diff --git a/tb_plugins/profiling/tb_plugin/torch_tb_profiler/profiler/run_generator.py b/tb_plugins/profiling/tb_plugin/torch_tb_profiler/profiler/run_generator.py index d2504d62fd11100a74a7af51af9ee99d835cf93b..d28ebf8b476d4de5f1557fdb59dbf74f95902339 100644 --- a/tb_plugins/profiling/tb_plugin/torch_tb_profiler/profiler/run_generator.py +++ b/tb_plugins/profiling/tb_plugin/torch_tb_profiler/profiler/run_generator.py @@ -344,29 +344,16 @@ class RunGenerator(object): reader = csv.DictReader(f) for row in reader: data = [] - data.append(row.get('Op Name')) - data.append(float(row.get('Task Duration(us)'))) + data.append(row.get('Name')) + data.append(float(row.get('Duration(us)'))) pie['rows'].append(data) datas = {'total': pie} return datas def _generate_kernel_table(self): - display_columns = { - 'Step ID': 'Step ID', - 'Op Name': 'Name', - 'Op Type': 'Type', - 'Task Type': 'Accelerator Core', - 'Task Start Time': 'Start Time', - 'Task Duration(us)': 'Duration(us)', - 'Task Wait Time(us)': 'Wait Time(us)', - 'Block Dim': 'Block Dim', - 'Input Shapes': 'Input Shapes', - 'Input Data Types': 'Input Data Types', - 'Input Formats': 'Input Formats', - 'Output Shapes': 'Output Shapes', - 'Output Data Types': 'Output Data Types', - 'Output Formats': 'Output Formats' - } + display_columns = ('Step ID', 'Name', 'Type', 'Accelerator Core', 'Start Time', 'Duration(us)', 'Wait Time(us)', + 'Block Dim', 'Input Shapes', 'Input Data Types', 'Input Formats', 'Output Shapes', + 'Output Data Types', 'Output Formats') display_idxs = [] table = {'columns': [], 'rows': []} result = { @@ -378,16 +365,16 @@ class RunGenerator(object): path = self.profile_data.kernel_file_path datas = self._get_csv_data(path) for idx, column in enumerate(datas[0]): - if column == 'Op Name': + if column == 'Name': self.name_idx = idx - elif column == 'Task Duration(us)': + elif column == 'Duration(us)': self.duration_idx = idx - elif column == 'Task Type': + elif column == 'Type': self.core_type_idx = idx - if display_columns.get(column) is not None: + if column in display_columns: display_idxs.append(idx) - table['columns'].append({'type': 'string', 'name': display_columns[column]}) + table['columns'].append({'type': 'string', 'name': column}) table['rows'] = [self._handle_kernel_table_rows(display_idxs, ls) for idx, ls in enumerate(datas) if idx != 0] return result