare_resnet_data"} + """ + request = TestGraphViews.create_mock_request(url) response_iter = GraphView.save_matched_relations(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') excepted = test_case['expected'] assert response_body == json.dumps(excepted) - @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_add_match_nodes_by_config_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_test_add_match_nodes_by_config_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_add_match_nodes_by_config(self, test_case): - input = test_case['input'] excepted = test_case['expected'] - request = TestGraphViews.create_mock_request(input) + request = TestGraphViews.create_mock_request(input=test_case['input']) response_iter = GraphView.add_match_nodes_by_config(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) - @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_delete_match_nodes_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_test_delete_match_nodes_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_delete_match_nodes(self, test_case): - input = test_case['input'] excepted = test_case['expected'] - request = TestGraphViews.create_mock_request(input) + request = TestGraphViews.create_mock_request(test_case['input']) response_iter = GraphView.delete_match_nodes(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) - @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_update_colors_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_test_update_colors_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_update_colors(self, test_case): - input = test_case['input'] excepted = test_case['expected'] - request = TestGraphViews.create_mock_request(input) + request = TestGraphViews.create_mock_request(test_case['input']) response_iter = GraphView.update_colors(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) - @pytest.mark.parametrize("test_case", TestCaseFactory.get_test_get_node_info_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_test_get_node_info_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_get_node_info(self, test_case): - input = test_case['input'] excepted = test_case['expected'] - request = TestGraphViews.create_mock_request(input) + request = TestGraphViews.create_mock_request(test_case['input']) response_iter = GraphView.get_node_info(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) @@ -200,7 +212,8 @@ class TestGraphViews: { "case_id": "1", "description": "测试save_data接口", - "input": "/data/plugin/graph_ascend/saveData?metaData={\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}", + "input": """/data/plugin/graph_ascend/saveData?metaData= + {\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}""", "expected": {"success": True} } ], ids=lambda c: f"{c['case_id']}:{c['description']}") diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/utils/test_graph_utils.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/utils/test_graph_utils.py index 4a0306169..38352365c 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/utils/test_graph_utils.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/utils/test_graph_utils.py @@ -105,13 +105,13 @@ class TestGraphUtils: "case_id": "2", "description": "相同前缀,数字部分较小", "input": {"a": "item_3_part", "b": "item_12_part"}, - "expected":-1 + "expected": "-1" }, { "case_id": "3", "description": "路径比较,a/b/c 小于 a/b/d", "input": {"a": "a/b/c", "b": "a/b/d"}, - "expected":-1 + "expected": "-1" }, { "case_id": "4", @@ -123,13 +123,13 @@ class TestGraphUtils: "case_id": "5", "description": "子路径多一级,a/b 小于 a/b/c", "input": {"a": "a/b", "b": "a/b/c"}, - "expected":-1 + "expected": "-1" }, { "case_id": "6", "description": "数字 vs 字母,数字优先", "input": {"a": "file_1", "b": "file_a"}, - "expected":-1 + "expected": "-1" }, { "case_id": "7", @@ -141,7 +141,7 @@ class TestGraphUtils: "case_id": "8", "description": "字母 vs 数字,字母在后", "input": {"a": "a2b", "b": "a10"}, - "expected":-1 + "expected": "-1" } ], ids=lambda c: f"{c['case_id']}:{c['description']}") @@ -151,7 +151,7 @@ class TestGraphUtils: return 0 if val == 0 else (1 if val > 0 else -1) a, b = test_case['input'].values() - expected = test_case['expected'] + expected = int(test_case['expected']) actual = GraphUtils.compare_tag_names(a, b) assert normalize(actual) == expected -- Gitee From c76852f256f872fd80cefe428b6e9d0fce26ee39 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Wed, 16 Jul 2025 14:59:11 +0800 Subject: [PATCH 18/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20bug?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../integration/views/test_graph_views.py | 30 +++++++++---------- 1 file changed, 14 insertions(+), 16 deletions(-) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py index e3d25ddf5..940f89f22 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -154,19 +154,17 @@ class TestGraphViews: assert response_body == json.dumps(excepted) @pytest.mark.parametrize("test_case", [ - { - "case_id": "1", - "description": "测试save_matched_relations接口", - "expected": {"success": True, "data": "mock_compare_resnet_data.vis.config"} - - } + { + "case_id": "1", + "description": "测试save_matched_relations接口", + "expected": {"success": True, "data": "mock_compare_resnet_data.vis.config"} + } ], ids=lambda c: f"{c['case_id']}:{c['description']}") def test_save_matched_relations(self, test_case): - url = """ - data/plugin/graph_ascend/saveMatchedRelations? - metaData={"run":"st_test_cases","tag":"mock_compare_resnet_data"} - """ - request = TestGraphViews.create_mock_request(url) + url = 'data/plugin/graph_ascend/saveMatchedRelations' + params = 'metaData={"run":"st_test_cases","tag":"mock_compare_resnet_data"}' + request_url = f"{url}?{params}" + request = TestGraphViews.create_mock_request(request_url) response_iter = GraphView.save_matched_relations(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') excepted = test_case['expected'] @@ -176,7 +174,7 @@ class TestGraphViews: TestCaseFactory.get_test_add_match_nodes_by_config_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_add_match_nodes_by_config(self, test_case): excepted = test_case['expected'] - request = TestGraphViews.create_mock_request(input=test_case['input']) + request = TestGraphViews.create_mock_request(test_case['input']) response_iter = GraphView.add_match_nodes_by_config(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) @@ -212,15 +210,15 @@ class TestGraphViews: { "case_id": "1", "description": "测试save_data接口", - "input": """/data/plugin/graph_ascend/saveData?metaData= - {\"run\":\"st_test_cases\",\"tag\":\"mock_compare_resnet_data\"}""", "expected": {"success": True} } ], ids=lambda c: f"{c['case_id']}:{c['description']}") def test_save_data(self, test_case): - input = test_case['input'] excepted = test_case['expected'] - request = TestGraphViews.create_mock_request(input) + url = 'data/plugin/graph_ascend/saveData' + params = 'metaData={"run":"st_test_cases","tag":"mock_compare_resnet_data"}' + request_url = f"{url}?{params}" + request = TestGraphViews.create_mock_request(request_url) response_iter = GraphView.save_data(request, TestGraphViews.start_response) response_body = b''.join(response_iter).decode('utf-8') assert response_body == json.dumps(excepted) -- Gitee From 2ce14409635c24be63808fa252b7f9945fd1ed80 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Wed, 16 Jul 2025 15:03:22 +0800 Subject: [PATCH 19/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20bug?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../tb_graph_ascend/server/app/service/graph_service.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py index 171d1df9f..43c05357f 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/service/graph_service.py @@ -367,6 +367,8 @@ class GraphService: @staticmethod def save_data(meta_data): + if not meta_data: + return {'success': False, 'error': '参数为空'} graph_data, error_message = GraphUtils.get_graph_data(meta_data) if error_message: return {'success': False, 'error': error_message} @@ -383,6 +385,8 @@ class GraphService: @staticmethod def save_matched_relations(meta_data): + if not meta_data: + return {'success': False, 'error': '参数为空'} config_data = GraphState.get_global_value("config_data") # 匹配列表和未匹配列表 npu_match_nodes_list = config_data.get('manualMatchNodes', {}) -- Gitee From ae85584f9203d63961ec06d25917ef6d2b0851ef Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Wed, 16 Jul 2025 15:29:23 +0800 Subject: [PATCH 20/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20code=20check?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../test/integration/views/test_graph_views.py | 2 +- .../unit/controllers/test_layout_hierarchy_controller.py | 8 +++++--- 2 files changed, 6 insertions(+), 4 deletions(-) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py index 940f89f22..66e481c24 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/integration/views/test_graph_views.py @@ -15,7 +15,7 @@ # ============================================================================== import json -from pathlib import Path +from pathlib import Path from types import SimpleNamespace import pytest diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py index 2ef561d69..3c2ad18e7 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/test/unit/controllers/test_layout_hierarchy_controller.py @@ -23,7 +23,8 @@ from server.app.controllers.layout_hierarchy_controller import LayoutHierarchyCo @pytest.mark.unit class TestLayoutHierarchyController: - @pytest.mark.parametrize("test_case", TestCaseFactory.get_change_expand_state_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_change_expand_state_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_change_expand_state(self, test_case): graph_type = test_case['input']['graph_type'] if graph_type == SINGLE: @@ -35,10 +36,11 @@ class TestLayoutHierarchyController: actual = LayoutHierarchyController.change_expand_state(node_name, graph_type, graph, micro_step) assert actual == excepted - @pytest.mark.parametrize("test_case", TestCaseFactory.get_update_hierarchy_data_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") + @pytest.mark.parametrize("test_case", + TestCaseFactory.get_update_hierarchy_data_cases(), ids=lambda c: f"{c['case_id']}:{c['description']}") def test_update_hierarchy_data(self, test_case): graph_type = test_case['input']['graph_type'] excepted = test_case['expected'] actual = LayoutHierarchyController.update_hierarchy_data(graph_type) assert actual == excepted - \ No newline at end of file + -- Gitee From cc4a2ede0e63681076e6078e893ba14654e37f71 Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Thu, 17 Jul 2025 09:24:11 +0800 Subject: [PATCH 21/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20bug?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../tb_graph_ascend/server/app/controllers/hierarchy.py | 1 + 1 file changed, 1 insertion(+) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/hierarchy.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/hierarchy.py index afa19c8fe..33bd1b7ba 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/hierarchy.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/hierarchy.py @@ -292,6 +292,7 @@ class Hierarchy: for node_name, node_info in self.current_hierarchy.items(): graph_node_info = self.graph.get('node', {}).get(node_name, {}) node_info['matchedNodeLink'] = graph_node_info.get('matched_node_link', []) + node_info['precisionIndex'] = graph_node_info.get('data', {}).get('precision_index', "NaN") return self.current_hierarchy def get_hierarchy(self): -- Gitee From ac90590409ea70a7cce51a87b27d3faf5d41b58b Mon Sep 17 00:00:00 2001 From: sunchao <1299792067@qq.com> Date: Thu, 17 Jul 2025 09:28:19 +0800 Subject: [PATCH 22/22] =?UTF-8?q?=F0=9F=90=9E=20fix:=20bug?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../server/app/controllers/match_nodes_controller.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py index 0b7e955c2..a15005adb 100644 --- a/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py +++ b/plugins/tensorboard-plugins/tb_graph_ascend/server/app/controllers/match_nodes_controller.py @@ -52,7 +52,7 @@ class MatchNodesController: @staticmethod def process_task_delete(graph_data, npu_node_name, bench_node_name, task): - + result = {} if task == 'md5': result = MatchNodesController.process_md5_task_delete(graph_data, npu_node_name, bench_node_name) elif task == 'summary': -- Gitee