diff --git "a/docs/zh/PyTorch API\346\224\257\346\214\201\346\270\205\345\215\225/PyTorch API\346\224\257\346\214\201\346\270\205\345\215\225.md" "b/docs/zh/PyTorch API\346\224\257\346\214\201\346\270\205\345\215\225/PyTorch API\346\224\257\346\214\201\346\270\205\345\215\225.md" index 1ca98fd8b40e77ca4ed3b6c14e8305f761875fd3..b2c94fdbf2bd3ab187a2d717a8d16a32b34b2dc2 100644 --- "a/docs/zh/PyTorch API\346\224\257\346\214\201\346\270\205\345\215\225/PyTorch API\346\224\257\346\214\201\346\270\205\345\215\225.md" +++ "b/docs/zh/PyTorch API\346\224\257\346\214\201\346\270\205\345\215\225/PyTorch API\346\224\257\346\214\201\346\270\205\345\215\225.md" @@ -16,346 +16,346 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - @@ -366,59 +366,59 @@

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch.is_tensor

+

torch.is_tensor

+

2

torch.is_storage

+

torch.is_storage

+

3

torch.is_complex

+

torch.is_complex

+

4

torch.is_floating_point

+

torch.is_floating_point

+

5

torch.set_default_dtype

+

torch.set_default_dtype

+

6

torch.get_default_dtype

+

torch.get_default_dtype

+

7

torch.set_default_tensor_type

+

torch.set_default_tensor_type

+

8

torch.numel

+

torch.numel

+

9

torch.set_printoptions

+

torch.set_printoptions

+

10

torch.set_flush_denormal

+

torch.set_flush_denormal

+

11

torch.tensor

+

torch.tensor

+

12

torch.sparse_coo_tensor

+

torch.sparse_coo_tensor

+

13

torch.as_tensor

+

torch.as_tensor

+

14

torch.as_strided

+

torch.as_strided

+

15

torch.from_numpy

+

torch.from_numpy

+

16

torch.zeros

+

torch.zeros

+

17

torch.zeros_like

+

torch.zeros_like

+

18

torch.ones

+

torch.ones

+

19

torch.ones_like

+

torch.ones_like

+

20

torch.arange

+

torch.arange

+

21

torch.range

+

torch.range

+

22

torch.linspace

+

torch.linspace

+

23

torch.logspace

+

torch.logspace

+

24

torch.eye

+

torch.eye

+

25

torch.empty

+

torch.empty

+

26

torch.empty_like

+

torch.empty_like

+

27

torch.empty_strided

+

torch.empty_strided

+

28

torch.full

+

torch.full

+

29

torch.full_like

+

torch.full_like

+

30

torch.quantize_per_tensor

+

torch.quantize_per_tensor

+

31

torch.quantize_per_channel

+

torch.quantize_per_channel

+

32

torch.cat

+

torch.cat

+

33

torch.chunk

+

torch.chunk

+

34

torch.gather

+

torch.gather

+

35

torch.index_select

+

torch.index_select

+

36

torch.masked_select

+

torch.masked_select

+

37

torch.narrow

+

torch.narrow

+

38

torch.nonzero

+

torch.nonzero

+

39

torch.reshape

+

torch.reshape

+

40

torch.split

+

torch.split

+

41

torch.squeeze

+

torch.squeeze

+

42

torch.stack

+

torch.stack

+

43

torch.t

+

torch.t

+

44

torch.take

+

torch.take

+

45

torch.transpose

+

torch.transpose

+

46

torch.unbind

+

torch.unbind

+

47

torch.unsqueeze

+

torch.unsqueeze

+

48

torch.where

+

torch.where

+

- - - - - - - - - - - - - - - - @@ -429,213 +429,213 @@

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch._C.Generator

+

torch._C.Generator

+

2

torch._C.Generator.device

+

torch._C.Generator.device

+

3

torch._C.Generator.get_state

+

torch._C.Generator.get_state

+

4

torch._C.Generator.initial_seed

+

torch._C.Generator.initial_seed

+

5

torch._C.Generator.manual_seed

+

torch._C.Generator.manual_seed

+

6

torch._C.Generator.seed

+

torch._C.Generator.seed

+

7

torch._C.Generator.set_state

+

torch._C.Generator.set_state

+

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - @@ -646,24 +646,24 @@

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch.seed

+

torch.seed

+

2

torch.manual_seed

+

torch.manual_seed

+

3

torch.initial_seed

+

torch.initial_seed

+

4

torch.get_rng_state

+

torch.get_rng_state

+

5

torch.set_rng_state

+

torch.set_rng_state

+

6

torch.torch.default_generator

+

torch.torch.default_generator

+

7

torch.bernoulli

+

torch.bernoulli

+

8

torch.multinomial

+

torch.multinomial

+

9

torch.normal

+

torch.normal

+

10

torch.poisson

+

torch.poisson

+

11

torch.rand

+

torch.rand

+

12

torch.rand_like

+

torch.rand_like

+

13

torch.randint

+

torch.randint

+

14

torch.randint_like

+

torch.randint_like

+

15

torch.randn

+

torch.randn

+

16

torch.randn_like

+

torch.randn_like

+

17

torch.randperm

+

torch.randperm

+

18

torch.Tensor.bernoulli_()

+

torch.Tensor.bernoulli_()

+

19

torch.Tensor.bernoulli_()

+

torch.Tensor.bernoulli_()

+

20

torch.Tensor.exponential_()

+

torch.Tensor.exponential_()

+

21

torch.Tensor.geometric_()

+

torch.Tensor.geometric_()

+

22

torch.Tensor.log_normal_()

+

torch.Tensor.log_normal_()

+

23

torch.Tensor.normal_()

+

torch.Tensor.normal_()

+

24

torch.Tensor.random_()

+

torch.Tensor.random_()

+

25

torch.Tensor.uniform_()

+

torch.Tensor.uniform_()

+

26

torch.quasirandom.SobolEngine

+

torch.quasirandom.SobolEngine

+

27

torch.quasirandom.SobolEngine.draw

+

torch.quasirandom.SobolEngine.draw

+

28

torch.quasirandom.SobolEngine.fast_forward

+

torch.quasirandom.SobolEngine.fast_forward

+

29

torch.quasirandom.SobolEngine.reset

+

torch.quasirandom.SobolEngine.reset

+

- - - - - - @@ -674,1200 +674,1200 @@

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch.save

+

torch.save

+

2

torch.load

+

torch.load

+

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - @@ -1878,38 +1878,38 @@

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch.abs

+

torch.abs

+

2

torch.acos

+

torch.acos

+

3

torch.add

+

torch.add

+

4

torch.addcdiv

+

torch.addcdiv

+

5

torch.addcmul

+

torch.addcmul

+

6

torch.angle

+

torch.angle

+

7

torch.asin

+

torch.asin

+

8

torch.atan

+

torch.atan

+

9

torch.atan2

+

torch.atan2

+

10

torch.bitwise_not

+

torch.bitwise_not

+

11

torch.bitwise_and

+

torch.bitwise_and

+

12

torch.bitwise_or

+

torch.bitwise_or

+

13

torch.bitwise_xor

+

torch.bitwise_xor

+

14

torch.ceil

+

torch.ceil

+

15

torch.clamp

+

torch.clamp

+

16

torch.conj

+

torch.conj

+

17

torch.cos

+

torch.cos

+

18

torch.cosh

+

torch.cosh

+

19

torch.div

+

torch.div

+

20

torch.digamma

+

torch.digamma

+

21

torch.erf

+

torch.erf

+

22

torch.erfc

+

torch.erfc

+

23

torch.erfinv

+

torch.erfinv

+

24

torch.exp

+

torch.exp

+

25

torch.expm1

+

torch.expm1

+

26

torch.floor

+

torch.floor

+

27

torch.floor_divide

+

torch.floor_divide

+

28

torch.fmod

+

torch.fmod

+

29

torch.frac

+

torch.frac

+

30

torch.imag

+

torch.imag

+

31

torch.lerp

+

torch.lerp

+

32

torch.lgamma

+

torch.lgamma

+

33

torch.log

+

torch.log

+

34

torch.log10

+

torch.log10

+

35

torch.log1p

+

torch.log1p

+

36

torch.log2

+

torch.log2

+

37

torch.logical_and

+

torch.logical_and

+

38

torch.logical_not

+

torch.logical_not

+

39

torch.logical_or

+

torch.logical_or

+

40

torch.logical_xor

+

torch.logical_xor

+

41

torch.mul

+

torch.mul

+

42

torch.mvlgamma

+

torch.mvlgamma

+

43

torch.neg

+

torch.neg

+

44

torch.polygamma

+

torch.polygamma

+

45

torch.pow

+

torch.pow

+

46

torch.real

+

torch.real

+

47

torch.reciprocal

+

torch.reciprocal

+

48

torch.remainder

+

torch.remainder

+

49

torch.round

+

torch.round

+

50

torch.rsqrt

+

torch.rsqrt

+

51

torch.sigmoid

+

torch.sigmoid

+

52

torch.sign

+

torch.sign

+

53

torch.sin

+

torch.sin

+

54

torch.sinh

+

torch.sinh

+

55

torch.sqrt

+

torch.sqrt

+

56

torch.square

+

torch.square

+

57

torch.tan

+

torch.tan

+

58

torch.tanh

+

torch.tanh

+

59

torch.true_divide

+

torch.true_divide

+

60

torch.trunc

+

torch.trunc

+

61

torch.argmax

+

torch.argmax

+

62

torch.argmin

+

torch.argmin

+

63

torch.dist

+

torch.dist

+

64

torch.logsumexp

+

torch.logsumexp

+

65

torch.mean

+

torch.mean

+

66

torch.median

+

torch.median

+

67

torch.mode

+

torch.mode

+

68

torch.norm

+

torch.norm

+

69

torch.prod

+

torch.prod

+

70

torch.std

+

torch.std

+

71

torch.std_mean

+

torch.std_mean

+

72

torch.sum

+

torch.sum

+

73

torch.unique

+

torch.unique

+

74

torch.unique_consecutive

+

torch.unique_consecutive

+

75

torch.var

+

torch.var

+

76

torch.var_mean

+

torch.var_mean

+

77

torch.allclose

+

torch.allclose

+

78

torch.argsort

+

torch.argsort

+

79

torch.eq

+

torch.eq

+

80

torch.equal

+

torch.equal

+

81

torch.ge

+

torch.ge

+

82

torch.gt

+

torch.gt

+

83

torch.isfinite

+

torch.isfinite

+

84

torch.isinf

+

torch.isinf

+

85

torch.isnan

+

torch.isnan

+

86

torch.kthvalue

+

torch.kthvalue

+

87

torch.le

+

torch.le

+

88

torch.lt

+

torch.lt

+

89

torch.max

+

torch.max

+

90

torch.min

+

torch.min

+

91

torch.ne

+

torch.ne

+

92

torch.sort

+

torch.sort

+

93

torch.topk

+

torch.topk

+

94

torch.fft

+

torch.fft

+

95

torch.ifft

+

torch.ifft

+

96

torch.rfft

+

torch.rfft

+

97

torch.irfft

+

torch.irfft

+

98

torch.stft

+

torch.stft

+

99

torch.bartlett_window

+

torch.bartlett_window

+

100

torch.blackman_window

+

torch.blackman_window

+

101

torch.hamming_window

+

torch.hamming_window

+

102

torch.hann_window

+

torch.hann_window

+

103

torch.bincount

+

torch.bincount

+

104

torch.broadcast_tensors

+

torch.broadcast_tensors

+

105

torch.cartesian_prod

+

torch.cartesian_prod

+

106

torch.cdist

+

torch.cdist

+

107

torch.combinations

+

torch.combinations

+

108

torch.cross

+

torch.cross

+

109

torch.cummax

+

torch.cummax

+

110

torch.cummin

+

torch.cummin

+

111

torch.cumprod

+

torch.cumprod

+

112

torch.cumsum

+

torch.cumsum

+

113

torch.diag

+

torch.diag

+

114

torch.diag_embed

+

torch.diag_embed

+

115

torch.diagflat

+

torch.diagflat

+

116

torch.diagonal

+

torch.diagonal

+

117

torch.einsum

+

torch.einsum

+

118

torch.flatten

+

torch.flatten

+

119

torch.flip

+

torch.flip

+

120

torch.rot90

+

torch.rot90

+

121

torch.histc

+

torch.histc

+

122

torch.meshgrid

+

torch.meshgrid

+

123

torch.renorm

+

torch.renorm

+

124

torch.repeat_interleave

+

torch.repeat_interleave

+

125

torch.roll

+

torch.roll

+

126

torch.tensordot

+

torch.tensordot

+

127

torch.trace

+

torch.trace

+

128

torch.tril

+

torch.tril

+

129

torch.tril_indices

+

torch.tril_indices

+

130

torch.triu

+

torch.triu

+

131

torch.triu_indices

+

torch.triu_indices

+

132

torch.addbmm

+

torch.addbmm

+

133

torch.addmm

+

torch.addmm

+

134

torch.addmv

+

torch.addmv

+

135

torch.addr

+

torch.addr

+

136

torch.baddbmm

+

torch.baddbmm

+

137

torch.bmm

+

torch.bmm

+

138

torch.chain_matmul

+

torch.chain_matmul

+

139

torch.cholesky

+

torch.cholesky

+

140

torch.cholesky_inverse

+

torch.cholesky_inverse

+

141

torch.cholesky_solve

+

torch.cholesky_solve

+

142

torch.dot

+

torch.dot

+

143

torch.eig

+

torch.eig

+

144

torch.geqrf

+

torch.geqrf

+

145

torch.ger

+

torch.ger

+

146

torch.inverse

+

torch.inverse

+

147

torch.det

+

torch.det

+

148

torch.logdet

+

torch.logdet

+

149

torch.slogdet

+

torch.slogdet

+

150

torch.lstsq

+

torch.lstsq

+

151

torch.lu

+

torch.lu

+

152

torch.lu_solve

+

torch.lu_solve

+

153

torch.lu_unpack

+

torch.lu_unpack

+

154

torch.matmul

+

torch.matmul

+

155

torch.matrix_power

+

torch.matrix_power

+

156

torch.matrix_rank

+

torch.matrix_rank

+

157

torch.mm

+

torch.mm

+

158

torch.mv

+

torch.mv

+

159

torch.orgqr

+

torch.orgqr

+

160

torch.ormqr

+

torch.ormqr

+

161

torch.pinverse

+

torch.pinverse

+

162

torch.qr

+

torch.qr

+

163

torch.solve

+

torch.solve

+

164

torch.svd

+

torch.svd

+

165

torch.svd_lowrank

+

torch.svd_lowrank

+

166

torch.pca_lowrank

+

torch.pca_lowrank

+

167

torch.symeig

+

torch.symeig

+

168

torch.lobpcg

+

torch.lobpcg

+

169

torch.trapz

+

torch.trapz

+

170

torch.triangular_solve

+

torch.triangular_solve

+

- - - - - - - - - - @@ -1920,59 +1920,59 @@

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch.compiled_with_cxx11_abi

+

torch.compiled_with_cxx11_abi

+

2

torch.result_type

+

torch.result_type

+

3

torch.can_cast

+

torch.can_cast

+

4

torch.promote_types

+

torch.promote_types

+

- - - - - - - - - - - - - - - - @@ -1983,2502 +1983,2502 @@

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch.no_grad

+

torch.no_grad

+

2

torch.enable_grad

+

torch.enable_grad

+

3

torch.set_grad_enabled

+

torch.set_grad_enabled

+

4

torch.get_num_threads

+

torch.get_num_threads

+

5

torch.set_num_threads

+

torch.set_num_threads

+

6

torch.get_num_interop_threads

+

torch.get_num_interop_threads

+

7

torch.set_num_interop_threads

+

torch.set_num_interop_threads

+

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - @@ -4487,2224 +4487,2224 @@

Layers (torch.nn)

-

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch.Tensor

+

torch.Tensor

+

2

torch.Tensor.new_tensor

+

torch.Tensor.new_tensor

+

3

torch.Tensor.new_full

+

torch.Tensor.new_full

+

4

torch.Tensor.new_empty

+

torch.Tensor.new_empty

+

5

torch.Tensor.new_ones

+

torch.Tensor.new_ones

+

6

torch.Tensor.new_zeros

+

torch.Tensor.new_zeros

+

7

torch.Tensor.is_cuda

+

torch.Tensor.is_cuda

+

8

torch.Tensor.is_quantized

+

torch.Tensor.is_quantized

+

9

torch.Tensor.device

+

torch.Tensor.device

+

10

torch.Tensor.ndim

+

torch.Tensor.ndim

+

11

torch.Tensor.T

+

torch.Tensor.T

+

12

torch.Tensor.abs

+

torch.Tensor.abs

+

13

torch.Tensor.abs_

+

torch.Tensor.abs_

+

14

torch.Tensor.acos

+

torch.Tensor.acos

+

15

torch.Tensor.acos_

+

torch.Tensor.acos_

+

16

torch.Tensor.add

+

torch.Tensor.add

+

17

torch.Tensor.add_

+

torch.Tensor.add_

+

18

torch.Tensor.addbmm

+

torch.Tensor.addbmm

+

19

torch.Tensor.addbmm_

+

torch.Tensor.addbmm_

+

20

torch.Tensor.addcdiv

+

torch.Tensor.addcdiv

+

21

torch.Tensor.addcdiv_

+

torch.Tensor.addcdiv_

+

22

torch.Tensor.addcmul

+

torch.Tensor.addcmul

+

23

torch.Tensor.addcmul_

+

torch.Tensor.addcmul_

+

24

torch.Tensor.addmm

+

torch.Tensor.addmm

+

25

torch.Tensor.addmm_

+

torch.Tensor.addmm_

+

26

torch.Tensor.addmv

+

torch.Tensor.addmv

+

27

torch.Tensor.addmv_

+

torch.Tensor.addmv_

+

28

torch.Tensor.addr

+

torch.Tensor.addr

+

29

torch.Tensor.addr_

+

torch.Tensor.addr_

+

30

torch.Tensor.allclose

+

torch.Tensor.allclose

+

31

torch.Tensor.angle

+

torch.Tensor.angle

+

32

torch.Tensor.apply_

+

torch.Tensor.apply_

+

33

torch.Tensor.argmax

+

torch.Tensor.argmax

+

34

torch.Tensor.argmin

+

torch.Tensor.argmin

+

35

torch.Tensor.argsort

+

torch.Tensor.argsort

+

36

torch.Tensor.asin

+

torch.Tensor.asin

+

37

torch.Tensor.asin_

+

torch.Tensor.asin_

+

38

torch.Tensor.as_strided

+

torch.Tensor.as_strided

+

39

torch.Tensor.atan

+

torch.Tensor.atan

+

40

torch.Tensor.atan2

+

torch.Tensor.atan2

+

41

torch.Tensor.atan2_

+

torch.Tensor.atan2_

+

42

torch.Tensor.atan_

+

torch.Tensor.atan_

+

43

torch.Tensor.baddbmm

+

torch.Tensor.baddbmm

+

44

torch.Tensor.baddbmm_

+

torch.Tensor.baddbmm_

+

45

torch.Tensor.bernoulli

+

torch.Tensor.bernoulli

+

46

torch.Tensor.bernoulli_

+

torch.Tensor.bernoulli_

+

47

torch.Tensor.bfloat16

+

torch.Tensor.bfloat16

+

48

torch.Tensor.bincount

+

torch.Tensor.bincount

+

49

torch.Tensor.bitwise_not

+

torch.Tensor.bitwise_not

+

50

torch.Tensor.bitwise_not_

+

torch.Tensor.bitwise_not_

+

51

torch.Tensor.bitwise_and

+

torch.Tensor.bitwise_and

+

52

torch.Tensor.bitwise_and_

+

torch.Tensor.bitwise_and_

+

53

torch.Tensor.bitwise_or

+

torch.Tensor.bitwise_or

+

54

torch.Tensor.bitwise_or_

+

torch.Tensor.bitwise_or_

+

55

torch.Tensor.bitwise_xor

+

torch.Tensor.bitwise_xor

+

56

torch.Tensor.bitwise_xor_

+

torch.Tensor.bitwise_xor_

+

57

torch.Tensor.bmm

+

torch.Tensor.bmm

+

58

torch.Tensor.bool

+

torch.Tensor.bool

+

59

torch.Tensor.byte

+

torch.Tensor.byte

+

60

torch.Tensor.cauchy_

+

torch.Tensor.cauchy_

+

61

torch.Tensor.ceil

+

torch.Tensor.ceil

+

62

torch.Tensor.ceil_

+

torch.Tensor.ceil_

+

63

torch.Tensor.char

+

torch.Tensor.char

+

64

torch.Tensor.cholesky

+

torch.Tensor.cholesky

+

65

torch.Tensor.cholesky_inverse

+

torch.Tensor.cholesky_inverse

+

66

torch.Tensor.cholesky_solve

+

torch.Tensor.cholesky_solve

+

67

torch.Tensor.chunk

+

torch.Tensor.chunk

+

68

torch.Tensor.clamp

+

torch.Tensor.clamp

+

69

torch.Tensor.clamp_

+

torch.Tensor.clamp_

+

70

torch.Tensor.clone

+

torch.Tensor.clone

+

71

torch.Tensor.contiguous

+

torch.Tensor.contiguous

+

72

torch.Tensor.copy_

+

torch.Tensor.copy_

+

73

torch.Tensor.conj

+

torch.Tensor.conj

+

74

torch.Tensor.cos

+

torch.Tensor.cos

+

75

torch.Tensor.cos_

+

torch.Tensor.cos_

+

76

torch.Tensor.cosh

+

torch.Tensor.cosh

+

77

torch.Tensor.cosh_

+

torch.Tensor.cosh_

+

78

torch.Tensor.cpu

+

torch.Tensor.cpu

+

79

torch.Tensor.cross

+

torch.Tensor.cross

+

80

torch.Tensor.cuda

+

torch.Tensor.cuda

+

81

torch.Tensor.cummax

+

torch.Tensor.cummax

+

82

torch.Tensor.cummin

+

torch.Tensor.cummin

+

83

torch.Tensor.cumprod

+

torch.Tensor.cumprod

+

84

torch.Tensor.cumsum

+

torch.Tensor.cumsum

+

85

torch.Tensor.data_ptr

+

torch.Tensor.data_ptr

+

86

torch.Tensor.dequantize

+

torch.Tensor.dequantize

+

87

torch.Tensor.det

+

torch.Tensor.det

+

88

torch.Tensor.dense_dim

+

torch.Tensor.dense_dim

+

89

torch.Tensor.diag

+

torch.Tensor.diag

+

90

torch.Tensor.diag_embed

+

torch.Tensor.diag_embed

+

91

torch.Tensor.diagflat

+

torch.Tensor.diagflat

+

92

torch.Tensor.diagonal

+

torch.Tensor.diagonal

+

93

torch.Tensor.fill_diagonal_

+

torch.Tensor.fill_diagonal_

+

94

torch.Tensor.digamma

+

torch.Tensor.digamma

+

95

torch.Tensor.digamma_

+

torch.Tensor.digamma_

+

96

torch.Tensor.dim

+

torch.Tensor.dim

+

97

torch.Tensor.dist

+

torch.Tensor.dist

+

98

torch.Tensor.div

+

torch.Tensor.div

+

99

torch.Tensor.div_

+

torch.Tensor.div_

+

100

torch.Tensor.dot

+

torch.Tensor.dot

+

101

torch.Tensor.double

+

torch.Tensor.double

+

102

torch.Tensor.eig

+

torch.Tensor.eig

+

103

torch.Tensor.element_size

+

torch.Tensor.element_size

+

104

torch.Tensor.eq

+

torch.Tensor.eq

+

105

torch.Tensor.eq_

+

torch.Tensor.eq_

+

106

torch.Tensor.equal

+

torch.Tensor.equal

+

107

torch.Tensor.erf

+

torch.Tensor.erf

+

108

torch.Tensor.erf_

+

torch.Tensor.erf_

+

109

torch.Tensor.erfc

+

torch.Tensor.erfc

+

110

torch.Tensor.erfc_

+

torch.Tensor.erfc_

+

111

torch.Tensor.erfinv

+

torch.Tensor.erfinv

+

112

torch.Tensor.erfinv_

+

torch.Tensor.erfinv_

+

113

torch.Tensor.exp

+

torch.Tensor.exp

+

114

torch.Tensor.exp_

+

torch.Tensor.exp_

+

115

torch.Tensor.expm1

+

torch.Tensor.expm1

+

116

torch.Tensor.expm1_

+

torch.Tensor.expm1_

+

117

torch.Tensor.expand

+

torch.Tensor.expand

+

118

torch.Tensor.expand_as

+

torch.Tensor.expand_as

+

119

torch.Tensor.exponential_

+

torch.Tensor.exponential_

+

120

torch.Tensor.fft

+

torch.Tensor.fft

+

121

torch.Tensor.fill_

+

torch.Tensor.fill_

+

122

torch.Tensor.flatten

+

torch.Tensor.flatten

+

123

torch.Tensor.flip

+

torch.Tensor.flip

+

124

torch.Tensor.float

+

torch.Tensor.float

+

125

torch.Tensor.floor

+

torch.Tensor.floor

+

126

torch.Tensor.floor_

+

torch.Tensor.floor_

+

127

torch.Tensor.floor_divide

+

torch.Tensor.floor_divide

+

128

torch.Tensor.floor_divide_

+

torch.Tensor.floor_divide_

+

129

torch.Tensor.fmod

+

torch.Tensor.fmod

+

130

torch.Tensor.fmod_

+

torch.Tensor.fmod_

+

131

torch.Tensor.frac

+

torch.Tensor.frac

+

132

torch.Tensor.frac_

+

torch.Tensor.frac_

+

133

torch.Tensor.gather

+

torch.Tensor.gather

+

134

torch.Tensor.ge

+

torch.Tensor.ge

+

135

torch.Tensor.ge_

+

torch.Tensor.ge_

+

136

torch.Tensor.geometric_

+

torch.Tensor.geometric_

+

137

torch.Tensor.geqrf

+

torch.Tensor.geqrf

+

138

torch.Tensor.ger

+

torch.Tensor.ger

+

139

torch.Tensor.get_device

+

torch.Tensor.get_device

+

140

torch.Tensor.gt

+

torch.Tensor.gt

+

141

torch.Tensor.gt_

+

torch.Tensor.gt_

+

142

torch.Tensor.half

+

torch.Tensor.half

+

143

torch.Tensor.hardshrink

+

torch.Tensor.hardshrink

+

144

torch.Tensor.histc

+

torch.Tensor.histc

+

145

torch.Tensor.ifft

+

torch.Tensor.ifft

+

146

torch.Tensor.index_add_

+

torch.Tensor.index_add_

+

147

torch.Tensor.index_add

+

torch.Tensor.index_add

+

148

torch.Tensor.index_copy_

+

torch.Tensor.index_copy_

+

149

torch.Tensor.index_copy

+

torch.Tensor.index_copy

+

150

torch.Tensor.index_fill_

+

torch.Tensor.index_fill_

+

151

torch.Tensor.index_fill

+

torch.Tensor.index_fill

+

152

torch.Tensor.index_put_

+

torch.Tensor.index_put_

+

153

torch.Tensor.index_put

+

torch.Tensor.index_put

+

154

torch.Tensor.index_select

+

torch.Tensor.index_select

+

155

torch.Tensor.indices

+

torch.Tensor.indices

+

156

torch.Tensor.int

+

torch.Tensor.int

+

157

torch.Tensor.int_repr

+

torch.Tensor.int_repr

+

158

torch.Tensor.inverse

+

torch.Tensor.inverse

+

159

torch.Tensor.irfft

+

torch.Tensor.irfft

+

160

torch.Tensor.is_contiguous

+

torch.Tensor.is_contiguous

+

161

torch.Tensor.is_complex

+

torch.Tensor.is_complex

+

162

torch.Tensor.is_floating_point

+

torch.Tensor.is_floating_point

+

163

torch.Tensor.is_pinned

+

torch.Tensor.is_pinned

+

164

torch.Tensor.is_set_to

+

torch.Tensor.is_set_to

+

165

torch.Tensor.is_shared

+

torch.Tensor.is_shared

+

166

torch.Tensor.is_signed

+

torch.Tensor.is_signed

+

167

torch.Tensor.is_sparse

+

torch.Tensor.is_sparse

+

168

torch.Tensor.item

+

torch.Tensor.item

+

169

torch.Tensor.kthvalue

+

torch.Tensor.kthvalue

+

170

torch.Tensor.le

+

torch.Tensor.le

+

171

torch.Tensor.le_

+

torch.Tensor.le_

+

172

torch.Tensor.lerp

+

torch.Tensor.lerp

+

173

torch.Tensor.lerp_

+

torch.Tensor.lerp_

+

174

torch.Tensor.lgamma

+

torch.Tensor.lgamma

+

175

torch.Tensor.lgamma_

+

torch.Tensor.lgamma_

+

176

torch.Tensor.log

+

torch.Tensor.log

+

177

torch.Tensor.log_

+

torch.Tensor.log_

+

178

torch.Tensor.logdet

+

torch.Tensor.logdet

+

179

torch.Tensor.log10

+

torch.Tensor.log10

+

180

torch.Tensor.log10_

+

torch.Tensor.log10_

+

181

torch.Tensor.log1p

+

torch.Tensor.log1p

+

182

torch.Tensor.log1p_

+

torch.Tensor.log1p_

+

183

torch.Tensor.log2

+

torch.Tensor.log2

+

184

torch.Tensor.log2_

+

torch.Tensor.log2_

+

185

torch.Tensor.log_normal_

+

torch.Tensor.log_normal_

+

186

torch.Tensor.logsumexp

+

torch.Tensor.logsumexp

+

187

torch.Tensor.logical_and

+

torch.Tensor.logical_and

+

188

torch.Tensor.logical_and_

+

torch.Tensor.logical_and_

+

189

torch.Tensor.logical_not

+

torch.Tensor.logical_not

+

190

torch.Tensor.logical_not_

+

torch.Tensor.logical_not_

+

191

torch.Tensor.logical_or

+

torch.Tensor.logical_or

+

192

torch.Tensor.logical_or_

+

torch.Tensor.logical_or_

+

193

torch.Tensor.logical_xor

+

torch.Tensor.logical_xor

+

194

torch.Tensor.logical_xor_

+

torch.Tensor.logical_xor_

+

195

torch.Tensor.long

+

torch.Tensor.long

+

196

torch.Tensor.lstsq

+

torch.Tensor.lstsq

+

197

torch.Tensor.lt

+

torch.Tensor.lt

+

198

torch.Tensor.lt_

+

torch.Tensor.lt_

+

199

torch.Tensor.lu

+

torch.Tensor.lu

+

200

torch.Tensor.lu_solve

+

torch.Tensor.lu_solve

+

201

torch.Tensor.map_

+

torch.Tensor.map_

+

202

torch.Tensor.masked_scatter_

+

torch.Tensor.masked_scatter_

+

203

torch.Tensor.masked_scatter

+

torch.Tensor.masked_scatter

+

204

torch.Tensor.masked_fill_

+

torch.Tensor.masked_fill_

+

205

torch.Tensor.masked_fill

+

torch.Tensor.masked_fill

+

206

torch.Tensor.masked_select

+

torch.Tensor.masked_select

+

207

torch.Tensor.matmul

+

torch.Tensor.matmul

+

208

torch.Tensor.matrix_power

+

torch.Tensor.matrix_power

+

209

torch.Tensor.max

+

torch.Tensor.max

+

210

torch.Tensor.mean

+

torch.Tensor.mean

+

211

torch.Tensor.median

+

torch.Tensor.median

+

212

torch.Tensor.min

+

torch.Tensor.min

+

213

torch.Tensor.mm

+

torch.Tensor.mm

+

214

torch.Tensor.mode

+

torch.Tensor.mode

+

215

torch.Tensor.mul

+

torch.Tensor.mul

+

216

torch.Tensor.mul_

+

torch.Tensor.mul_

+

217

torch.Tensor.multinomial

+

torch.Tensor.multinomial

+

218

torch.Tensor.mv

+

torch.Tensor.mv

+

219

torch.Tensor.mvlgamma

+

torch.Tensor.mvlgamma

+

220

torch.Tensor.mvlgamma_

+

torch.Tensor.mvlgamma_

+

221

torch.Tensor.narrow

+

torch.Tensor.narrow

+

222

torch.Tensor.narrow_copy

+

torch.Tensor.narrow_copy

+

223

torch.Tensor.ndimension

+

torch.Tensor.ndimension

+

224

torch.Tensor.ne

+

torch.Tensor.ne

+

225

torch.Tensor.ne_

+

torch.Tensor.ne_

+

226

torch.Tensor.neg

+

torch.Tensor.neg

+

227

torch.Tensor.neg_

+

torch.Tensor.neg_

+

228

torch.Tensor.nelement

+

torch.Tensor.nelement

+

229

torch.Tensor.nonzero

+

torch.Tensor.nonzero

+

230

torch.Tensor.norm

+

torch.Tensor.norm

+

231

torch.Tensor.normal_

+

torch.Tensor.normal_

+

232

torch.Tensor.numel

+

torch.Tensor.numel

+

233

torch.Tensor.numpy

+

torch.Tensor.numpy

+

234

torch.Tensor.orgqr

+

torch.Tensor.orgqr

+

235

torch.Tensor.ormqr

+

torch.Tensor.ormqr

+

236

torch.Tensor.permute

+

torch.Tensor.permute

+

237

torch.Tensor.pin_memory

+

torch.Tensor.pin_memory

+

238

torch.Tensor.pinverse

+

torch.Tensor.pinverse

+

239

torch.Tensor.polygamma

+

torch.Tensor.polygamma

+

240

torch.Tensor.polygamma_

+

torch.Tensor.polygamma_

+

241

torch.Tensor.pow

+

torch.Tensor.pow

+

242

torch.Tensor.pow_

+

torch.Tensor.pow_

+

243

torch.Tensor.prod

+

torch.Tensor.prod

+

244

torch.Tensor.put_

+

torch.Tensor.put_

+

245

torch.Tensor.qr

+

torch.Tensor.qr

+

246

torch.Tensor.qscheme

+

torch.Tensor.qscheme

+

247

torch.Tensor.q_scale

+

torch.Tensor.q_scale

+

248

torch.Tensor.q_zero_point

+

torch.Tensor.q_zero_point

+

249

torch.Tensor.q_per_channel_scales

+

torch.Tensor.q_per_channel_scales

+

250

torch.Tensor.q_per_channel_zero_points

+

torch.Tensor.q_per_channel_zero_points

+

251

torch.Tensor.q_per_channel_axis

+

torch.Tensor.q_per_channel_axis

+

252

torch.Tensor.random_

+

torch.Tensor.random_

+

253

torch.Tensor.reciprocal

+

torch.Tensor.reciprocal

+

254

torch.Tensor.reciprocal_

+

torch.Tensor.reciprocal_

+

255

torch.Tensor.record_stream

+

torch.Tensor.record_stream

+

256

torch.Tensor.remainder

+

torch.Tensor.remainder

+

257

torch.Tensor.remainder_

+

torch.Tensor.remainder_

+

258

torch.Tensor.renorm

+

torch.Tensor.renorm

+

259

torch.Tensor.renorm_

+

torch.Tensor.renorm_

+

260

torch.Tensor.repeat

+

torch.Tensor.repeat

+

261

torch.Tensor.repeat_interleave

+

torch.Tensor.repeat_interleave

+

262

torch.Tensor.requires_grad_

+

torch.Tensor.requires_grad_

+

263

torch.Tensor.reshape

+

torch.Tensor.reshape

+

264

torch.Tensor.reshape_as

+

torch.Tensor.reshape_as

+

265

torch.Tensor.resize_

+

torch.Tensor.resize_

+

266

torch.Tensor.resize_as_

+

torch.Tensor.resize_as_

+

267

torch.Tensor.rfft

+

torch.Tensor.rfft

+

268

torch.Tensor.roll

+

torch.Tensor.roll

+

269

torch.Tensor.rot90

+

torch.Tensor.rot90

+

270

torch.Tensor.round

+

torch.Tensor.round

+

271

torch.Tensor.round_

+

torch.Tensor.round_

+

272

torch.Tensor.rsqrt

+

torch.Tensor.rsqrt

+

273

torch.Tensor.rsqrt_

+

torch.Tensor.rsqrt_

+

274

torch.Tensor.scatter

+

torch.Tensor.scatter

+

275

torch.Tensor.scatter_

+

torch.Tensor.scatter_

+

276

torch.Tensor.scatter_add_

+

torch.Tensor.scatter_add_

+

277

torch.Tensor.scatter_add

+

torch.Tensor.scatter_add

+

278

torch.Tensor.select

+

torch.Tensor.select

+

279

torch.Tensor.set_

+

torch.Tensor.set_

+

280

torch.Tensor.share_memory_

+

torch.Tensor.share_memory_

+

281

torch.Tensor.short

+

torch.Tensor.short

+

282

torch.Tensor.sigmoid

+

torch.Tensor.sigmoid

+

283

torch.Tensor.sigmoid_

+

torch.Tensor.sigmoid_

+

284

torch.Tensor.sign

+

torch.Tensor.sign

+

285

torch.Tensor.sign_

+

torch.Tensor.sign_

+

286

torch.Tensor.sin

+

torch.Tensor.sin

+

287

torch.Tensor.sin_

+

torch.Tensor.sin_

+

288

torch.Tensor.sinh

+

torch.Tensor.sinh

+

289

torch.Tensor.sinh_

+

torch.Tensor.sinh_

+

290

torch.Tensor.size

+

torch.Tensor.size

+

291

torch.Tensor.slogdet

+

torch.Tensor.slogdet

+

292

torch.Tensor.solve

+

torch.Tensor.solve

+

293

torch.Tensor.sort

+

torch.Tensor.sort

+

294

torch.Tensor.split

+

torch.Tensor.split

+

295

torch.Tensor.sparse_mask

+

torch.Tensor.sparse_mask

+

296

torch.Tensor.sparse_dim

+

torch.Tensor.sparse_dim

+

297

torch.Tensor.sqrt

+

torch.Tensor.sqrt

+

298

torch.Tensor.sqrt_

+

torch.Tensor.sqrt_

+

299

torch.Tensor.square

+

torch.Tensor.square

+

300

torch.Tensor.square_

+

torch.Tensor.square_

+

301

torch.Tensor.squeeze

+

torch.Tensor.squeeze

+

302

torch.Tensor.squeeze_

+

torch.Tensor.squeeze_

+

303

torch.Tensor.std

+

torch.Tensor.std

+

304

torch.Tensor.stft

+

torch.Tensor.stft

+

305

torch.Tensor.storage

+

torch.Tensor.storage

+

306

torch.Tensor.storage_offset

+

torch.Tensor.storage_offset

+

307

torch.Tensor.storage_type

+

torch.Tensor.storage_type

+

308

torch.Tensor.stride

+

torch.Tensor.stride

+

309

torch.Tensor.sub

+

torch.Tensor.sub

+

310

torch.Tensor.sub_

+

torch.Tensor.sub_

+

311

torch.Tensor.sum

+

torch.Tensor.sum

+

312

torch.Tensor.sum_to_size

+

torch.Tensor.sum_to_size

+

313

torch.Tensor.svd

+

torch.Tensor.svd

+

314

torch.Tensor.symeig

+

torch.Tensor.symeig

+

315

torch.Tensor.t

+

torch.Tensor.t

+

316

torch.Tensor.t_

+

torch.Tensor.t_

+

317

torch.Tensor.to

+

torch.Tensor.to

+

318

torch.Tensor.to_mkldnn

+

torch.Tensor.to_mkldnn

+

319

torch.Tensor.take

+

torch.Tensor.take

+

320

torch.Tensor.tan

+

torch.Tensor.tan

+

321

torch.Tensor.tan_

+

torch.Tensor.tan_

+

322

torch.Tensor.tanh

+

torch.Tensor.tanh

+

323

torch.Tensor.tanh_

+

torch.Tensor.tanh_

+

324

torch.Tensor.tolist

+

torch.Tensor.tolist

+

325

torch.Tensor.topk

+

torch.Tensor.topk

+

326

torch.Tensor.to_sparse

+

torch.Tensor.to_sparse

+

327

torch.Tensor.trace

+

torch.Tensor.trace

+

328

torch.Tensor.transpose

+

torch.Tensor.transpose

+

329

torch.Tensor.transpose_

+

torch.Tensor.transpose_

+

330

torch.Tensor.triangular_solve

+

torch.Tensor.triangular_solve

+

331

torch.Tensor.tril

+

torch.Tensor.tril

+

332

torch.Tensor.tril_

+

torch.Tensor.tril_

+

333

torch.Tensor.triu

+

torch.Tensor.triu

+

334

torch.Tensor.triu_

+

torch.Tensor.triu_

+

335

torch.Tensor.true_divide

+

torch.Tensor.true_divide

+

336

torch.Tensor.true_divide_

+

torch.Tensor.true_divide_

+

337

torch.Tensor.trunc

+

torch.Tensor.trunc

+

338

torch.Tensor.trunc_

+

torch.Tensor.trunc_

+

339

torch.Tensor.type

+

torch.Tensor.type

+

340

torch.Tensor.type_as

+

torch.Tensor.type_as

+

341

torch.Tensor.unbind

+

torch.Tensor.unbind

+

342

torch.Tensor.unfold

+

torch.Tensor.unfold

+

343

torch.Tensor.uniform_

+

torch.Tensor.uniform_

+

344

torch.Tensor.unique

+

torch.Tensor.unique

+

345

torch.Tensor.unique_consecutive

+

torch.Tensor.unique_consecutive

+

346

torch.Tensor.unsqueeze

+

torch.Tensor.unsqueeze

+

347

torch.Tensor.unsqueeze_

+

torch.Tensor.unsqueeze_

+

348

torch.Tensor.values

+

torch.Tensor.values

+

349

torch.Tensor.var

+

torch.Tensor.var

+

350

torch.Tensor.view

+

torch.Tensor.view

+

351

torch.Tensor.view_as

+

torch.Tensor.view_as

+

352

torch.Tensor.where

+

torch.Tensor.where

+

353

torch.Tensor.zero_

+

torch.Tensor.zero_

+

354

torch.BoolTensor

+

torch.BoolTensor

+

355

torch.BoolTensor.all

+

torch.BoolTensor.all

+

356

torch.BoolTensor.any

+

torch.BoolTensor.any

+

序号

+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - @@ -6715,703 +6715,703 @@

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

+

1

torch.nn.Parameter

+

torch.nn.Parameter

+

2

+

2

torch.nn.Module

+

torch.nn.Module

+

3

+

3

torch.nn.Module.add_module

+

torch.nn.Module.add_module

+

4

+

4

torch.nn.Module.apply

+

torch.nn.Module.apply

+

5

+

5

torch.nn.Module.bfloat16

+

torch.nn.Module.bfloat16

+

6

+

6

torch.nn.Module.buffers

+

torch.nn.Module.buffers

+

7

+

7

torch.nn.Module.children

+

torch.nn.Module.children

+

8

+

8

torch.nn.Module.cpu

+

torch.nn.Module.cpu

+

9

+

9

torch.nn.Module.cuda

+

torch.nn.Module.cuda

+

10

+

10

torch.nn.Module.double

+

torch.nn.Module.double

+

11

+

11

torch.nn.Module.dump_patches

+

torch.nn.Module.dump_patches

+

12

+

12

torch.nn.Module.eval

+

torch.nn.Module.eval

+

13

+

13

torch.nn.Module.extra_repr

+

torch.nn.Module.extra_repr

+

14

+

14

torch.nn.Module.float

+

torch.nn.Module.float

+

15

+

15

torch.nn.Module.forward

+

torch.nn.Module.forward

+

16

+

16

torch.nn.Module.half

+

torch.nn.Module.half

+

17

+

17

torch.nn.Module.load_state_dict

+

torch.nn.Module.load_state_dict

+

18

+

18

torch.nn.Module.modules

+

torch.nn.Module.modules

+

19

+

19

torch.nn.Module.named_buffers

+

torch.nn.Module.named_buffers

+

20

+

20

torch.nn.Module.named_children

+

torch.nn.Module.named_children

+

21

+

21

torch.nn.Module.named_modules

+

torch.nn.Module.named_modules

+

22

+

22

torch.nn.Module.named_parameters

+

torch.nn.Module.named_parameters

+

23

+

23

torch.nn.Module.parameters

+

torch.nn.Module.parameters

+

24

+

24

torch.nn.Module.register_backward_hook

+

torch.nn.Module.register_backward_hook

+

25

+

25

torch.nn.Module.register_buffer

+

torch.nn.Module.register_buffer

+

26

+

26

torch.nn.Module.register_forward_hook

+

torch.nn.Module.register_forward_hook

+

27

+

27

torch.nn.Module.register_forward_pre_hook

+

torch.nn.Module.register_forward_pre_hook

+

28

+

28

torch.nn.Module.register_parameter

+

torch.nn.Module.register_parameter

+

29

+

29

torch.nn.Module.requires_grad_

+

torch.nn.Module.requires_grad_

+

30

+

30

torch.nn.Module.state_dict

+

torch.nn.Module.state_dict

+

31

+

31

torch.nn.Module.to

+

torch.nn.Module.to

+

32

+

32

torch.nn.Module.train

+

torch.nn.Module.train

+

33

+

33

torch.nn.Module.type

+

torch.nn.Module.type

+

34

+

34

torch.nn.Module.zero_grad

+

torch.nn.Module.zero_grad

+

35

+

35

torch.nn.Sequential

+

torch.nn.Sequential

+

36

+

36

torch.nn.ModuleList

+

torch.nn.ModuleList

+

37

+

37

torch.nn.ModuleList.append

+

torch.nn.ModuleList.append

+

38

+

38

torch.nn.ModuleList.extend

+

torch.nn.ModuleList.extend

+

39

+

39

torch.nn.ModuleList.insert

+

torch.nn.ModuleList.insert

+

40

+

40

torch.nn.ModuleDict

+

torch.nn.ModuleDict

+

41

+

41

torch.nn.ModuleDict.clear

+

torch.nn.ModuleDict.clear

+

42

+

42

torch.nn.ModuleDict.items

+

torch.nn.ModuleDict.items

+

43

+

43

torch.nn.ModuleDict.keys

+

torch.nn.ModuleDict.keys

+

44

+

44

torch.nn.ModuleDict.pop

+

torch.nn.ModuleDict.pop

+

45

+

45

torch.nn.ModuleDict.update

+

torch.nn.ModuleDict.update

+

46

+

46

torch.nn.ModuleDict.values

+

torch.nn.ModuleDict.values

+

47

+

47

torch.nn.ParameterList

+

torch.nn.ParameterList

+

48

+

48

torch.nn.ParameterList.append

+

torch.nn.ParameterList.append

+

49

+

49

torch.nn.ParameterList.extend

+

torch.nn.ParameterList.extend

+

50

+

50

torch.nn.ParameterDict

+

torch.nn.ParameterDict

+

51

+

51

torch.nn.ParameterDict.clear

+

torch.nn.ParameterDict.clear

+

52

+

52

torch.nn.ParameterDict.items

+

torch.nn.ParameterDict.items

+

53

+

53

torch.nn.ParameterDict.keys

+

torch.nn.ParameterDict.keys

+

54

+

54

torch.nn.ParameterDict.pop

+

torch.nn.ParameterDict.pop

+

55

+

55

torch.nn.ParameterDict.update

+

torch.nn.ParameterDict.update

+

56

+

56

torch.nn.ParameterDict.values

+

torch.nn.ParameterDict.values

+

57

+

57

torch.nn.Conv1d

+

torch.nn.Conv1d

+

58

+

58

torch.nn.Conv2d

+

torch.nn.Conv2d

+

59

+

59

torch.nn.Conv3d

+

torch.nn.Conv3d

+

60

+

60

torch.nn.ConvTranspose1d

+

torch.nn.ConvTranspose1d

+

61

+

61

torch.nn.ConvTranspose2d

+

torch.nn.ConvTranspose2d

+

62

+

62

torch.nn.ConvTranspose3d

+

torch.nn.ConvTranspose3d

+

63

+

63

torch.nn.Unfold

+

torch.nn.Unfold

+

64

+

64

torch.nn.Fold

+

torch.nn.Fold

+

65

+

65

torch.nn.MaxPool1d

+

torch.nn.MaxPool1d

+

66

+

66

torch.nn.MaxPool2d

+

torch.nn.MaxPool2d

+

67

+

67

torch.nn.MaxPool3d

+

torch.nn.MaxPool3d

+

68

+

68

torch.nn.MaxUnpool1d

+

torch.nn.MaxUnpool1d

+

69

+

69

torch.nn.MaxUnpool2d

+

torch.nn.MaxUnpool2d

+

70

+

70

torch.nn.MaxUnpool3d

+

torch.nn.MaxUnpool3d

+

71

+

71

torch.nn.AvgPool1d

+

torch.nn.AvgPool1d

+

72

+

72

torch.nn.AvgPool2d

+

torch.nn.AvgPool2d

+

73

+

73

torch.nn.AvgPool3d

+

torch.nn.AvgPool3d

+

74

+

74

torch.nn.FractionalMaxPool2d

+

torch.nn.FractionalMaxPool2d

+

75

+

75

torch.nn.LPPool1d

+

torch.nn.LPPool1d

+

76

+

76

torch.nn.LPPool2d

+

torch.nn.LPPool2d

+

77

+

77

torch.nn.AdaptiveMaxPool1d

+

torch.nn.AdaptiveMaxPool1d

+

78

+

78

torch.nn.AdaptiveMaxPool2d

+

torch.nn.AdaptiveMaxPool2d

+

79

+

79

torch.nn.AdaptiveMaxPool3d

+

torch.nn.AdaptiveMaxPool3d

+

80

+

80

torch.nn.AdaptiveAvgPool1d

+

torch.nn.AdaptiveAvgPool1d

+

81

+

81

torch.nn.AdaptiveAvgPool2d

+

torch.nn.AdaptiveAvgPool2d

+

82

+

82

torch.nn.AdaptiveAvgPool3d

+

torch.nn.AdaptiveAvgPool3d

+

83

+

83

torch.nn.ReflectionPad1d

+

torch.nn.ReflectionPad1d

+

84

+

84

torch.nn.ReflectionPad2d

+

torch.nn.ReflectionPad2d

+

85

+

85

torch.nn.ReplicationPad1d

+

torch.nn.ReplicationPad1d

+

86

+

86

torch.nn.ReplicationPad2d

+

torch.nn.ReplicationPad2d

+

87

+

87

torch.nn.ReplicationPad3d

+

torch.nn.ReplicationPad3d

+

88

+

88

torch.nn.ZeroPad2d

+

torch.nn.ZeroPad2d

+

89

+

89

torch.nn.ConstantPad1d

+

torch.nn.ConstantPad1d

+

90

+

90

torch.nn.ConstantPad2d

+

torch.nn.ConstantPad2d

+

91

+

91

torch.nn.ConstantPad3d

+

torch.nn.ConstantPad3d

+

92

+

92

torch.nn.ELU

+

torch.nn.ELU

+

93

+

93

torch.nn.Hardshrink

+

torch.nn.Hardshrink

+

94

+

94

torch.nn.Hardtanh

+

torch.nn.Hardtanh

+

95

+

95

torch.nn.LeakyReLU

+

torch.nn.LeakyReLU

+

96

+

96

torch.nn.LogSigmoid

+

torch.nn.LogSigmoid

+

97

+

97

torch.nn.MultiheadAttention

+

torch.nn.MultiheadAttention

+

98

+

98

torch.nn.PReLU

+

torch.nn.PReLU

+

99

+

99

torch.nn.ReLU

+

torch.nn.ReLU

+

100

+

100

torch.nn.ReLU6

+

torch.nn.ReLU6

+

101

+

101

torch.nn.RReLU

+

torch.nn.RReLU

+

102

+

102

torch.nn.SELU

+

torch.nn.SELU

+

103

+

103

torch.nn.CELU

+

torch.nn.CELU

+

104

+

104

torch.nn.GELU

+

torch.nn.GELU

+

105

+

105

torch.nn.Sigmoid

+

torch.nn.Sigmoid

+

106

+

106

torch.nn.Softplus

+

torch.nn.Softplus

+

107

+

107

torch.nn.Softshrink

+

torch.nn.Softshrink

是,SoftShrink场景暂不支持

+

是,SoftShrink场景暂不支持

108

+

108

torch.nn.Softsign

+

torch.nn.Softsign

+

109

+

109

torch.nn.Tanh

+

torch.nn.Tanh

+

110

+

110

torch.nn.Tanhshrink

+

torch.nn.Tanhshrink

+

111

+

111

torch.nn.Threshold

+

torch.nn.Threshold

+

112

+

112

torch.nn.Softmin

+

torch.nn.Softmin

+

113

+

113

torch.nn.Softmax

+

torch.nn.Softmax

+

114

+

114

torch.nn.Softmax2d

+

torch.nn.Softmax2d

+

115

+

115

torch.nn.LogSoftmax

+

torch.nn.LogSoftmax

+

116

+

116

torch.nn.AdaptiveLogSoftmaxWithLoss

+

torch.nn.AdaptiveLogSoftmaxWithLoss

+

117

+

117

torch.nn.AdaptiveLogSoftmaxWithLoss.log_prob

+

torch.nn.AdaptiveLogSoftmaxWithLoss.log_prob

+

118

+

118

torch.nn.AdaptiveLogSoftmaxWithLoss.predict

+

torch.nn.AdaptiveLogSoftmaxWithLoss.predict

+

119

+

119

torch.nn.BatchNorm1d

+

torch.nn.BatchNorm1d

+

120

+

120

torch.nn.BatchNorm2d

+

torch.nn.BatchNorm2d

+

121

+

121

torch.nn.BatchNorm3d

+

torch.nn.BatchNorm3d

+

122

+

122

torch.nn.GroupNorm

+

torch.nn.GroupNorm

+

123

+

123

torch.nn.SyncBatchNorm

+

torch.nn.SyncBatchNorm

+

124

+

124

torch.nn.SyncBatchNorm.convert_sync_batchnorm

+

torch.nn.SyncBatchNorm.convert_sync_batchnorm

+

125

+

125

torch.nn.InstanceNorm1d

+

torch.nn.InstanceNorm1d

+

126

+

126

torch.nn.InstanceNorm2d

+

torch.nn.InstanceNorm2d

+

127

+

127

torch.nn.InstanceNorm3d

+

torch.nn.InstanceNorm3d

+

128

+

128

torch.nn.LayerNorm

+

torch.nn.LayerNorm

+

129

+

129

torch.nn.LocalResponseNorm

+

torch.nn.LocalResponseNorm

+

130

+

130

torch.nn.RNNBase

+

torch.nn.RNNBase

+

131

+

131

torch.nn.RNNBase.flatten_parameters

+

torch.nn.RNNBase.flatten_parameters

+

132

+

132

torch.nn.RNN

+

torch.nn.RNN

+

133

+

133

torch.nn.LSTM

+

torch.nn.LSTM

+

134

+

134

torch.nn.GRU

+

torch.nn.GRU

是,DynamicGRUV2场景暂不支持

+

是,DynamicGRUV2场景暂不支持

135

+

135

torch.nn.RNNCell

+

torch.nn.RNNCell

+

136

+

136

torch.nn.LSTMCell

+

torch.nn.LSTMCell

+

137

+

137

torch.nn.GRUCell

+

torch.nn.GRUCell

+

138

+

138

torch.nn.Transformer

+

torch.nn.Transformer

+

139

+

139

torch.nn.Transformer.forward

+

torch.nn.Transformer.forward

+

140

+

140

torch.nn.Transformer.generate_square_subsequent_mask

+

torch.nn.Transformer.generate_square_subsequent_mask

+

141

+

141

torch.nn.TransformerEncoder

+

torch.nn.TransformerEncoder

+

142

+

142

torch.nn.TransformerEncoder.forward

+

torch.nn.TransformerEncoder.forward

+

143

+

143

torch.nn.TransformerDecoder

+

torch.nn.TransformerDecoder

+

144

+

144

torch.nn.TransformerDecoder.forward

+

torch.nn.TransformerDecoder.forward

+

145

+

145

torch.nn.TransformerEncoderLayer

+

torch.nn.TransformerEncoderLayer

+

146

+

146

torch.nn.TransformerEncoderLayer.forward

+

torch.nn.TransformerEncoderLayer.forward

+

147

+

147

torch.nn.TransformerDecoderLayer

+

torch.nn.TransformerDecoderLayer

+

148

+

148

torch.nn.TransformerDecoderLayer.forward

+

torch.nn.TransformerDecoderLayer.forward

+

149

+

149

torch.nn.Identity

+

torch.nn.Identity

+

150

+

150

torch.nn.Linear

+

torch.nn.Linear

+

151

+

151

torch.nn.Bilinear

+

torch.nn.Bilinear

+

152

+

152

torch.nn.Dropout

+

torch.nn.Dropout

+

153

+

153

torch.nn.Dropout2d

+

torch.nn.Dropout2d

+

154

+

154

torch.nn.Dropout3d

+

torch.nn.Dropout3d

+

155

+

155

torch.nn.AlphaDropout

+

torch.nn.AlphaDropout

+

156

+

156

torch.nn.Embedding

+

torch.nn.Embedding

+

157

+

157

torch.nn.Embedding.from_pretrained

+

torch.nn.Embedding.from_pretrained

+

158

+

158

torch.nn.EmbeddingBag

+

torch.nn.EmbeddingBag

+

159

+

159

torch.nn.EmbeddingBag.from_pretrained

+

torch.nn.EmbeddingBag.from_pretrained

+

160

+

160

torch.nn.CosineSimilarity

+

torch.nn.CosineSimilarity

+

161

+

161

torch.nn.PairwiseDistance

+

torch.nn.PairwiseDistance

+

162

+

162

torch.nn.L1Loss

+

torch.nn.L1Loss

+

163

+

163

torch.nn.MSELoss

+

torch.nn.MSELoss

+

164

+

164

torch.nn.CrossEntropyLoss

+

torch.nn.CrossEntropyLoss

+

165

+

165

torch.nn.CTCLoss

+

torch.nn.CTCLoss

+

166

+

166

torch.nn.NLLLoss

+

torch.nn.NLLLoss

+

167

+

167

torch.nn.PoissonNLLLoss

+

torch.nn.PoissonNLLLoss

+

168

+

168

torch.nn.KLDivLoss

+

torch.nn.KLDivLoss

+

169

+

169

torch.nn.BCELoss

+

torch.nn.BCELoss

+

170

+

170

torch.nn.BCEWithLogitsLoss

+

torch.nn.BCEWithLogitsLoss

+

171

+

171

torch.nn.MarginRankingLoss

+

torch.nn.MarginRankingLoss

+

172

+

172

torch.nn.HingeEmbeddingLoss

+

torch.nn.HingeEmbeddingLoss

+

173

+

173

torch.nn.MultiLabelMarginLoss

+

torch.nn.MultiLabelMarginLoss

+

174

+

174

torch.nn.SmoothL1Loss

+

torch.nn.SmoothL1Loss

+

175

+

175

torch.nn.SoftMarginLoss

+

torch.nn.SoftMarginLoss

+

176

+

176

torch.nn.MultiLabelSoftMarginLoss

+

torch.nn.MultiLabelSoftMarginLoss

+

177

+

177

torch.nn.CosineEmbeddingLoss

+

torch.nn.CosineEmbeddingLoss

+

178

+

178

torch.nn.MultiMarginLoss

+

torch.nn.MultiMarginLoss

+

179

+

179

torch.nn.TripletMarginLoss

+

torch.nn.TripletMarginLoss

+

180

+

180

torch.nn.PixelShuffle

+

torch.nn.PixelShuffle

+

181

+

181

torch.nn.Upsample

+

torch.nn.Upsample

+

182

+

182

torch.nn.UpsamplingNearest2d

+

torch.nn.UpsamplingNearest2d

+

183

+

183

torch.nn.UpsamplingBilinear2d

+

torch.nn.UpsamplingBilinear2d

+

184

+

184

torch.nn.DataParallel

+

torch.nn.DataParallel

+

185

+

185

torch.nn.parallel.DistributedDataParallel

+

torch.nn.parallel.DistributedDataParallel

+

186

+

186

torch.nn.parallel.DistributedDataParallel.no_sync

+

torch.nn.parallel.DistributedDataParallel.no_sync

+

187

+

187

torch.nn.utils.clip_grad_norm_

+

torch.nn.utils.clip_grad_norm_

+

188

+

188

torch.nn.utils.clip_grad_value_

+

torch.nn.utils.clip_grad_value_

+

189

+

189

torch.nn.utils.parameters_to_vector

+

torch.nn.utils.parameters_to_vector

+

190

+

190

torch.nn.utils.vector_to_parameters

+

torch.nn.utils.vector_to_parameters

+

197

+

197

torch.nn.utils.prune.PruningContainer

+

torch.nn.utils.prune.PruningContainer

+

198

+

198

torch.nn.utils.prune.PruningContainer.add_pruning_method

+

torch.nn.utils.prune.PruningContainer.add_pruning_method

+

199

+

199

torch.nn.utils.prune.PruningContainer.apply

+

torch.nn.utils.prune.PruningContainer.apply

+

200

+

200

torch.nn.utils.prune.PruningContainer.apply_mask

+

torch.nn.utils.prune.PruningContainer.apply_mask

+

201

+

201

torch.nn.utils.prune.PruningContainer.compute_mask

+

torch.nn.utils.prune.PruningContainer.compute_mask

+

202

+

202

torch.nn.utils.prune.PruningContainer.prune

+

torch.nn.utils.prune.PruningContainer.prune

+

203

+

203

torch.nn.utils.prune.PruningContainer.remove

+

torch.nn.utils.prune.PruningContainer.remove

+

204

+

204

torch.nn.utils.prune.Identity

+

torch.nn.utils.prune.Identity

+

205

+

205

torch.nn.utils.prune.Identity.apply

+

torch.nn.utils.prune.Identity.apply

+

206

+

206

torch.nn.utils.prune.Identity.apply_mask

+

torch.nn.utils.prune.Identity.apply_mask

+

207

+

207

torch.nn.utils.prune.Identity.prune

+

torch.nn.utils.prune.Identity.prune

+

208

+

208

torch.nn.utils.prune.Identity.remove

+

torch.nn.utils.prune.Identity.remove

+

209

+

209

torch.nn.utils.prune.RandomUnstructured

+

torch.nn.utils.prune.RandomUnstructured

+

210

+

210

torch.nn.utils.prune.RandomUnstructured.apply

+

torch.nn.utils.prune.RandomUnstructured.apply

+

211

+

211

torch.nn.utils.prune.RandomUnstructured.apply_mask

+

torch.nn.utils.prune.RandomUnstructured.apply_mask

+

212

+

212

torch.nn.utils.prune.RandomUnstructured.prune

+

torch.nn.utils.prune.RandomUnstructured.prune

+

213

+

213

torch.nn.utils.prune.RandomUnstructured.remove

+

torch.nn.utils.prune.RandomUnstructured.remove

+

214

+

214

torch.nn.utils.prune.L1Unstructured

+

torch.nn.utils.prune.L1Unstructured

+

215

+

215

torch.nn.utils.prune.L1Unstructured.apply

+

torch.nn.utils.prune.L1Unstructured.apply

+

216

+

216

torch.nn.utils.prune.L1Unstructured.apply_mask

+

torch.nn.utils.prune.L1Unstructured.apply_mask

+

217

+

217

torch.nn.utils.prune.L1Unstructured.prune

+

torch.nn.utils.prune.L1Unstructured.prune

+

218

+

218

torch.nn.utils.prune.L1Unstructured.remove

+

torch.nn.utils.prune.L1Unstructured.remove

+

219

+

219

torch.nn.utils.prune.RandomStructured

+

torch.nn.utils.prune.RandomStructured

+

220

+

220

torch.nn.utils.prune.RandomStructured.apply

+

torch.nn.utils.prune.RandomStructured.apply

+

221

+

221

torch.nn.utils.prune.RandomStructured.apply_mask

+

torch.nn.utils.prune.RandomStructured.apply_mask

+

222

+

222

torch.nn.utils.prune.RandomStructured.compute_mask

+

torch.nn.utils.prune.RandomStructured.compute_mask

+

223

+

223

torch.nn.utils.prune.RandomStructured.prune

+

torch.nn.utils.prune.RandomStructured.prune

+

224

+

224

torch.nn.utils.prune.RandomStructured.remove

+

torch.nn.utils.prune.RandomStructured.remove

+

225

+

225

torch.nn.utils.prune.LnStructured

+

torch.nn.utils.prune.LnStructured

+

226

+

226

torch.nn.utils.prune.LnStructured.apply

+

torch.nn.utils.prune.LnStructured.apply

+

227

+

227

torch.nn.utils.prune.LnStructured.apply_mask

+

torch.nn.utils.prune.LnStructured.apply_mask

+

228

+

228

torch.nn.utils.prune.LnStructured.compute_mask

+

torch.nn.utils.prune.LnStructured.compute_mask

+

229

+

229

torch.nn.utils.prune.LnStructured.prune

+

torch.nn.utils.prune.LnStructured.prune

+

230

+

230

torch.nn.utils.prune.LnStructured.remove

+

torch.nn.utils.prune.LnStructured.remove

+

231

+

231

torch.nn.utils.prune.CustomFromMask

+

torch.nn.utils.prune.CustomFromMask

+

232

+

232

torch.nn.utils.prune.CustomFromMask.apply

+

torch.nn.utils.prune.CustomFromMask.apply

+

233

+

233

torch.nn.utils.prune.CustomFromMask.apply_mask

+

torch.nn.utils.prune.CustomFromMask.apply_mask

+

234

+

234

torch.nn.utils.prune.CustomFromMask.prune

+

torch.nn.utils.prune.CustomFromMask.prune

+

235

+

235

torch.nn.utils.prune.CustomFromMask.remove

+

torch.nn.utils.prune.CustomFromMask.remove

+

236

+

236

torch.nn.utils.prune.identity

+

torch.nn.utils.prune.identity

+

237

+

237

torch.nn.utils.prune.random_unstructured

+

torch.nn.utils.prune.random_unstructured

+

238

+

238

torch.nn.utils.prune.l1_unstructured

+

torch.nn.utils.prune.l1_unstructured

+

239

+

239

torch.nn.utils.prune.random_structured

+

torch.nn.utils.prune.random_structured

+

240

+

240

torch.nn.utils.prune.ln_structured

+

torch.nn.utils.prune.ln_structured

+

241

+

241

torch.nn.utils.prune.global_unstructured

+

torch.nn.utils.prune.global_unstructured

+

242

+

242

torch.nn.utils.prune.custom_from_mask

+

torch.nn.utils.prune.custom_from_mask

+

243

+

243

torch.nn.utils.prune.remove

+

torch.nn.utils.prune.remove

+

244

+

244

torch.nn.utils.prune.is_pruned

+

torch.nn.utils.prune.is_pruned

+

245

+

245

torch.nn.utils.weight_norm

+

torch.nn.utils.weight_norm

+

246

+

246

torch.nn.utils.remove_weight_norm

+

torch.nn.utils.remove_weight_norm

+

247

+

247

torch.nn.utils.spectral_norm

+

torch.nn.utils.spectral_norm

+

248

+

248

torch.nn.utils.remove_spectral_norm

+

torch.nn.utils.remove_spectral_norm

+

249

+

249

torch.nn.utils.rnn.PackedSequence

+

torch.nn.utils.rnn.PackedSequence

+

250

+

250

torch.nn.utils.rnn.pack_padded_sequence

+

torch.nn.utils.rnn.pack_padded_sequence

+

251

+

251

torch.nn.utils.rnn.pad_packed_sequence

+

torch.nn.utils.rnn.pad_packed_sequence

+

252

+

252

torch.nn.utils.rnn.pad_sequence

+

torch.nn.utils.rnn.pad_sequence

+

253

+

253

torch.nn.utils.rnn.pack_sequence

+

torch.nn.utils.rnn.pack_sequence

+

254

+

254

torch.nn.Flatten

+

torch.nn.Flatten

+

255

+

255

torch.quantization.quantize

+

torch.quantization.quantize

+

256

+

256

torch.quantization.quantize_dynamic

+

torch.quantization.quantize_dynamic

+

257

+

257

torch.quantization.quantize_qat

+

torch.quantization.quantize_qat

+

258

+

258

torch.quantization.prepare

+

torch.quantization.prepare

+

259

+

259

torch.quantization.prepare_qat

+

torch.quantization.prepare_qat

+

260

+

260

torch.quantization.convert

+

torch.quantization.convert

+

261

+

261

torch.quantization.QConfig

+

torch.quantization.QConfig

+

262

+

262

torch.quantization.QConfigDynamic

+

torch.quantization.QConfigDynamic

+

263

+

263

torch.quantization.fuse_modules

+

torch.quantization.fuse_modules

+

264

+

264

torch.quantization.QuantStub

+

torch.quantization.QuantStub

+

265

+

265

torch.quantization.DeQuantStub

+

torch.quantization.DeQuantStub

+

266

+

266

torch.quantization.QuantWrapper

+

torch.quantization.QuantWrapper

+

267

+

267

torch.quantization.add_quant_dequant

+

torch.quantization.add_quant_dequant

+

268

+

268

torch.quantization.add_observer_

+

torch.quantization.add_observer_

+

269

+

269

torch.quantization.swap_module

+

torch.quantization.swap_module

+

270

+

270

torch.quantization.propagate_qconfig_

+

torch.quantization.propagate_qconfig_

+

271

+

271

torch.quantization.default_eval_fn

+

torch.quantization.default_eval_fn

+

272

+

272

torch.quantization.MinMaxObserver

+

torch.quantization.MinMaxObserver

+

273

+

273

torch.quantization.MovingAverageMinMaxObserver

+

torch.quantization.MovingAverageMinMaxObserver

+

274

+

274

torch.quantization.PerChannelMinMaxObserver

+

torch.quantization.PerChannelMinMaxObserver

+

275

+

275

torch.quantization.MovingAveragePerChannelMinMaxObserver

+

torch.quantization.MovingAveragePerChannelMinMaxObserver

+

276

+

276

torch.quantization.HistogramObserver

+

torch.quantization.HistogramObserver

+

277

+

277

torch.quantization.FakeQuantize

+

torch.quantization.FakeQuantize

+

278

+

278

torch.quantization.NoopObserver

+

torch.quantization.NoopObserver

+

279

+

279

torch.quantization.get_observer_dict

+

torch.quantization.get_observer_dict

+

280

+

280

torch.quantization.RecordingObserver

+

torch.quantization.RecordingObserver

+

281

+

281

torch.nn.intrinsic.ConvBn2d

+

torch.nn.intrinsic.ConvBn2d

+

282

+

282

torch.nn.intrinsic.ConvBnReLU2d

+

torch.nn.intrinsic.ConvBnReLU2d

+

283

+

283

torch.nn.intrinsic.ConvReLU2d

+

torch.nn.intrinsic.ConvReLU2d

+

284

+

284

torch.nn.intrinsic.ConvReLU3d

+

torch.nn.intrinsic.ConvReLU3d

+

285

+

285

torch.nn.intrinsic.LinearReLU

+

torch.nn.intrinsic.LinearReLU

+

286

+

286

torch.nn.intrinsic.qat.ConvBn2d

+

torch.nn.intrinsic.qat.ConvBn2d

+

287

+

287

torch.nn.intrinsic.qat.ConvBnReLU2d

+

torch.nn.intrinsic.qat.ConvBnReLU2d

+

288

+

288

torch.nn.intrinsic.qat.ConvReLU2d

+

torch.nn.intrinsic.qat.ConvReLU2d

+

289

+

289

torch.nn.intrinsic.qat.LinearReLU

+

torch.nn.intrinsic.qat.LinearReLU

+

290

+

290

torch.nn.intrinsic.quantized.ConvReLU2d

+

torch.nn.intrinsic.quantized.ConvReLU2d

+

291

+

291

torch.nn.intrinsic.quantized.ConvReLU3d

+

torch.nn.intrinsic.quantized.ConvReLU3d

+

292

+

292

torch.nn.intrinsic.quantized.LinearReLU

+

torch.nn.intrinsic.quantized.LinearReLU

+

293

+

293

torch.nn.qat.Conv2d

+

torch.nn.qat.Conv2d

+

294

+

294

torch.nn.qat.Conv2d.from_float

+

torch.nn.qat.Conv2d.from_float

+

295

+

295

torch.nn.qat.Linear

+

torch.nn.qat.Linear

+

296

+

296

torch.nn.qat.Linear.from_float

+

torch.nn.qat.Linear.from_float

+

297

+

297

torch.nn.quantized.functional.relu

+

torch.nn.quantized.functional.relu

+

298

+

298

torch.nn.quantized.functional.linear

+

torch.nn.quantized.functional.linear

+

299

+

299

torch.nn.quantized.functional.conv2d

+

torch.nn.quantized.functional.conv2d

+

300

+

300

torch.nn.quantized.functional.conv3d

+

torch.nn.quantized.functional.conv3d

+

301

+

301

torch.nn.quantized.functional.max_pool2d

+

torch.nn.quantized.functional.max_pool2d

+

302

+

302

torch.nn.quantized.functional.adaptive_avg_pool2d

+

torch.nn.quantized.functional.adaptive_avg_pool2d

+

303

+

303

torch.nn.quantized.functional.avg_pool2d

+

torch.nn.quantized.functional.avg_pool2d

+

304

+

304

torch.nn.quantized.functional.interpolate

+

torch.nn.quantized.functional.interpolate

+

305

+

305

torch.nn.quantized.functional.upsample

+

torch.nn.quantized.functional.upsample

+

306

+

306

torch.nn.quantized.functional.upsample_bilinear

+

torch.nn.quantized.functional.upsample_bilinear

+

307

+

307

torch.nn.quantized.functional.upsample_nearest

+

torch.nn.quantized.functional.upsample_nearest

+

308

+

308

torch.nn.quantized.ReLU

+

torch.nn.quantized.ReLU

+

309

+

309

torch.nn.quantized.ReLU6

+

torch.nn.quantized.ReLU6

+

310

+

310

torch.nn.quantized.Conv2d

+

torch.nn.quantized.Conv2d

+

311

+

311

torch.nn.quantized.Conv2d.from_float

+

torch.nn.quantized.Conv2d.from_float

+

312

+

312

torch.nn.quantized.Conv3d

+

torch.nn.quantized.Conv3d

+

313

+

313

torch.nn.quantized.Conv3d.from_float

+

torch.nn.quantized.Conv3d.from_float

+

314

+

314

torch.nn.quantized.FloatFunctional

+

torch.nn.quantized.FloatFunctional

+

315

+

315

torch.nn.quantized.QFunctional

+

torch.nn.quantized.QFunctional

+

316

+

316

torch.nn.quantized.Quantize

+

torch.nn.quantized.Quantize

+

317

+

317

torch.nn.quantized.DeQuantize

+

torch.nn.quantized.DeQuantize

+

318

+

318

torch.nn.quantized.Linear

+

torch.nn.quantized.Linear

+

319

+

319

torch.nn.quantized.Linear.from_float

+

torch.nn.quantized.Linear.from_float

+

320

+

320

torch.nn.quantized.dynamic.Linear

+

torch.nn.quantized.dynamic.Linear

+

321

+

321

torch.nn.quantized.dynamic.Linear.from_float

+

torch.nn.quantized.dynamic.Linear.from_float

+

322

+

322

torch.nn.quantized.dynamic.LSTM

+

torch.nn.quantized.dynamic.LSTM

+

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - @@ -7422,220 +7422,220 @@

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch.nn.functional.conv1d

+

torch.nn.functional.conv1d

+

2

torch.nn.functional.conv2d

+

torch.nn.functional.conv2d

+

3

torch.nn.functional.conv3d

+

torch.nn.functional.conv3d

+

4

torch.nn.functional.conv_transpose1d

+

torch.nn.functional.conv_transpose1d

+

5

torch.nn.functional.conv_transpose2d

+

torch.nn.functional.conv_transpose2d

+

6

torch.nn.functional.conv_transpose3d

+

torch.nn.functional.conv_transpose3d

+

7

torch.nn.functional.unfold

+

torch.nn.functional.unfold

+

8

torch.nn.functional.fold

+

torch.nn.functional.fold

+

9

torch.nn.functional.avg_pool1d

+

torch.nn.functional.avg_pool1d

+

10

torch.nn.functional.avg_pool2d

+

torch.nn.functional.avg_pool2d

+

11

torch.nn.functional.avg_pool3d

+

torch.nn.functional.avg_pool3d

+

12

torch.nn.functional.max_pool1d

+

torch.nn.functional.max_pool1d

+

13

torch.nn.functional.max_pool2d

+

torch.nn.functional.max_pool2d

+

14

torch.nn.functional.max_pool3d

+

torch.nn.functional.max_pool3d

+

15

torch.nn.functional.max_unpool1d

+

torch.nn.functional.max_unpool1d

+

16

torch.nn.functional.max_unpool2d

+

torch.nn.functional.max_unpool2d

+

17

torch.nn.functional.max_unpool3d

+

torch.nn.functional.max_unpool3d

+

18

torch.nn.functional.lp_pool1d

+

torch.nn.functional.lp_pool1d

+

19

torch.nn.functional.lp_pool2d

+

torch.nn.functional.lp_pool2d

+

20

torch.nn.functional.adaptive_max_pool1d

+

torch.nn.functional.adaptive_max_pool1d

+

21

torch.nn.functional.adaptive_max_pool2d

+

torch.nn.functional.adaptive_max_pool2d

+

22

torch.nn.functional.adaptive_max_pool3d

+

torch.nn.functional.adaptive_max_pool3d

+

23

torch.nn.functional.adaptive_avg_pool1d

+

torch.nn.functional.adaptive_avg_pool1d

+

24

torch.nn.functional.adaptive_avg_pool2d

+

torch.nn.functional.adaptive_avg_pool2d

+

25

torch.nn.functional.adaptive_avg_pool3d

+

torch.nn.functional.adaptive_avg_pool3d

+

26

torch.nn.functional.threshold

+

torch.nn.functional.threshold

+

27

torch.nn.functional.threshold_

+

torch.nn.functional.threshold_

+

28

torch.nn.functional.relu

+

torch.nn.functional.relu

+

29

torch.nn.functional.relu_

+

torch.nn.functional.relu_

+

30

torch.nn.functional.hardtanh

+

torch.nn.functional.hardtanh

+

31

torch.nn.functional.hardtanh_

+

torch.nn.functional.hardtanh_

+

32

torch.nn.functional.relu6

+

torch.nn.functional.relu6

+

33

torch.nn.functional.elu

+

torch.nn.functional.elu

+

34

torch.nn.functional.elu_

+

torch.nn.functional.elu_

+

35

torch.nn.functional.selu

+

torch.nn.functional.selu

+

36

torch.nn.functional.celu

+

torch.nn.functional.celu

+

37

torch.nn.functional.leaky_relu

+

torch.nn.functional.leaky_relu

+

38

torch.nn.functional.leaky_relu_

+

torch.nn.functional.leaky_relu_

+

39

torch.nn.functional.prelu

+

torch.nn.functional.prelu

+

40

torch.nn.functional.rrelu

+

torch.nn.functional.rrelu

+

41

torch.nn.functional.rrelu_

+

torch.nn.functional.rrelu_

+

42

torch.nn.functional.glu

+

torch.nn.functional.glu

+

43

torch.nn.functional.gelu

+

torch.nn.functional.gelu

+

44

torch.nn.functional.logsigmoid

+

torch.nn.functional.logsigmoid

+

45

torch.nn.functional.hardshrink

+

torch.nn.functional.hardshrink

+

46

torch.nn.functional.tanhshrink

+

torch.nn.functional.tanhshrink

+

47

torch.nn.functional.softsign

+

torch.nn.functional.softsign

+

48

torch.nn.functional.softplus

+

torch.nn.functional.softplus

+

49

torch.nn.functional.softmin

+

torch.nn.functional.softmin

+

50

torch.nn.functional.softmax

+

torch.nn.functional.softmax

+

51

torch.nn.functional.softshrink

+

torch.nn.functional.softshrink

+

52

torch.nn.functional.gumbel_softmax

+

torch.nn.functional.gumbel_softmax

+

53

torch.nn.functional.log_softmax

+

torch.nn.functional.log_softmax

+

54

torch.nn.functional.tanh

+

torch.nn.functional.tanh

+

55

torch.nn.functional.sigmoid

+

torch.nn.functional.sigmoid

+

56

torch.nn.functional.batch_norm

+

torch.nn.functional.batch_norm

+

57

torch.nn.functional.instance_norm

+

torch.nn.functional.instance_norm

+

58

torch.nn.functional.layer_norm

+

torch.nn.functional.layer_norm

+

59

torch.nn.functional.local_response_norm

+

torch.nn.functional.local_response_norm

+

60

torch.nn.functional.normalize

+

torch.nn.functional.normalize

+

61

torch.nn.functional.linear

+

torch.nn.functional.linear

+

62

torch.nn.functional.bilinear

+

torch.nn.functional.bilinear

+

63

torch.nn.functional.dropout

+

torch.nn.functional.dropout

+

64

torch.nn.functional.alpha_dropout

+

torch.nn.functional.alpha_dropout

+

65

torch.nn.functional.dropout2d

+

torch.nn.functional.dropout2d

+

66

torch.nn.functional.dropout3d

+

torch.nn.functional.dropout3d

+

67

torch.nn.functional.embedding

+

torch.nn.functional.embedding

+

68

torch.nn.functional.embedding_bag

+

torch.nn.functional.embedding_bag

+

69

torch.nn.functional.one_hot

+

torch.nn.functional.one_hot

+

70

torch.nn.functional.pairwise_distance

+

torch.nn.functional.pairwise_distance

+

71

torch.nn.functional.cosine_similarity

+

torch.nn.functional.cosine_similarity

+

72

torch.nn.functional.pdist

+

torch.nn.functional.pdist

+

73

torch.nn.functional.binary_cross_entropy

+

torch.nn.functional.binary_cross_entropy

+

74

torch.nn.functional.binary_cross_entropy_with_logits

+

torch.nn.functional.binary_cross_entropy_with_logits

+

75

torch.nn.functional.poisson_nll_loss

+

torch.nn.functional.poisson_nll_loss

+

76

torch.nn.functional.cosine_embedding_loss

+

torch.nn.functional.cosine_embedding_loss

+

77

torch.nn.functional.cross_entropy

+

torch.nn.functional.cross_entropy

+

78

torch.nn.functional.ctc_loss

+

torch.nn.functional.ctc_loss

+

79

torch.nn.functional.hinge_embedding_loss

+

torch.nn.functional.hinge_embedding_loss

+

80

torch.nn.functional.kl_div

+

torch.nn.functional.kl_div

+

81

torch.nn.functional.l1_loss

+

torch.nn.functional.l1_loss

+

82

torch.nn.functional.mse_loss

+

torch.nn.functional.mse_loss

+

83

torch.nn.functional.margin_ranking_loss

+

torch.nn.functional.margin_ranking_loss

+

84

torch.nn.functional.multilabel_margin_loss

+

torch.nn.functional.multilabel_margin_loss

+

85

torch.nn.functional.multilabel_soft_margin_loss

+

torch.nn.functional.multilabel_soft_margin_loss

+

86

torch.nn.functional.multi_margin_loss

+

torch.nn.functional.multi_margin_loss

+

87

torch.nn.functional.nll_loss

+

torch.nn.functional.nll_loss

+

88

torch.nn.functional.smooth_l1_loss

+

torch.nn.functional.smooth_l1_loss

+

89

torch.nn.functional.soft_margin_loss

+

torch.nn.functional.soft_margin_loss

+

90

torch.nn.functional.triplet_margin_loss

+

torch.nn.functional.triplet_margin_loss

+

91

torch.nn.functional.pixel_shuffle

+

torch.nn.functional.pixel_shuffle

+

92

torch.nn.functional.pad

+

torch.nn.functional.pad

+

93

torch.nn.functional.interpolate

+

torch.nn.functional.interpolate

+

94

torch.nn.functional.upsample

+

torch.nn.functional.upsample

+

95

torch.nn.functional.upsample_nearest

+

torch.nn.functional.upsample_nearest

+

96

torch.nn.functional.upsample_bilinear

+

torch.nn.functional.upsample_bilinear

+

97

torch.nn.functional.grid_sample

+

torch.nn.functional.grid_sample

+

98

torch.nn.functional.affine_grid

+

torch.nn.functional.affine_grid

+

99

torch.nn.parallel.data_parallel

+

torch.nn.parallel.data_parallel

+

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - @@ -7648,9 +7648,9 @@ - - @@ -7658,567 +7658,567 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git "a/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227.md" "b/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227.md" index e9176a02b4d74df4dd4a760e3272fbcfff7bfe81..b9b6722f48b3cf126aa434dafe05dbb3410cf5e6 100644 --- "a/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227.md" +++ "b/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227.md" @@ -5,19 +5,18 @@ - [安装PyTorch框架](#安装PyTorch框架md) - [配置环境变量](#配置环境变量md) - [安装混合精度模块](#安装混合精度模块md) -- [使用Ascend Hub镜像](#使用Ascend-Hub镜像md) - - [Ascend Hub获取PyTorch镜像](#Ascend-Hub获取PyTorch镜像md) - - [配置环境变量](#配置环境变量-0md) - [参考信息](#参考信息md) - [CMake安装方法](#CMake安装方法md) - [安装7.3.0版本gcc](#安装7-3-0版本gccmd) - [安装“torch-\*.whl ”提示“torch 1.5.0xxxx”与“torchvision”所依赖的版本不匹配](#安装-torch--whl-提示-torch-1-5-0xxxx-与-torchvision-所依赖的版本不匹配md)

简介

-用户在准备相关环境进行基于PyTorch框架模型的开发、运行时,可以选择在服务器中手动编译安装PyTorch框架相关模块,或直接获取Ascend Hub镜像中心提供的基础镜像(镜像中已安装PyTorch模块和混合精度模块),进行模型的开发、运行。 +用户在准备相关环境进行基于PyTorch框架模型的开发、运行时,可以选择在服务器中手动编译安装PyTorch框架相关模块。 **图 1** 环境准备流程图 -![](figures/环境准备流程图.png "环境准备流程图") + + +![](figures/210926103326800.png)

手动编译安装

@@ -37,6 +36,7 @@ - 需完成CANN开发或运行环境的安装,具体操作请参考《CANN 软件安装指南》。 - 需安装3.12.0以上版本的CMake,安装方法请参考[CMake安装方法](#CMake安装方法md)。 - 需确保已安装7.3.0以上版本的gcc,7.3.0版本gcc具体安装及使用方式请参考[安装7.3.0版本gcc](#安装7-3-0版本gccmd)。 +- 需安装python版本为3.7.5或3.8。 - 需确保环境中已安装patch、git工具,以Ubuntu和CentOS系统为例,命令如下: - Ubuntu系统 @@ -79,36 +79,32 @@ 下载的源码主要目录结构如下所示: ``` - pytorch - │ ├─patch # 昇腾AI处理器适配补丁目录 - │ ├─npu.patch - │ ├─scripts # 编译构建目录 - │ ├─gen.sh - │ ├─src # 源码目录 - │ ├─test # 测试用例存放目录 - │ ├─README.md + ├── patch # 昇腾AI处理器适配补丁目录 + │ ├── pytorch1.5.0_npu.patch # pytorch1.5.0版本补丁 + │ └── pytorch1.8.1_npu.patch # pytorch1.8.1版本补丁 + ├── pytorch1.5.0 # pytorch1.5.0源码及测试目录 + │ ├── access_control_test.py + │ ├── src # 源码目录 + │ └── test # 测试用例存放目录 + ├── pytorch1.8.1 # pytorch1.8.1源码及测试目录 + │ ├── access_control_test.py + │ ├── src # 源码目录 + │ └── test # 测试用例存放目录 + └── scripts # 编译构建目录 ``` - 2. 运行如下命令,进入“pytorch“目录,并获取原生PyTorch源代码。 + 2. 在当前仓根目录“/pytorch“下获取原生PyTorch源代码。 + - 若安装pytorch1.5.0版本,执行如下命令。 - ``` - cd pytorch - git clone -b v1.5.0 --depth=1 https://github.com/pytorch/pytorch.git - ``` + ``` + git clone -b v1.5.0 --depth=1 https://github.com/pytorch/pytorch.git + ``` - 下载原生pytorch源码后,代码主要目录结构如下所示: + - 若安装pytorch1.8.1版本,执行如下命令。 - ``` - pytorch - │ ├─patch # 昇腾AI处理器适配补丁目录 - │ ├─npu.patch - │ ├─pytorch # 原生pytorch代码目录 - │ ├─scripts # 编译构建目录 - │ ├─gen.sh - │ ├─src # 源码目录 - │ ├─test # 测试用例存放目录 - │ ├─README.md - ``` + ``` + git clone -b v1.8.1 --depth=1 https://github.com/pytorch/pytorch.git + ``` 3. 运行如下命令,进入原生pytorch代码目录“pytorch“,并获取PyTorch被动依赖代码。 @@ -126,26 +122,37 @@ ``` cd ../scripts + # 若安装1.5.0版本 bash gen.sh + # 若安装1.8.1版本 + bash gen.sh -v 1.8.1 ``` 将在"pytorch/pytorch"目录中生成适配昇腾AI处理器的全量代码。 - 2. 进入适配后的全量代码目录,即“pytorch/pytorch“目录,编译生成pytorch的二进制安装包。 + 2. 进入到“pytorch/pytorch/“目录,依赖库安装。 ``` cd ../pytorch - bash build.sh + pip3 install -r requirements.txt ``` - 生成的二进制包在当前的dist目录下,即“pytorch/pytorch/dist”文件夹目录下。 + 3. 编译生成pytorch的二进制安装包。 + + ``` + bash build.sh --python=3.7 + 或 + bash build.sh --python=3.8 + ``` + + 请指定环境中python版本进行编译。生成的二进制包在当前的dist目录下,即“pytorch/pytorch/dist”文件夹目录下。 5. 安装PyTorch。 进入“pytorch/pytorch/dist“文件夹目录,执行如下命令安装。 ``` - pip3 install --upgrade torch-1.5.0+ascend-cp37-cp37m-linux_{arch}.whl + pip3 install --upgrade torch-1.5.0+ascend.post3-cp37-cp37m-linux_{arch}.whl ``` **\{arch\}**表示架构信息,为aarch64或x86\_64。 @@ -178,7 +185,7 @@ 3. (可选)NPU场景下配置功能或性能环境变量。默认为不开启。 ``` - export DYNAMIC_COMPILE_ENABLE=1 # 动态shape特性功能,针对shape变化场景,可选,开启设置为1 + export DYNAMIC_COMPILE_ENABLE=1 # 动态shape特性功能,针对shape变化场景,可选,开启设置为1(PyTorch1.8.1不支持该环境变量) export COMBINED_ENABLE=1 # 非连续两个算子组合类场景优化,可选,开启设置为1 export TRI_COMBINED_ENABLE=1 # 非连续三个算子组合类场景优化,可选,开启设置为1 export ACL_DUMP_DATA=1 # 算子数据dump功能,调试时使用,可选,开启设置为1 @@ -276,22 +283,22 @@ - - - -

序号

API名称

+

API名称

是否支持

+

是否支持(PyTorch1.5.0)

1

torch.distributed.init_process_group

+

torch.distributed.init_process_group

+

2

torch.distributed.Backend

+

torch.distributed.Backend

+

3

torch.distributed.get_backend

+

torch.distributed.get_backend

+

4

torch.distributed.get_rank

+

torch.distributed.get_rank

+

5

torch.distributed.get_world_size

+

torch.distributed.get_world_size

+

6

torch.distributed.is_initialized

+

torch.distributed.is_initialized

+

7

torch.distributed.is_mpi_available

+

torch.distributed.is_mpi_available

+

8

torch.distributed.is_nccl_available

+

torch.distributed.is_nccl_available

+

9

torch.distributed.new_group

+

torch.distributed.new_group

+

10

torch.distributed.send

+

torch.distributed.send

+

11

torch.distributed.recv

+

torch.distributed.recv

+

12

torch.distributed.isend

+

torch.distributed.isend

+

13

torch.distributed.irecv

+

torch.distributed.irecv

+

14

is_completed

+

is_completed

+

15

wait

+

wait

+

16

torch.distributed.broadcast

+

torch.distributed.broadcast

+

17

torch.distributed.all_reduce

+

torch.distributed.all_reduce

+

18

torch.distributed.reduce

+

torch.distributed.reduce

+

19

torch.distributed.all_gather

+

torch.distributed.all_gather

+

20

torch.distributed.gather

+

torch.distributed.gather

+

21

torch.distributed.scatter

+

torch.distributed.scatter

+

22

torch.distributed.barrier

+

torch.distributed.barrier

+

23

torch.distributed.ReduceOp

+

torch.distributed.ReduceOp

+

24

torch.distributed.reduce_op

+

torch.distributed.reduce_op

+

25

torch.distributed.broadcast_multigpu

+

torch.distributed.broadcast_multigpu

+

26

torch.distributed.all_reduce_multigpu

+

torch.distributed.all_reduce_multigpu

+

27

torch.distributed.reduce_multigpu

+

torch.distributed.reduce_multigpu

+

28

torch.distributed.all_gather_multigpu

+

torch.distributed.all_gather_multigpu

+

29

torch.distributed.launch

+

torch.distributed.launch

+

30

torch.multiprocessing.spawn

+

torch.multiprocessing.spawn

+

API名称

npu对应API名称

+

npu对应API名称

是否支持

+

是否支持(PyTorch1.5.0)

torch.cuda.current_blas_handle

torch.npu.current_blas_handle

+

torch.npu.current_blas_handle

+

2

torch.cuda.current_device

torch.npu.current_device

+

torch.npu.current_device

+

3

torch.cuda.current_stream

torch.npu.current_stream

+

torch.npu.current_stream

+

4

torch.cuda.default_stream

torch.npu.default_stream

+

torch.npu.default_stream

+

5

torch.cuda.device

torch.npu.device

+

torch.npu.device

+

6

torch.cuda.device_count

torch.npu.device_count

+

torch.npu.device_count

+

7

torch.cuda.device_of

torch.npu.device_of

+

torch.npu.device_of

+

8

torch.cuda.get_device_capability

torch.npu.get_device_capability

+

torch.npu.get_device_capability

+

9

torch.cuda.get_device_name

torch.npu.get_device_name

+

torch.npu.get_device_name

+

10

torch.cuda.init

torch.npu.init

+

torch.npu.init

+

11

torch.cuda.ipc_collect

torch.npu.ipc_collect

+

torch.npu.ipc_collect

+

12

torch.cuda.is_available

torch.npu.is_available

+

torch.npu.is_available

+

13

torch.cuda.is_initialized

torch.npu.is_initialized

+

torch.npu.is_initialized

+

14

torch.cuda.set_device

torch.npu.set_device

+

torch.npu.set_device

部分支持

+

部分支持

15

torch.cuda.stream

torch.npu.stream

+

torch.npu.stream

+

16

torch.cuda.synchronize

torch.npu.synchronize

+

torch.npu.synchronize

+

17

torch.cuda.get_rng_state

torch.npu.get_rng_state

+

torch.npu.get_rng_state

+

18

torch.cuda.get_rng_state_all

torch.npu.get_rng_state_all

+

torch.npu.get_rng_state_all

+

19

torch.cuda.set_rng_state

torch.npu.set_rng_state

+

torch.npu.set_rng_state

+

20

torch.cuda.set_rng_state_all

torch.npu.set_rng_state_all

+

torch.npu.set_rng_state_all

+

21

torch.cuda.manual_seed

torch.npu.manual_seed

+

torch.npu.manual_seed

+

22

torch.cuda.manual_seed_all

torch.npu.manual_seed_all

+

torch.npu.manual_seed_all

+

23

torch.cuda.seed

torch.npu.seed

+

torch.npu.seed

+

24

torch.cuda.seed_all

torch.npu.seed_all

+

torch.npu.seed_all

+

25

torch.cuda.initial_seed

torch.npu.initial_seed

+

torch.npu.initial_seed

+

26

torch.cuda.comm.broadcast

torch.npu.comm.broadcast

+

torch.npu.comm.broadcast

+

27

torch.cuda.comm.broadcast_coalesced

torch.npu.comm.broadcast_coalesced

+

torch.npu.comm.broadcast_coalesced

+

28

torch.cuda.comm.reduce_add

torch.npu.comm.reduce_add

+

torch.npu.comm.reduce_add

+

29

torch.cuda.comm.scatter

torch.npu.comm.scatter

+

torch.npu.comm.scatter

+

30

torch.cuda.comm.gather

torch.npu.comm.gather

+

torch.npu.comm.gather

+

31

torch.cuda.Stream

torch.npu.Stream

+

torch.npu.Stream

+

32

torch.cuda.Stream.query

torch.npu.Stream.query

+

torch.npu.Stream.query

+

33

torch.cuda.Stream.record_event

torch.npu.Stream.record_event

+

torch.npu.Stream.record_event

+

34

torch.cuda.Stream.synchronize

torch.npu.Stream.synchronize

+

torch.npu.Stream.synchronize

+

35

torch.cuda.Stream.wait_event

torch.npu.Stream.wait_event

+

torch.npu.Stream.wait_event

+

36

torch.cuda.Stream.wait_stream

torch.npu.Stream.wait_stream

+

torch.npu.Stream.wait_stream

+

37

torch.cuda.Event

torch.npu.Event

+

torch.npu.Event

+

38

torch.cuda.Event.elapsed_time

torch.npu.Event.elapsed_time

+

torch.npu.Event.elapsed_time

+

39

torch.cuda.Event.from_ipc_handle

torch.npu.Event.from_ipc_handle

+

torch.npu.Event.from_ipc_handle

+

40

torch.cuda.Event.ipc_handle

torch.npu.Event.ipc_handle

+

torch.npu.Event.ipc_handle

+

41

torch.cuda.Event.query

torch.npu.Event.query

+

torch.npu.Event.query

+

42

torch.cuda.Event.record

torch.npu.Event.record

+

torch.npu.Event.record

+

43

torch.cuda.Event.synchronize

torch.npu.Event.synchronize

+

torch.npu.Event.synchronize

+

44

torch.cuda.Event.wait

torch.npu.Event.wait

+

torch.npu.Event.wait

+

45

torch.cuda.empty_cache

torch.npu.empty_cache

+

torch.npu.empty_cache

+

46

torch.cuda.memory_stats

torch.npu.memory_stats

+

torch.npu.memory_stats

+

47

torch.cuda.memory_summary

torch.npu.memory_summary

+

torch.npu.memory_summary

+

48

torch.cuda.memory_snapshot

torch.npu.memory_snapshot

+

torch.npu.memory_snapshot

+

49

torch.cuda.memory_allocated

torch.npu.memory_allocated

+

torch.npu.memory_allocated

+

50

torch.cuda.max_memory_allocated

torch.npu.max_memory_allocated

+

torch.npu.max_memory_allocated

+

51

torch.cuda.reset_max_memory_allocated

torch.npu.reset_max_memory_allocated

+

torch.npu.reset_max_memory_allocated

+

52

torch.cuda.memory_reserved

torch.npu.memory_reserved

+

torch.npu.memory_reserved

+

53

torch.cuda.max_memory_reserved

torch.npu.max_memory_reserved

+

torch.npu.max_memory_reserved

+

54

torch.cuda.memory_cached

torch.npu.memory_cached

+

torch.npu.memory_cached

+

55

torch.cuda.max_memory_cached

torch.npu.max_memory_cached

+

torch.npu.max_memory_cached

+

56

torch.cuda.reset_max_memory_cached

torch.npu.reset_max_memory_cached

+

torch.npu.reset_max_memory_cached

+

57

torch.cuda.nvtx.mark

torch.npu.nvtx.mark

+

torch.npu.nvtx.mark

+

58

torch.cuda.nvtx.range_push

torch.npu.nvtx.range_push

+

torch.npu.nvtx.range_push

+

59

torch.cuda.nvtx.range_pop

torch.npu.nvtx.range_pop

+

torch.npu.nvtx.range_pop

+

60

torch.cuda._sleep

torch.npu._sleep

+

torch.npu._sleep

+

61

torch.cuda.Stream.priority_range

torch.npu.Stream.priority_range

+

torch.npu.Stream.priority_range

+

62

torch.cuda.get_device_properties

torch.npu.get_device_properties

+

torch.npu.get_device_properties

+

63

torch.cuda.amp.GradScaler

torch.npu.amp.GradScaler

+

torch.npu.amp.GradScaler

+

DYNAMIC_COMPILE_ENABLE

(可选)动态shape特性功能,针对shape变化场景,开启设置为1

+

(可选)动态shape特性功能,针对shape变化场景,开启设置为1(PyTorch1.8.1不支持该环境变量)。

COMBINED_ENABLE

(可选)非连续两个算子组合类场景优化,开启设置为1

+

(可选)非连续两个算子组合类场景优化,开启设置为1。

RI_COMBINED_ENABLE

(可选)非连续三个算子组合类场景优化,开启设置为1

+

(可选)非连续三个算子组合类场景优化,开启设置为1。

ACL_DUMP_DATA

(可选)算子数据dump功能,调试时使用,开启设置为1

+

(可选)算子数据dump功能,调试时使用,开启设置为1。

DYNAMIC_OP

@@ -335,7 +342,6 @@ │ ├─gen.sh │ ├─src # 源码目录 │ ├─tests # 测试用例存放目录 - │ ├─README.md ``` 2. 运行如下命令,进入“apex“目录,并获取原生apex源代码。 @@ -356,7 +362,6 @@ │ ├─gen.sh │ ├─src # 源码目录 │ ├─tests # 测试用例存放目录 - │ ├─README.md ``` 3. 进入原生apex代码目录,即“apex/apex“目录。切换至commitid为4ef930c1c884fdca5f472ab2ce7cb9b505d26c1a的代码分支。 @@ -364,7 +369,6 @@ ``` cd apex git checkout 4ef930c1c884fdca5f472ab2ce7cb9b505d26c1a - cd .. ``` >![](public_sys-resources/icon-note.gif) **说明:** @@ -387,14 +391,14 @@ python3 setup.py --cpp_ext --npu_float_status bdist_wheel ``` - 生成的二进制包在当前的dist目录下,即“apex/apex/dist”文件夹目录下。 + Python版本需与PyTorch使用的Python一致,生成的二进制包在当前的dist目录下,即“apex/apex/dist”文件夹目录下。 4. 安装apex。 进入“apex/apex/dist“文件夹目录,执行如下命令安装。 ``` - pip3.7 install --upgrade apex-0.1+ascend-cp37-cp37m-linux_{arch}.whl + pip3 install --upgrade apex-0.1+ascend-cp37-cp37m-linux_{arch}.whl ``` **\{arch\}**表示架构信息,为aarch64或x86\_64。 @@ -404,51 +408,6 @@ >**pip3 list | grep apex** -

使用Ascend Hub镜像

- -- **[Ascend Hub获取PyTorch镜像](#Ascend-Hub获取PyTorch镜像md)** - -- **[配置环境变量](#配置环境变量-0md)** - - -

Ascend Hub获取PyTorch镜像

- -#### 前提条件 - -- 已准备好相应硬件环境驱动和固件的安装,请参见各硬件产品[“驱动和固件安装升级指南”](https://support.huawei.com/enterprise/zh/category/ai-computing-platform-pid-1557196528909)。需要在硬件设备上安装与CANN版本配套的固件与驱动。 -- 宿主机上已安装Docker。 - -#### 获取并使用镜像 - -用户可登录[Ascend Hub](https://ascendhub.huawei.com/#/home)获取相应镜像(首次申请需要激活账号)。 - -当前支持的镜像列表如[表1](#zh-cn_topic_0000001118701830_zh-cn_topic_0000001074498056_table1519011227314)所示。用户可根据实际选择所需的镜像进行下载并使用。 - -**表 1** 镜像列表 - - - - - - - - - - - - -

镜像名称

-

镜像版本

-

配套CANN版本

-
-

21.0.2

-

5.0.2

-
- -

配置环境变量

- -启动并进入镜像容器后,请参见[配置环境变量](#配置环境变量md)配置模型训练依赖的环境变量。 -

参考信息

- **[CMake安装方法](#CMake安装方法md)** diff --git "a/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/figures/210926103326800.png" "b/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/figures/210926103326800.png" new file mode 100644 index 0000000000000000000000000000000000000000..c80fd7d78db31105935b2d63c07ad620e61b1803 Binary files /dev/null and "b/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/figures/210926103326800.png" differ diff --git "a/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/figures/\347\216\257\345\242\203\345\207\206\345\244\207\346\265\201\347\250\213\345\233\276.png" "b/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/figures/\347\216\257\345\242\203\345\207\206\345\244\207\346\265\201\347\250\213\345\233\276.png" deleted file mode 100644 index 8b6f8a733933b101007a233938709dbe3454e899..0000000000000000000000000000000000000000 Binary files "a/docs/zh/PyTorch\345\256\211\350\243\205\346\214\207\345\215\227/figures/\347\216\257\345\242\203\345\207\206\345\244\207\346\265\201\347\250\213\345\233\276.png" and /dev/null differ diff --git "a/docs/zh/PyTorch\347\256\227\345\255\220\345\274\200\345\217\221\346\214\207\345\215\227/PyTorch\347\256\227\345\255\220\345\274\200\345\217\221\346\214\207\345\215\227.md" "b/docs/zh/PyTorch\347\256\227\345\255\220\345\274\200\345\217\221\346\214\207\345\215\227/PyTorch\347\256\227\345\255\220\345\274\200\345\217\221\346\214\207\345\215\227.md" index 12cc6c8103d6b6f88f411d81fe29472bfcb33613..f48ac3586507cd1602f7a8259e1508bbe3d2cac9 100644 --- "a/docs/zh/PyTorch\347\256\227\345\255\220\345\274\200\345\217\221\346\214\207\345\215\227/PyTorch\347\256\227\345\255\220\345\274\200\345\217\221\346\214\207\345\215\227.md" +++ "b/docs/zh/PyTorch\347\256\227\345\255\220\345\274\200\345\217\221\346\214\207\345\215\227/PyTorch\347\256\227\345\255\220\345\274\200\345\217\221\346\214\207\345\215\227.md" @@ -8,10 +8,13 @@ - [前提条件](#前提条件md) - [获取PyTorch源码](#获取PyTorch源码md) - [注册算子开发](#注册算子开发md) + - [概述](#概述md) + - [PyTorch1.5.0 注册算子开发](#PyTorch1-5-0-注册算子开发md) + - [PyTorch1.8.1 注册算子开发](#PyTorch1-8-1-注册算子开发md) - [算子适配插件开发](#算子适配插件开发md) - [编译和安装PyTorch框架](#编译和安装PyTorch框架md) - [算子功能验证](#算子功能验证md) - - [概述](#概述md) + - [概述](#概述-0md) - [实现过程](#实现过程md) - [FAQ](#FAQmd) - [Pillow==5.3.0安装失败](#Pillow-5-3-0安装失败md) @@ -33,7 +36,7 @@

算子开发流程

-Pytorch算子开发包含TBE算子开发和PyTorch框架下的算子适配。 +PyTorch算子开发包含TBE算子开发和PyTorch框架下的算子适配。 1. TBE算子开发:昇腾AI软件栈中不包含相应的算子,需要先完成TBE算子的开发,再进行PyTorch框架下的算子适配。 @@ -128,39 +131,27 @@ Pytorch算子开发包含TBE算子开发和PyTorch框架下的算子适配。

环境准备

-#### 前提条件 - - 需完成CANN开发或运行环境的安装,具体操作请参考《CANN 软件安装指南》。 +- 需安装python版本为3.7.5或3.8。 - 需安装3.12.0及以上版本的CMake,安装方法请参考[CMake安装方法](#CMake安装方法md)。 - 需确保已安装7.3.0以上版本的gcc,7.3.0版本gcc具体安装及使用方式请参见《CANN 软件安装指南》中的“安装7.3.0版本gcc”章节。 - 需确保环境中已安装git工具,以Ubuntu和CentOS系统为例,命令如下: - Ubuntu系统 ``` + apt-get install patch apt-get install git ``` - CentOS系统 ``` + yum install patch yum install git ``` -#### 安装PyTorch依赖环境 - -如果使用非root用户安装Python及其依赖,用户需要在每句命令末尾加上**--user**,保证安装的正常进行。命令示例为:**pip3.7 install pyyaml --user** - -``` -pip3.7 install pyyaml -pip3.7 install wheel -pip3.7 install Pillow==5.3.0 -``` - ->![](public_sys-resources/icon-note.gif) **说明:** ->若以上过程出错,请参考[FAQ](#FAQmd)尝试解决问题。 -

算子速查

进行算子开发时,您可以查询当前昇腾AI处理器中支持的算子列表和当前PyTorch适配的算子列表。根据查询结果进行算子开发或PyTorch算子适配。 @@ -197,24 +188,24 @@ pip3.7 install Pillow==5.3.0

获取PyTorch源码

-从gitee上获取适配昇腾AI处理器的PyTorch源代码,获取地址为: [https://gitee.com/ascend/pytorch-develop](https://gitee.com/ascend/pytorch-develop) 。用户可以通过执行下面git命令行下载源代码。 +目前只支持PyTorch1.5.0和1.8.1版本,PyTorch源码获取请参见《PyTorch安装指南》中“安装PyTorch框架”章节,完成在"pytorch/pytorch"目录生成适配昇腾AI处理器的全量代码步骤。将在pytorch/pytorch目录中进行PyTorch 算子适配开发。 -``` -git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 -``` +

注册算子开发

-下载成功后,得到pytorch文件目录。 +- **[概述](#概述md)** ->![](public_sys-resources/icon-note.gif) **说明:** ->如无权限获取代码,请联系华为技术支持申请加入“Ascend”组织。 +- **[PyTorch1.5.0 注册算子开发](#PyTorch1-5-0-注册算子开发md)** -

注册算子开发

+- **[PyTorch1.8.1 注册算子开发](#PyTorch1-8-1-注册算子开发md)** -#### 概述 + +

概述

当前制定的NPU适配派发原则是NPU算子的派发不经过框架公共函数,直接派发成NPU适配的函数,即算子执行调用栈中只包含NPU适配的函数调用,不包含框架公共函数。PyTorch框架在编译时,会根据 native\_functions.yaml 的定义,按框架中定义的类型和设备分发原则,生成相应的新算子的中间层的调用说明。对于NPU,会生成在 build/aten/src/ATen/NPUType.cpp。 -#### 注册算子开发方法 +

PyTorch1.5.0 注册算子开发

+ +##### 注册算子开发方法 1. 打开native\_functions.yaml文件。 @@ -227,7 +218,7 @@ git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 - yaml中未存在的自定义算子 - 由于yaml中没有相关算子的信息,需要手动添加相关函数,包括函数名,参数信息,返回类型信息。 + 由于yaml中没有相关算子的信息,需要手动添加相关函数,包括函数名,参数信息,返回类型信息。添加规则及方法请参见“pytorch/aten/src/ATen/native/README.md“。 ``` - func:适配算子名称(输入参数信息) -> 返回类型 @@ -258,7 +249,7 @@ git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 >该格式供参考,算子适配开发过程中的函数名需与NPU\_Adapt\_Fun\_Name保持一致。 -#### 示例 +##### 示例 以torch.add\(\)算子为例介绍注册算子开发过程。 @@ -344,6 +335,94 @@ git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 +

PyTorch1.8.1 注册算子开发

+ +##### 注册算子开发方法 + +1. 打开native\_functions.yaml文件。 + + native\_functions.yaml 文件中,定义了所有算子函数原型,包括函数名称和参数等信息,每个算子函数支持不同硬件平台的派发信息。该文件所在路径为pytorch/aten/src/ATen/native/native\_functions.yaml。 + +2. 确定需要派发函数。 + - yaml 中已存在的算子 + + 将所有与待适配算子相关的函数进行派发。 + + - yaml中未存在的自定义算子 + + 由于yaml中没有相关算子的信息,需要手动添加相关函数,包括函数名,参数信息,返回类型信息。添加规则及方法请参见“pytorch/aten/src/ATen/native/README.md“。 + + ``` + - func:适配算子名称(输入参数信息) -> 返回类型 + ``` + + + +##### 示例 + +以torch.add\(\)算子为例介绍注册算子开发过程。 + +1. 打开native\_functions.yaml文件。 +2. 搜索相关函数。 + + 在yaml中搜索add,找到与add算子相关的函数描述func。由于add是PyTorch内置算子,不需要手动添加func。若是自定义算子,需要手动添加func。 + +3. 确定算子相关函数名称及其类型的func描述。 + - add.Tensor 的函数分发描述。 + + ``` + - func: add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor + structured_delegate: add.out + variants: function, method + dispatch: + SparseCPU, SparseCUDA: add_sparse + MkldnnCPU: mkldnn_add + ``` + + - add.Scalar 的函数分发描述。 + + ``` + - func: add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor + variants: function, method + dispatch: + DefaultBackend: add + ``` + + - add\_.Tensor 的函数分发描述。 + + ``` + - func: add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) + variants: method + structured_delegate: add.out + dispatch: + SparseCPU, SparseCUDA: add_sparse_ + MkldnnCPU: mkldnn_add_ + ``` + + - add\_.Scalar 的函数分发描述。 + + ``` + - func: add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) + variants: method + dispatch: + DefaultBackend: add_ + ``` + + - add.out 的函数分发描述。 + + ``` + - func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) + structured: True + structured_inherits: TensorIteratorBase + dispatch: + CPU, CUDA: add_out + SparseCPU: add_out_sparse_cpu + SparseCUDA: add_out_sparse_cuda + MkldnnCPU: mkldnn_add_out + ``` + + +

算子适配插件开发

#### 简介 @@ -371,6 +450,21 @@ git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 实现算子适配主题函数,根据TBE算子原型构造得到对应的input、output、attr。 +5. (仅1.8.1版本需要操作该步骤)使用TORCH\_LIBRARY\_IMPL宏关联注册算子开发中native\_functions.yaml文件的算子描述func。 + + TORCH\_LIBRARY\_IMPL是PyTorch提供的用于注册算子分发的宏,使用方法如下。 + + ``` + Torch_LIBRARY_IMPL(aten, PrivateUse1, m){ + m.impl("yaml中算子func方法名1", TORCH_FN("对应的适配主体函数名1")) + m.impl("yaml中算子func方法名2", TORCH_FN("对应的适配主体函数名2")) + } + ``` + + - aten为命名空间,可以根据实现文件命名空间自行定义。 + - PrivateUse1为dispatchKey, 固定设置NPU。 + - m为固定字段。 + #### 示例 @@ -524,6 +618,14 @@ git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 } ``` +5. (仅1.8.1版本需要操作该步骤)使用TORCH\_LIBRARY\_IMPL宏关联注册算子。 + + ``` + TORCH_LIBRARY_IMPL(aten, NPU, m) { + m.impl("add.Tensor", TORCH_FN(add_npu)); + m.impl("add_.Tensor", TORCH_FN(add_npu_)); + m.impl("add.out", TORCH_FN(add_out_npu));} + ``` >![](public_sys-resources/icon-note.gif) **说明:** @@ -533,50 +635,48 @@ git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 #### 编译PyTorch框架 -1. 进入PyTorch工作目录 :“pytorch“。 -2. 给脚本文件赋权限: +1. 进入PyTorch工作目录 :“pytorch/pytorch“。 +2. 依赖库安装。 - **chmod +x build.sh** + ``` + pip3 install -r requirements.txt + ``` -3. 执行如下命令进行编译: +3. 编译生成pytorch的二进制安装包。 - **./build.sh** + ``` + bash build.sh --python=3.7 + 或 + bash build.sh --python=3.8 + ``` - >![](public_sys-resources/icon-note.gif) **说明:** - >首次编译持续的时间较长,可能超过30分钟,建议:若无必要,无需执行"make clean"。 + 请指定环境中python版本进行编译。编译成功后,会在pytorch/pytorch/dist”文件夹目录下生成二进制包 torch-\*.whl ,例如:torch-1.5.0+ascend.post3-cp37-cp37m-linux\_x86.whl或者torch-1.8.1+ascend-cp37-cp37m-linux\_x86.whl。 -4. 编译成功后,会在“**pytorch/dist**” 下生成 torch-\*.whl 包,例如:torch-1.5.0a0-cp37-cp37m-linux\_x86.whl。 #### 安装PyTorch框架 -1. 将[编译和安装PyTorch框架](#编译和安装PyTorch框架md)生成的torch-\*.whl包上传到服务器任一路径。 -2. 进入torch-\*.whl 所在的目录,使用pip命令完成torch安装。 - - 当前登录用户为root用户时,执行: - - ``` - pip3.7 install torch-*.whl - ``` - - 当前登录用户为非root用户时,执行: +进入“pytorch/pytorch/dist“文件夹目录,执行如下命令安装。 - ``` - pip3.7 install torch-*.whl --user - ``` +``` +pip3 install --upgrade torch-1.5.0+ascend.post3-cp37-cp37m-linux_{arch}.whl +``` +**\{arch\}**表示架构信息,为aarch64或x86\_64。 >![](public_sys-resources/icon-note.gif) **说明:** ->- 修改代码之后,需要重新执行“编译”和“安装”PyTorch过程。 ->- 安装过程中,可能会出现错误提示"torchvision 0.6.0" 版本不匹配,此问题无影响,忽略即可。 +>若环境中已安装PyTorch时,需要先卸载环境中已安装的PyTorch软件包再执行,可以通过执行如下命令查询环境上是否已安装PyTorch。 +>**pip3 list | grep torch** + +修改代码之后,需要重新执行“编译”和“安装”PyTorch过程。

算子功能验证

-- **[概述](#概述md)** +- **[概述](#概述-0md)** - **[实现过程](#实现过程md)** -

概述

+

概述

#### 简介 @@ -588,7 +688,7 @@ git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 进行自定义算子功能验证,通过PyTorch前端构造自定义算子的函数并运行验证。 -在https://gitee.com/ascend/pytorch-develop中 "pytorch/test/test\_npu/test\_network\_ops"目录下提供了测试用例及测试工具,供用户参考。 +在https://gitee.com/ascend/pytorch中 "pytorch/test/test\_npu"目录下提供了测试用例及测试工具,供用户参考。

实现过程

@@ -633,7 +733,7 @@ git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 output = output.numpy() return output - # 定义add对应场景通用函数,该函数中负责场景对应输入数据和对比CPU和NPU返回结果 + # 定义add对应场景通用函数,该函数负责输入数据并对比CPU和NPU的计算结果 def add_result(self, shape_format): for item in shape_format: cpu_input1, npu_input1 = create_common_tensor(item, 0, 100) @@ -656,7 +756,6 @@ git clone https://gitee.com/ascend/pytorch-develop.git --deepth=1 instantiate_device_type_tests(TestAdd, globals(), except_for="cpu") if __name__ == "__main__": - torch.npu.set_device("npu:0") run_tests() ``` diff --git "a/docs/zh/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227.md" "b/docs/zh/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227.md" index 7e907d38300b45d9bbe7429a7227560d3309c808..5f125b6d8b0e65a63feac2028ddeefb7dc68acae 100644 --- "a/docs/zh/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227.md" +++ "b/docs/zh/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227.md" @@ -14,26 +14,26 @@ - [多P训练模型迁移](#多P训练模型迁移md) - [PyTorch接口替换](#PyTorch接口替换md) - [混合精度](#混合精度md) - - [性能优化](#性能优化md) - - [概述](#概述-0md) - - [修改CPU性能模式(X86服务器)](#修改CPU性能模式X86服务器md) - - [修改CPU性能模式(ARM服务器)](#修改CPU性能模式ARM服务器md) - - [安装高性能pillow库(X86服务器)](#安装高性能pillow库X86服务器md) - - [(可选)安装指定版本OpenCV库](#可选安装指定版本OpenCV库md) - [模型训练](#模型训练md) - [性能调优和分析](#性能调优和分析md) - [前提条件](#前提条件md) - [调测过程](#调测过程md) - [总体思路](#总体思路md) - [采集训练过程相关数据](#采集训练过程相关数据md) - - [性能优化](#性能优化-1md) + - [host侧性能优化](#host侧性能优化md) + - [概述](#概述-0md) + - [修改CPU性能模式(X86服务器)](#修改CPU性能模式X86服务器md) + - [修改CPU性能模式(ARM服务器)](#修改CPU性能模式ARM服务器md) + - [安装高性能pillow库(X86服务器)](#安装高性能pillow库X86服务器md) + - [(可选)安装指定版本OpenCV库](#可选安装指定版本OpenCV库md) + - [训练过程性能优化](#训练过程性能优化md) - [亲和库](#亲和库md) - [来源介绍](#来源介绍md) - - [功能介绍](#功能介绍-2md) + - [功能介绍](#功能介绍-1md) - [精度调测](#精度调测md) - - [前提条件](#前提条件-3md) - - [调测过程](#调测过程-4md) - - [总体思路](#总体思路-5md) + - [前提条件](#前提条件-2md) + - [调测过程](#调测过程-3md) + - [总体思路](#总体思路-4md) - [精度调优方法](#精度调优方法md) - [单算子溢出检测](#单算子溢出检测md) - [整网调测](#整网调测md) @@ -49,7 +49,7 @@ - [分布式训练修改](#分布式训练修改md) - [脚本执行](#脚本执行md) - [ShuffleNet模型调优示例](#ShuffleNet模型调优示例md) - - [样例获取](#样例获取-6md) + - [样例获取](#样例获取-5md) - [模型评估](#模型评估md) - [网络迁移](#网络迁移md) - [网络调测](#网络调测md) @@ -68,11 +68,12 @@ - [在模型运行或者算子运行时遇到报错“RuntimeError: ExchangeDevice:”](#在模型运行或者算子运行时遇到报错-RuntimeError-ExchangeDevicemd) - [在模型运行或者算子运行时遇到报错“Error in atexit.\_run\_exitfuncs:”](#在模型运行或者算子运行时遇到报错-Error-in-atexit-_run_exitfuncsmd) - [在模型运行时遇到报错“terminate called after throwing an instance of 'c10::Error' what\(\): HelpACLExecute:”](#在模型运行时遇到报错-terminate-called-after-throwing-an-instance-of-c10-Error-what-HelpACLExecutemd) + - [在模型运行时遇到报错“terminate called after throwing an instance of 'c10::Error' what\(\): 0 INTERNAL ASSERT”](#在模型运行时遇到报错-terminate-called-after-throwing-an-instance-of-c10-Error-what-0-INTERNAL-ASSERTmd) - [在模型运行时遇到报错“ImportError: libhccl.so.”](#在模型运行时遇到报错-ImportError-libhccl-somd) - [在模型运行时遇到报错“RuntimeError: Initialize.”](#在模型运行时遇到报错-RuntimeError-Initializemd) - [在模型运行时遇到报错“TVM/te/cce error.”](#在模型运行时遇到报错-TVM-te-cce-errormd) - [在模型运行时遇到报错“MemCopySync:drvMemcpy failed.”](#在模型运行时遇到报错-MemCopySync-drvMemcpy-failedmd) - - [在模型运行时遇到报错“MemCopySync:drvMemcpy failed.”](#在模型运行时遇到报错-MemCopySync-drvMemcpy-failed-7md) + - [在模型运行时遇到报错“MemCopySync:drvMemcpy failed.”](#在模型运行时遇到报错-MemCopySync-drvMemcpy-failed-6md) - [在模型运行时将多任务下发关闭\(export TASK\_QUEUE\_ENABLE=0\)后仍然遇到报错“HelpACLExecute.”](#在模型运行时将多任务下发关闭export-TASK_QUEUE_ENABLE-0后仍然遇到报错-HelpACLExecutemd) - [在模型运行时遇到报错“55056 GetInputConstDataOut: ErrorNo: -1\(failed\)”](#在模型运行时遇到报错-55056-GetInputConstDataOut-ErrorNo--1failedmd) - [模型调测常见问题](#模型调测常见问题md) @@ -226,8 +227,6 @@ - **[混合精度](#混合精度md)** -- **[性能优化](#性能优化md)** -

工具迁移

@@ -803,7 +802,7 @@ def main(): # 需屏蔽掉初始化方式 dist.init_process_group(backend='hccl',# init_method=args.dist_url, world_size=args.world_size, rank=args.rank) - model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) # model需要下发到npu上 train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) @@ -1104,7 +1103,171 @@ def main(): ``` -

性能优化

+

模型训练

+ +训练脚本迁移完成后,需要参见[配置环境变量](#zh-cn_topic_0000001144082004md)设置环境变量,然后执行**python3** _xxx_进行模型训练。具体样例请参考[脚本执行](#脚本执行md)。 + +>![](public_sys-resources/icon-note.gif) **说明:** +>执行“python3 xxx“命令时,须将python3软链接到与当前pytorch适配版本的python安装路径。 + +

性能调优和分析

+ +- **[前提条件](#前提条件md)** + +- **[调测过程](#调测过程md)** + +- **[亲和库](#亲和库md)** + + +

前提条件

+ +1. 参见[样例说明](#样例说明md)改造开源代码,使模型能够正常运行,包括数据预处理,前向计算,loss计算,混合精度,反向计算,参数更新等。 +2. 模型迁移阶段优先关注模型是否能跑通,现有算子是否能满足,如果遇到不满足的算子需参见《PyTorch算子开发指南》进行算子适配开发。 +3. 优先打通单卡功能,再打通多卡功能。 + +

调测过程

+ +- **[总体思路](#总体思路md)** + +- **[采集训练过程相关数据](#采集训练过程相关数据md)** + +- **[host侧性能优化](#host侧性能优化md)** + +- **[训练过程性能优化](#训练过程性能优化md)** + + +

总体思路

+ +1. 通过训练执行结果,判断吞吐量指标是否达到预期要求。 +2. 当吞吐量指标不达标时,需要找出制约性能瓶颈的原因,主要为以下几个方面: + - 算子瓶颈,在某个算子上执行过慢。 + - copy瓶颈,非连续转连续时进行copy带来的瓶颈。 + - 框架瓶颈,由于算子格式转换带来了额外操作。 + - 编译瓶颈,由于shape或属性来回变化造成反复编译。 + +3. 针对以上制约性能瓶颈的原因进行分析与优化。 + +

采集训练过程相关数据

+ +##### Profiling数据采集 + +当模型训练过程中吞吐量指标不达标时,可以通过采集训练过程中的profiling数据,分析哪个环节、哪个算子导致的性能消耗。Profiling数据采集分为PyTorch层面和CANN层面的采集,PyTorch层面采集的是PyTorch API的数据,CANN层面采集的是TBE算子的数据。 + +请参见以下方式进行profiling数据的获取,并根据实际情况选择需要的数据采集方式。 + +- PyTorch层面Profiling数据采集。 + 1. 获取chrome\_trace文件。 + + 使用profile接口对原始代码的loss计算和优化过程进行改造。 + + ``` + # 使用ascend-pytorch适配的profile接口,即可获得,推荐只运行一个step + with torch.autograd.profiler.profile(use_npu=True) as prof: + out = model(input_tensor) + loss=loss_func(out) + loss.backward() + optimizer.zero_grad() + optimizer.step() + # 导出chrome_trace文件到指定路径 + output_path = '/home/HwHiAiUser/profile_data.json' + prof.export_chrome_trace(output_path) + ``` + + 2. 查看chrome\_trace文件。 + + chrome\_trace文件可以通过以下方式打开查看:在Chrome浏览器中输入“chrome://tracing“地址,然后将落盘文件拖到空白处即可打开文件内容,通过键盘W、A、S、D键,可以对profiler的结果进行缩放和移动。 + + +- CANN层面Profiling数据采集。 + 1. 获取性能数据文件。 + + ``` + profiler_result_path = "/home/profiling_data" # profiling 数据保存的文件夹,需提前手动创建,请根据实际指定。 + with torch.npu.profile(profiler_result_path): + out = model(input_tensor) + loss=loss_func(out,target) + loss.backward() + optimizer.zero_grad() + optimizer.step() + ``` + + >![](public_sys-resources/icon-note.gif) **说明:** + >获取性能数据文件时,model、input\_tensor、target需要下发到npu上。 + + 2. 解析性能数据文件。 + + 请参见《CANN 开发辅助工具指南》中“Profiling工具使用指南(训练)”章节。 + + + +##### 获取算子信息OP\_INFO + +网络模型最终是以OP执行的,通过OPInfo日志,我们可以获取实际执行时的算子及其属性。通过get\_ascend\_op\_info.py脚本获取。 + +1. 编写get\_ascend\_op\_info.py脚本获取算子信息,脚本内容如下。 + + ``` + # -*- coding: utf-8 -*- + """用于导出OPINFO + """ + import os + import sys + import argparse + + def func(host_log_folder): + """ + :param host_log_folder: where host_log_folder addr is. + :return: + """ + host_log_files = os.listdir(host_log_folder) + result = {} + + for host_log in host_log_files: + if not host_log.endswith('.log') or host_log.endswith('.out'): + continue + with open(os.path.join(host_log_folder, host_log), 'r')as f: + host_log_lines = f.readlines() + for line in host_log_lines: + if line.startswith('[INFO] ASCENDCL') and "aclopCompile::aclOp" in line: + op_info = line.split('OpType: ')[1][:-2] + op_type = op_info.split(',')[0] + op_param = op_info[len(op_type) + 2:] + if op_type not in result.keys(): + result[op_type] = [op_param] + else: + result[op_type].append(op_param) + + with open('ascend_op_info_summary.txt', 'w')as f: + for k, v in result.items(): + v_set = set(v) + for info in v_set: + f.write(k + " " + info + "\n") + + if __name__ == "__main__": + parser = argparse.ArgumentParser(description='trans the log') + parser.add_argument('--host_log_folder', default="./", + help="input the dir name, trans the current dir with default") + ags = parser.parse_args() + func(ags.host_log_folder) + ``` + +2. 设置环境变量,将host日志打屏。 + + ``` + export ASCEND_SLOG_PRINT_TO_STDOUT=1 + ``` + +3. 设置日志级别为info,参考《CANN 日志参考》设置日志级别。 +4. 执行训练脚本,进行模型训练,训练完成后获取host侧日志,默认位置为$HOME/ascend/log/plog目录下,$HOME表示Host侧用户根目录。 +5. 解析host侧日志会在当前目录下得到OPInfo信息ascend\_op\_info\_summary.txt。 + + ``` + python3 get_ascend_op_info.py --host_log_folder $HOME/ascend/log/plog + ``` + +6. 分析TaskInfo中额外的task,尤其关注transdata。 + +

host侧性能优化

- **[概述](#概述-0md)** @@ -1117,16 +1280,17 @@ def main(): - **[(可选)安装指定版本OpenCV库](#可选安装指定版本OpenCV库md)** -

概述

+
概述
-在进行PyTorch模型迁移训练时,部分网络模型会出现1秒内识别的图像数(fps)较低、性能不达标的情况。此时需要针对服务器进行以下优化。 +在进行PyTorch模型迁移训练时,部分网络模型会出现FPS较低、性能不达标的情况。可以考虑对服务器进行以下优化尝试提高训练性能。 - 修改CPU性能模式。 - 安装高性能pillow库。 +- (可选)安装指定版本OpenCV库。 -

修改CPU性能模式(X86服务器)

+
修改CPU性能模式(X86服务器)
-##### 设置电源策略为高性能模式 +###### 设置电源策略为高性能模式 提升网络性能需要在X86服务器BIOS设置中将电源策略设为高性能模式,具体操作如下。 @@ -1153,7 +1317,7 @@ def main(): 6. 按下“F10”保存配置并重启服务器。 -##### 将CPU设置为performance模式 +###### 将CPU设置为performance模式 请使用root用户执行如下操作。 @@ -1231,9 +1395,9 @@ def main(): 4. 再次执行[步骤1](#li158435131344)查看当前CPU模式是否已设置为performance模式。 -

修改CPU性能模式(ARM服务器)

+
修改CPU性能模式(ARM服务器)
-##### 设置电源策略为高性能模式 +###### 设置电源策略为高性能模式 在某些对Host侧CPU要求较高的模型中,例如目标检测类模型,需要进行较为复杂的图像预处理,开启电源高性能模式能一定程度上提高性能和稳定性。ARM服务器提升网络性能需要在BIOS设置中将电源策略设为高性能模式,具体操作如下。 @@ -1260,7 +1424,7 @@ def main(): 6. 按下“F10”保存配置并重启服务器。 -

安装高性能pillow库(X86服务器)

+
安装高性能pillow库(X86服务器)
1. 安装高性能pillow库相关依赖,命令如下。 @@ -1311,173 +1475,14 @@ def main(): ``` -

(可选)安装指定版本OpenCV库

+
(可选)安装指定版本OpenCV库
如模型依赖OpenCV,基于训练性能考虑,建议安装OpenCV-3.4.10版本。 1. 获取源码:[获取地址](https://opencv.org/releases/)。 2. 安装指导:[获取地址](https://docs.opencv.org/3.4.10/d7/d9f/tutorial_linux_install.html)。 -

模型训练

- -训练脚本迁移完成后,需要参见[配置环境变量](#zh-cn_topic_0000001144082004)设置环境变量,然后执行**python3** _xxx_进行模型训练。具体样例请参考[脚本执行](#脚本执行md)。 - ->![](public_sys-resources/icon-note.gif) **说明:** ->执行“python3 xxx“命令时,须将python3软链接到与当前pytorch适配版本的python安装路径。 - -

性能调优和分析

- -- **[前提条件](#前提条件md)** - -- **[调测过程](#调测过程md)** - -- **[亲和库](#亲和库md)** - - -

前提条件

- -1. 参见[样例说明](#样例说明md)改造开源代码,使模型能够正常运行,包括数据预处理,前向计算,loss计算,混合精度,反向计算,参数更新等。 -2. 模型迁移阶段优先关注模型是否能跑通,现有算子是否能满足,如果遇到不满足的算子需参见《PyTorch算子开发指南》进行算子适配开发。 -3. 优先打通单卡功能,再打通多卡功能。 - -

调测过程

- -- **[总体思路](#总体思路md)** - -- **[采集训练过程相关数据](#采集训练过程相关数据md)** - -- **[性能优化](#性能优化-1md)** - - -

总体思路

- -1. 通过训练执行结果,判断吞吐量指标是否达到预期要求。 -2. 当吞吐量指标不达标时,需要找出制约性能瓶颈的原因,主要为以下几个方面: - - 算子瓶颈,在某个算子上执行过慢。 - - copy瓶颈,非连续转连续时进行copy带来的瓶颈。 - - 框架瓶颈,由于算子格式转换带来了额外操作。 - - 编译瓶颈,由于shape或属性来回变化造成反复编译。 - -3. 针对以上制约性能瓶颈的原因进行分析与优化。 - -

采集训练过程相关数据

- -##### Profiling数据采集 - -当模型训练过程中吞吐量指标不达标时,可以通过采集训练过程中的profiling数据,分析哪个环节、哪个算子导致的性能消耗。Profiling数据采集分为PyTorch层面和CANN层面的采集,PyTorch层面采集的是PyTorch API的数据,CANN层面采集的是TBE算子的数据。 - -请参见以下方式进行profiling数据的获取,并根据实际情况选择需要的数据采集方式。 - -- PyTorch层面Profiling数据采集。 - 1. 获取chrome\_trace文件。 - - 使用profile接口对原始代码的loss计算和优化过程进行改造。 - - ``` - # 使用ascend-pytorch适配的profile接口,即可获得,推荐只运行一个step - with torch.autograd.profiler.profile(use_npu=True) as prof: - out = model(input_tensor) - loss=loss_func(out) - loss.backward() - optimizer.zero_grad() - optimizer.step() - # 导出chrome_trace文件到指定路径 - output_path = '/home/HwHiAiUser/profile_data.json' - prof.export_chrome_trace(output_path) - ``` - - 2. 查看chrome\_trace文件。 - - chrome\_trace文件可以通过以下方式打开查看:在Chrome浏览器中输入“chrome://tracing“地址,然后将落盘文件拖到空白处即可打开文件内容,通过键盘W、A、S、D键,可以对profiler的结果进行缩放和移动。 - - -- CANN层面Profiling数据采集。 - 1. 获取性能数据文件。 - - ``` - profiler_result_path = "/home/profiling_data" # profiling 数据保存的文件夹,需提前手动创建,请根据实际指定。 - with torch.npu.profile(profiler_result_path) as prof: - out = model(input_tensor) - loss=loss_func(out) - loss.backward() - optimizer.zero_grad() - optimizer.step() - ``` - - 2. 解析性能数据文件。 - - 请参见《CANN 开发辅助工具指南》中“Profiling工具使用指南(训练)”章节。 - - - -##### 获取算子信息OP\_INFO - -网络模型最终是以OP执行的,通过OPInfo日志,我们可以获取实际执行时的算子及其属性。通过get\_ascend\_op\_info.py脚本获取。 - -1. 编写get\_ascend\_op\_info.py脚本获取算子信息,脚本内容如下。 - - ``` - # -*- coding: utf-8 -*- - """用于导出OPINFO - """ - import os - import sys - import argparse - - def func(host_log_folder): - """ - :param host_log_folder: where host_log_folder addr is. - :return: - """ - host_log_files = os.listdir(host_log_folder) - result = {} - - for host_log in host_log_files: - if not host_log.endswith('.log') or host_log.endswith('.out'): - continue - with open(os.path.join(host_log_folder, host_log), 'r')as f: - host_log_lines = f.readlines() - for line in host_log_lines: - if line.startswith('[INFO] ASCENDCL') and "aclopCompile::aclOp" in line: - op_info = line.split('OpType: ')[1][:-2] - op_type = op_info.split(',')[0] - op_param = op_info[len(op_type) + 2:] - if op_type not in result.keys(): - result[op_type] = [op_param] - else: - result[op_type].append(op_param) - - with open('ascend_op_info_summary.txt', 'w')as f: - for k, v in result.items(): - v_set = set(v) - for info in v_set: - f.write(k + " " + info + "\n") - - if __name__ == "__main__": - parser = argparse.ArgumentParser(description='trans the log') - parser.add_argument('--host_log_folder', default="./", - help="input the dir name, trans the current dir with default") - ags = parser.parse_args() - func(ags.host_log_folder) - ``` - -2. 设置环境变量,将host日志打屏。 - - ``` - export ASCEND_SLOG_PRINT_TO_STDOUT=1 - ``` - -3. 设置日志级别为info,参考《CANN 日志参考》设置日志级别。 -4. 执行训练脚本,进行模型训练,训练完成后获取host侧日志,默认位置为$HOME/ascend/log/plog目录下,$HOME表示Host侧用户根目录。 -5. 解析host侧日志会在当前目录下得到OPInfo信息ascend\_op\_info\_summary.txt。 - - ``` - python3 get_ascend_op_info.py --host_log_folder $HOME/ascend/log/plog - ``` - -6. 分析TaskInfo中额外的task,尤其关注transdata。 - -

性能优化

+

训练过程性能优化

##### 算子瓶颈优化 @@ -1526,14 +1531,14 @@ def main(): - **[来源介绍](#来源介绍md)** -- **[功能介绍](#功能介绍-2md)** +- **[功能介绍](#功能介绍-1md)**

来源介绍

针对公版模型中常见的网络结构和函数,我们针对性地对其进行了优化,使得运算性能大幅度提升,同时,将其集成到Pytorch框架中,便于模型性能调优中使用。 -

功能介绍

+

功能介绍

函数名

@@ -1580,23 +1585,23 @@ def main():

精度调测

-- **[前提条件](#前提条件-3md)** +- **[前提条件](#前提条件-2md)** -- **[调测过程](#调测过程-4md)** +- **[调测过程](#调测过程-3md)** -

前提条件

+

前提条件

优先在同等语义和超参下,跑一定的epoch(推荐完整epoch数的20%),使精度,loss等对齐GPU相应水平,完成后再对齐最终精度。 -

调测过程

+

调测过程

-- **[总体思路](#总体思路-5md)** +- **[总体思路](#总体思路-4md)** - **[精度调优方法](#精度调优方法md)** -

总体思路

+

总体思路

精度问题排查需要找出是哪一步出现的问题,主要以下几个方面: @@ -1641,12 +1646,12 @@ def main():
单算子溢出检测
-用户通过采集训练过程中各算子的运算结果(即Dump数据),然后查看算子是否产生溢出,从而帮助开发人员快速定位并解决算子精度问题。 +用户通过算子溢出检测功能检测算子是否有溢出,然后采集溢出算子的数据,从而帮助开发人员快速定位并解决算子精度问题。 ###### 约束说明 - 需要安装hdf5工具以支持算子dump功能,安装详情请参见[编译安装hdf5](#编译安装hdf5md); -- 本功能只提供IR级别的算子溢出检测,且只支持AICORE的溢出检测,不支持Atomic溢出检测; +- 本功能只提供IR级别的算子溢出检测,且只支持AICORE,不支持Atomic; - 须在PyTorch源代码“build.sh“文件中添加“USE\_DUMP=1”字段。 ``` @@ -1658,13 +1663,13 @@ def main(): - 使用单算子溢出检测功能时,请不要同时开启apex的动态loss scale模式和使用tensor融合功能。 -###### 采集算子Dump数据 +###### 采集溢出算子数据 ``` # check_overflow为溢出检测控制开关 # dump_path为dump文件保存路径 with torch.utils.dumper(check_overflow=check_overflow, dump_path=dump_path, load_file_path='') as dump: - # 需要算子采集的代码片段 + # 需要检测算子溢出的代码片段 ``` 模型运行过程中,如果有算子溢出,会打印出相应IR的名字。 @@ -2491,7 +2496,7 @@ if __name__ == "__main__": ##### 配置环境变量 -请参考[配置环境变量](#zh-cn_topic_0000001144082004)配置环境变量。 +请参考[配置环境变量](#zh-cn_topic_0000001144082004md)配置环境变量。 ##### 执行命令 @@ -2536,7 +2541,7 @@ python3 main.py /home/data/resnet50/imagenet --addr='1.1.1.1' \ #

ShuffleNet模型调优示例

-- **[样例获取](#样例获取-6md)** +- **[样例获取](#样例获取-5md)** - **[模型评估](#模型评估md)** @@ -2545,7 +2550,7 @@ python3 main.py /home/data/resnet50/imagenet --addr='1.1.1.1' \ # - **[网络调测](#网络调测md)** -

样例获取

+

样例获取

##### 样例获取 @@ -2647,10 +2652,10 @@ python3 main.py /home/data/resnet50/imagenet --addr='1.1.1.1' \ # 详细说明如下: -- 由于原生实现的torch.transpose\(x, 1, 2\).contiguous\(\)是使用了View类框架算子transpose,造成了非连续场景,如[copy瓶颈优化](#性能优化-1md)所描述Copy瓶颈,使用channel\_shuffle\_index\_select,在语义相同的情况下使用计算类算子替换框架类算子,从而减少耗时。 -- 由于shufflenetv2中含有大量的chunk操作,而chunk操作在Pytorch中为框架类算子,其结果会将一个tensor分割为几个等长的非连续的tensor,而非连续转连续这个操作目前耗时较长,故使用计算类算子消除非连续,如[copy瓶颈优化](#性能优化-1md)所描述Copy瓶颈。 +- 由于原生实现的torch.transpose\(x, 1, 2\).contiguous\(\)是使用了View类框架算子transpose,造成了非连续场景,如[copy瓶颈优化](#训练过程性能优化md)所描述Copy瓶颈,使用channel\_shuffle\_index\_select,在语义相同的情况下使用计算类算子替换框架类算子,从而减少耗时。 +- 由于shufflenetv2中含有大量的chunk操作,而chunk操作在Pytorch中为框架类算子,其结果会将一个tensor分割为几个等长的非连续的tensor,而非连续转连续这个操作目前耗时较长,故使用计算类算子消除非连续,如[copy瓶颈优化](#训练过程性能优化md)所描述Copy瓶颈。 - 适配层在适配算子时默认指定输出格式为输入格式,但是concat不支持C轴非16整数倍的5HD的格式,会转为4D进行处理,又由于concat后面接的是gatherv2算子,也是仅支持4D格式的算子,所以导致数据格式转换过程为5HD-\>4D-\>concat-\>5HD-\>4D-\>gatherv2-\>5HD,解决方法是修改concat输出格式,当非16整数倍时指定输出格式为4D,优化后数据格式转换过程为5HD-\>4D-\>concat-\>gatherv2-\>5HD,当前针对ShuffleNet的做法具体可参考pytorch/aten/src/ATen/native/npu/CatKernelNpu.cpp 第121行。 -- 设置weight初始化格式避免计算过程中反复的transdata,如[copy瓶颈优化](#性能优化-1md)所描述框架瓶颈。 +- 设置weight初始化格式避免计算过程中反复的transdata,如[copy瓶颈优化](#训练过程性能优化md)所描述框架瓶颈。 - 修复了DWCONV weight输出格式指定,避免一些不必要5HD-\>4D。 ##### 整网排查 @@ -3108,6 +3113,7 @@ for group in [2, 4, 8]: def cpu_op_exec(self, input1): # 调用算子 output = torch.max(input1) + output = output.to('cpu') output = output.numpy() return output @@ -3303,15 +3309,38 @@ torch.npu.finalize_dump() 2. 开启重定向日志到stdout,用于导出host日志到屏幕。 - **export ASCEND\_SLOG\_PRINT\_TO\_STDOUT=1** + **export ASCEND\_SLOG\_PRINT\_TO\_STDOUT=0** 3. 设置日志级别,日志级别设置,信息从多到少分别是 debug --\> info --\> warning --\> error --\> null,一般设置为error,调试时使用info。请参考《CANN 日志参考》设置日志级别。 + + **export ASCEND\_GLOBAL\_LOG\_LEVEL=3** + 4. dump图,主要用于查看图结构。 **export DUMP\_GE\_GRAPH=2** **export DUMP\_GRAPH\_LEVEL=3** +5. 设置Event日志开启标志。 + + **export ASCEND\_GLOBAL\_EVENT\_ENABLE=0** + +6. 设置是否开启PTCopy。 + + **export PTCOPY\_ENABLE=1** + +7. 设置是否开启combined标志。 + + **export COMBINED\_ENABLE=1** + +8. 设置特殊场景是否需要重新编译,不需要修改。 + + **export DYNAMIC\_OP="ADD\#MUL"** + +9. HCCL白名单开关。 + + **export HCCL\_WHITELIST\_DISABLE=1** +

dump op方法

@@ -3341,15 +3370,17 @@ torch.npu.set_option(option) # 以dict方式进行设置 ACL_OP_SELECT_IMPL_MODE, //选择算子是高精度实现还是高性能实现 ACL_OPTYPELIST_FOR_IMPLMODE, //列举算子类型的列表,该列表中的算子使用ACL_OP_SELECT_IMPL_MODE指定的模式 ACL_OP_DEBUG_LEVEL, //TBE算子编译debug功能开关 -ACL_DEBUG_DIR, //保存模型转换、网络迁移过程中算子编译生成的调试相关过程文件的路径,包括算子.o/.json/.cce等文件。 +ACL_DEBUG_DIR, //保存模型转换、网络迁移过程中算子编译生成的调试相关过程文件的路径,包括算子.o/.json/.cce等文件。路径必须已经存在。 ACL_OP_COMPILER_CACHE_MODE, //算子编译磁盘缓存模式 -ACL_OP_COMPILER_CACHE_DIR, //算子编译磁盘缓存的目录 +ACL_OP_COMPILER_CACHE_DIR, //算子编译磁盘缓存的路径,路径必须已经存在。 key对应的val值解释和可设置值如下: -ACL_OPTYPELIST_FOR_IMPLMODE: 用于选择算子是高精度实现还是高性能实现。如果不配置该编译选项,默认采用high_precision。 +ACL_OP_SELECT_IMPL_MODE: 用于选择算子是高精度实现还是高性能实现。如果不配置该编译选项,默认采用high_precision。 high_precision:表示网络模型中所有算子选择高精度实现。 high_performance:表示网络模型中所有算子选择高性能实现。 +ACL_OPTYPELIST_FOR_IMPLMODE:设置optype列表中算子的实现方式,该参数当前仅支持设置某个具体算子的实现方式,不支持设置多个算子。当前仅支持配置的算子为Pooling、SoftmaxV2、LRN、ROIAlign。算子类型的列表中的算子使用ACL_OP_SELECT_IMPL_MODE指定的模式。 + ACL_OP_DEBUG_LEVEL:用于配置TBE算子编译debug功能开关。 0:不开启算子debug功能。在执行atc命令当前路径算子编译生成的kernel_meta文件夹中不保留.o(算子二进制文件)和.json文件(算子描述文件)。 1:开启算子debug功能,在执行atc命令当前路径算子编译生成的kernel_meta文件夹中生成TBE指令映射文件(算子cce文件*.cce和python-cce映射文件*_loc.json),用于后续工具进行AICore Error问题定位。 @@ -3533,7 +3564,9 @@ pip3.7 install pillow==5.3.0安装失败。 - **[在模型运行或者算子运行时遇到报错“Error in atexit.\_run\_exitfuncs:”](#在模型运行或者算子运行时遇到报错-Error-in-atexit-_run_exitfuncsmd)** -- **[在模型运行时遇到报错“terminate called after throwing an instance of 'c10::Error' what\(\): HelpACLExecute:”](#在模型运行时遇到报错-terminate-called-after-throwing-an-instance-of-c10-Error-what()-HelpACLExecutemd)** +- **[在模型运行时遇到报错“terminate called after throwing an instance of 'c10::Error' what\(\): HelpACLExecute:”](#在模型运行时遇到报错-terminate-called-after-throwing-an-instance-of-c10-Error-what-HelpACLExecutemd)** + +- **[在模型运行时遇到报错“terminate called after throwing an instance of 'c10::Error' what\(\): 0 INTERNAL ASSERT”](#在模型运行时遇到报错-terminate-called-after-throwing-an-instance-of-c10-Error-what-0-INTERNAL-ASSERTmd)** - **[在模型运行时遇到报错“ImportError: libhccl.so.”](#在模型运行时遇到报错-ImportError-libhccl-somd)** @@ -3543,11 +3576,11 @@ pip3.7 install pillow==5.3.0安装失败。 - **[在模型运行时遇到报错“MemCopySync:drvMemcpy failed.”](#在模型运行时遇到报错-MemCopySync-drvMemcpy-failedmd)** -- **[在模型运行时遇到报错“MemCopySync:drvMemcpy failed.”](#在模型运行时遇到报错-MemCopySync-drvMemcpy-failed-7md)** +- **[在模型运行时遇到报错“MemCopySync:drvMemcpy failed.”](#在模型运行时遇到报错-MemCopySync-drvMemcpy-failed-6md)** -- **[在模型运行时将多任务下发关闭\(export TASK\_QUEUE\_ENABLE=0\)后仍然遇到报错“HelpACLExecute.”](#在模型运行时将多任务下发关闭(export-TASK_QUEUE_ENABLE-0)后仍然遇到报错-HelpACLExecutemd)** +- **[在模型运行时将多任务下发关闭\(export TASK\_QUEUE\_ENABLE=0\)后仍然遇到报错“HelpACLExecute.”](#在模型运行时将多任务下发关闭export-TASK_QUEUE_ENABLE-0后仍然遇到报错-HelpACLExecutemd)** -- **[在模型运行时遇到报错“55056 GetInputConstDataOut: ErrorNo: -1\(failed\)”](#在模型运行时遇到报错-55056-GetInputConstDataOut-ErrorNo--1(failed)md)** +- **[在模型运行时遇到报错“55056 GetInputConstDataOut: ErrorNo: -1\(failed\)”](#在模型运行时遇到报错-55056-GetInputConstDataOut-ErrorNo--1failedmd)**

在模型运行或者算子运行时遇到报错“RuntimeError: ExchangeDevice:”

@@ -3595,6 +3628,50 @@ pip3.7 install pillow==5.3.0安装失败。 - 查看具体的host报错日志信息。日志默认路径为/var/log/npu/slog/host-0/,根据时间标识查找以host-0为前缀的日志文件,打开日志文件,搜索“ERROR”,查询具体的报错信息。 - 关闭多线程下发\(export TASK\_QUEUE\_ENABLE=0\),再次运行代码,一般可根据终端报错信息定位错误原因。 +

在模型运行时遇到报错“terminate called after throwing an instance of 'c10::Error' what\(\): 0 INTERNAL ASSERT”

+ +##### 现象描述 + +``` +import torch + +npu = "npu" + +def test_cpu(): + input = torch.randn(2000, 1000).detach().requires_grad_() + output = torch.sum(input) + output.backward(torch.ones_like(output)) + +def test_npu(): + input = torch.randn(2000, 1000).detach().requires_grad_().npu() + output = torch.sum(input) + output.backward(torch.ones_like(output)) + +if __name__ == "__main__": + test_cpu() + torch.npu.set_device(f"{npu}:1") + test_npu() +``` + +执行代码后出现如下报错。 + +![](figures/zh-cn_image_0000001208897433.png) + +##### 可能原因 + +在运行backward运算后,通过set\_decice\(\)方法手动设置device设备,导致报错。在运行backward运算时,若没有设置device,程序会自动默认初始化device为0,相当于执行了set\_device\("npu:0"\)。由于目前不支持切换device进行计算,若再通过set\_decice\(\)方法手动设置device设备,则可能出现该错误。 + +##### 处理方法 + +在运行backward运算前,通过set\_decice\(\)方法手动设置device。修改如下。 + +``` +if __name__ == "__main__": + torch.npu.set_device(f"{npu}:1") + test_cpu() + test_npu() +``` +

在模型运行时遇到报错“ImportError: libhccl.so.”

##### 现象描述 @@ -3732,7 +3809,7 @@ shell报错是在同步操作中和AI CPU错误,而日志报错信息却是在 4. 打印stack所有参数的shape、dtype、npu\_format,通过构造单算子用例复现问题。定位到问题原因为减法计算输入参数数据类型不同,导致a-b和b-a结果的数据类型不一致,最终在stack算子中报错。 5. 将stack入参数据类型转换为一致即可临时规避问题。 -

在模型运行时遇到报错“MemCopySync:drvMemcpy failed.”

+

在模型运行时遇到报错“MemCopySync:drvMemcpy failed.”

##### 现象描述 diff --git "a/docs/zh/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227/figures/zh-cn_image_0000001208897433.png" "b/docs/zh/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227/figures/zh-cn_image_0000001208897433.png" new file mode 100644 index 0000000000000000000000000000000000000000..1062f4a4217f6570f339fe3e1f75d2bf28b834d7 Binary files /dev/null and "b/docs/zh/PyTorch\347\275\221\347\273\234\346\250\241\345\236\213\347\247\273\346\244\215&\350\256\255\347\273\203\346\214\207\345\215\227/figures/zh-cn_image_0000001208897433.png" differ diff --git "a/docs/zh/PyTorch\351\200\202\351\205\215\347\256\227\345\255\220\346\270\205\345\215\225/PyTorch\351\200\202\351\205\215\347\256\227\345\255\220\346\270\205\345\215\225.md" "b/docs/zh/PyTorch\351\200\202\351\205\215\347\256\227\345\255\220\346\270\205\345\215\225/PyTorch\351\200\202\351\205\215\347\256\227\345\255\220\346\270\205\345\215\225.md" index c253042254a7ad957ea721d152cd4c77f4b43aa1..0ebe58e9f8f8b96d10d4a8c69534cd056ccd5df3 100644 --- "a/docs/zh/PyTorch\351\200\202\351\205\215\347\256\227\345\255\220\346\270\205\345\215\225/PyTorch\351\200\202\351\205\215\347\256\227\345\255\220\346\270\205\345\215\225.md" +++ "b/docs/zh/PyTorch\351\200\202\351\205\215\347\256\227\345\255\220\346\270\205\345\215\225/PyTorch\351\200\202\351\205\215\347\256\227\345\255\220\346\270\205\345\215\225.md" @@ -1,7 +1,7 @@ # PyTorch适配算子清单 -- [PyTorch原生算子与昇腾算子对应表](#PyTorch原生算子与昇腾算子对应表.md) -- [PyTorch昇腾自定义算子](#PyTorch昇腾自定义算子.md) -

PyTorch原生算子与昇腾算子对应表

+- [PyTorch原生算子与昇腾算子对应表](#PyTorch原生算子与昇腾算子对应表md) +- [PyTorch昇腾自定义算子](#PyTorch昇腾自定义算子md) +

PyTorch原生算子与昇腾算子对应表

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

序号

@@ -14,5524 +14,5636 @@

1

dropout

+

dropout

dropout_npu

+

dropout_npu

2

dropout_

+

dropout_

dropout_npu_

+

dropout_npu_

3

abs

+

abs

abs_npu

+

abs_npu

4

abs_

+

abs_

abs_npu_

+

abs_npu_

5

abs.out

+

abs.out

abs_out_npu

+

abs_out_npu

6

acos

+

acos

acos_npu

+

acos_npu

7

acos_

+

acos_

acos_npu_

+

acos_npu_

8

acos.out

+

acos.out

acos_out_npu

+

acos_out_npu

9

adaptive_avg_pool1d

+

adaptive_avg_pool1d

adaptive_avg_pool1d_npu

+

adaptive_avg_pool1d_npu

10

add.Tensor

+

add.Tensor

add_npu

+

add_npu

11

add_.Tensor

+

add_.Tensor

add_npu_

+

add_npu_

12

add.out

+

add.out

add_out_npu

+

add_out_npu

13

add.Scalar

+

add.Scalar

add_npu

+

add_npu

14

add_.Scalar

+

add_.Scalar

add_npu_

+

add_npu_

15

addmv

+

addmv

addmv_npu

+

addmv_npu

16

addmv_

+

addmv_

addmv_npu_

+

addmv_npu_

17

addmv.out

+

addmv.out

addmv_out_npu

+

addmv_out_npu

18

addr

+

addr

addr_npu

+

addr_npu

19

addr_

+

addr_

addr_npu_

+

addr_npu_

20

addr.out

+

addr.out

addr_out_npu

+

addr_out_npu

21

affine_grid_generator

+

affine_grid_generator

affine_grid_generator_npu

+

affine_grid_generator_npu

22

affine_grid_generator_backward

+

affine_grid_generator_backward

affine_grid_generator_backward_npu

+

affine_grid_generator_backward_npu

23

all.dim

+

all.dim

all_npu

+

all_npu

24

all.out

+

all.out

all_out_npu

+

all_out_npu

25

any.dim

+

any.dim

any_npu

+

any_npu

26

any.out

+

any.out

any_out_npu

+

any_out_npu

27

arange

+

arange

arange_npu

+

arange_npu

28

arange.start

+

arange.start

arange_npu

+

arange_npu

29

arange.start_step

+

arange.start_step

arange_npu

+

arange_npu

30

arange.out

+

arange.out

arange_out_npu

+

arange_out_npu

31

arange.start_out

+

arange.start_out

arange_out_npu

+

arange_out_npu

32

_dim_arange

+

_dim_arange

_dim_arange_npu

+

_dim_arange_npu

33

argmax

+

argmax

argmax_npu

+

argmax_npu

34

argmin

+

argmin

argmin_npu

+

argmin_npu

35

as_strided

+

as_strided

as_strided_npu

+

as_strided_npu

36

as_strided_

+

as_strided_

as_strided_npu_

+

as_strided_npu_

37

asin

+

asin

asin_npu

+

asin_npu

38

asin_

+

asin_

asin_npu_

+

asin_npu_

39

asin.out

+

asin.out

asin_out_npu

+

asin_out_npu

40

atan

+

atan

atan_npu

+

atan_npu

41

atan_

+

atan_

atan_npu_

+

atan_npu_

42

atan.out

+

atan.out

atan_out_npu

+

atan_out_npu

43

baddbmm

+

baddbmm

baddbmm_npu

+

baddbmm_npu

44

baddbmm_

+

baddbmm_

baddbmm_npu_

+

baddbmm_npu_

45

baddbmm.out

+

baddbmm.out

baddbmm_out_npu

+

baddbmm_out_npu

46

bartlett_window

+

bartlett_window

bartlett_window_npu

+

bartlett_window_npu

47

bartlett_window.periodic

+

bartlett_window.periodic

bartlett_window_npu

+

bartlett_window_npu

48

batch_norm

+

batch_norm

batch_norm_npu_

+

batch_norm_npu_

49

_batch_norm_impl_index

+

_batch_norm_impl_index

_batch_norm_impl_index_npu

+

_batch_norm_impl_index_npu

50

_batch_norm_impl_index_backward

+

_batch_norm_impl_index_backward

_batch_norm_impl_index_backward_npu

+

_batch_norm_impl_index_backward_npu

51

bernoulli

+

bernoulli

bernoulli_npu

+

bernoulli_npu

52

bernoulli_.Tensor

+

bernoulli_.Tensor

bernoulli_npu_

+

bernoulli_npu_

53

bernoulli_.float

+

bernoulli_.float

bernoulli_npu_

+

bernoulli_npu_

54

binary_cross_entropy

+

binary_cross_entropy

binary_cross_entropy_npu

+

binary_cross_entropy_npu

55

binary_cross_entropy.out

+

binary_cross_entropy.out

binary_cross_entropy_out_npu

+

binary_cross_entropy_out_npu

56

binary_cross_entropy_backward

+

binary_cross_entropy_backward

binary_cross_entropy_backward_npu

+

binary_cross_entropy_backward_npu

57

binary_cross_entropy_backward.grad_input

+

binary_cross_entropy_backward.grad_input

binary_cross_entropy_backward_out_npu

+

binary_cross_entropy_backward_out_npu

58

binary_cross_entropy_with_logits

+

binary_cross_entropy_with_logits

binary_cross_entropy_with_logits_npu

+

binary_cross_entropy_with_logits_npu

59

binary_cross_entropy_with_logits_backward

+

binary_cross_entropy_with_logits_backward

binary_cross_entropy_with_logits_backward_npu

+

binary_cross_entropy_with_logits_backward_npu

60

bitwise_not

+

bitwise_not

bitwise_not_npu

+

bitwise_not_npu

61

bitwise_not_

+

bitwise_not_

bitwise_not_npu_

+

bitwise_not_npu_

62

bitwise_not.out

+

bitwise_not.out

bitwise_not_out_npu

+

bitwise_not_out_npu

63

logical_not

+

logical_not

logical_not_npu

+

logical_not_npu

64

logical_not_

+

logical_not_

logical_not_npu_

+

logical_not_npu_

65

logical_not.out

+

logical_not.out

logical_not_out_npu

+

logical_not_out_npu

66

logical_and

+

logical_and

logical_and_npu

+

logical_and_npu

67

logical_and_

+

logical_and_

logical_and_npu_

+

logical_and_npu_

68

logical_and.out

+

logical_and.out

logical_and_out_npu

+

logical_and_out_npu

69

logical_or

+

logical_or

logical_or_npu

+

logical_or_npu

70

logical_or_

+

logical_or_

logical_or_npu_

+

logical_or_npu_

71

logical_or.out

+

logical_or.out

logical_or_out_npu

+

logical_or_out_npu

72

blackman_window

+

blackman_window

blackman_window_npu

+

blackman_window_npu

73

blackman_window.periodic

+

blackman_window.periodic

blackman_window_npu

+

blackman_window_npu

74

bmm

+

bmm

bmm_npu

+

bmm_npu

75

bmm.out

+

bmm.out

bmm_out_npu

+

bmm_out_npu

76

cat

+

cat

cat_npu

+

cat_npu

77

cat.out

+

cat.out

cat_out_npu

+

cat_out_npu

78

cat.names

+

cat.names

cat_npu

+

cat_npu

79

cat.names_out

+

cat.names_out

cat_out_npu

+

cat_out_npu

80

ceil

+

ceil

ceil_npu

+

ceil_npu

81

ceil_

+

ceil_

ceil_npu_

+

ceil_npu_

82

ceil.out

+

ceil.out

ceil_out_npu

+

ceil_out_npu

83

clamp

+

clamp

clamp_npu

+

clamp_npu

84

clamp_

+

clamp_

clamp_npu_

+

clamp_npu_

85

clamp.out

+

clamp.out

clamp_out_npu

+

clamp_out_npu

86

clamp_max

+

clamp_max

clamp_max_npu

+

clamp_max_npu

87

clamp_max_

+

clamp_max_

clamp_max_npu_

+

clamp_max_npu_

88

clamp_max.out

+

clamp_max.out

clamp_max_out_npu

+

clamp_max_out_npu

89

clamp_min

+

clamp_min

clamp_min_npu

+

clamp_min_npu

90

clamp_min_

+

clamp_min_

clamp_min_npu_

+

clamp_min_npu_

91

clamp_min.out

+

clamp_min.out

clamp_min_out_npu

+

clamp_min_out_npu

92

constant_pad_nd

+

constant_pad_nd

constant_pad_nd_npu

+

constant_pad_nd_npu

93

contiguous

+

contiguous

contiguous_npu

+

contiguous_npu

94

convolution

+

convolution

convolution_npu

+

convolution_npu

95

_convolution

+

_convolution

_convolution_npu

+

_convolution_npu

96

_convolution_nogroup

+

_convolution_nogroup

_convolution_nogroup_npu

+

_convolution_nogroup_npu

97

conv2d

+

conv2d

conv2d_npu_

+

conv2d_npu_

98

conv3d

+

conv3d

_conv3d_npu

+

_conv3d_npu

99

conv_tbc

+

conv_tbc

conv_tbc_npu

+

conv_tbc_npu

100

conv_tbc_backward

+

conv_tbc_backward

conv_tbc_backward_npu

+

conv_tbc_backward_npu

101

conv_transpose2d.input

+

conv_transpose2d.input

conv_transpose2d_npu_

+

conv_transpose2d_npu_

102

conv_transpose3d.input

+

conv_transpose3d.input

conv_transpose3d_npu_

+

conv_transpose3d_npu_

103

copy_

+

copy_

copy_npu_

+

copy_npu_

104

cos

+

cos

cos_npu

+

cos_npu

105

cos_

+

cos_

cos_npu_

+

cos_npu_

106

cos.out

+

cos.out

cos_out_npu

+

cos_out_npu

107

cosh

+

cosh

cosh_npu

+

cosh_npu

108

cosh_

+

cosh_

cosh_npu_

+

cosh_npu_

109

cosh.out

+

cosh.out

cosh_out_npu

+

cosh_out_npu

110

_cummax_helper

+

_cummax_helper

cummax_helper_npu

+

cummax_helper_npu

111

_cummin_helper

+

_cummin_helper

cummin_helper_npu

+

cummin_helper_npu

112

cumprod

+

cumprod

cumprod_npu

+

cumprod_npu

113

cumprod.out

+

cumprod.out

cumprod_out_npu

+

cumprod_out_npu

114

cumprod.dimname

+

cumprod.dimname

cumprod_npu

+

cumprod_npu

115

cumprod.dimname_out

+

cumprod.dimname_out

cumprod_out_npu

+

cumprod_out_npu

116

ctc_loss.IntList

+

ctc_loss.IntList

ctc_loss_npu

+

ctc_loss_npu

117

ctc_loss.Tensor

+

ctc_loss.Tensor

ctc_loss_npu

+

ctc_loss_npu

118

_ctc_loss

+

_ctc_loss

ctc_loss_npu

+

ctc_loss_npu

119

_ctc_loss_backward

+

_ctc_loss_backward

ctc_loss_backward_npu

+

ctc_loss_backward_npu

120

fill_diagonal_

+

fill_diagonal_

fill_diagonal_npu_

+

fill_diagonal_npu_

121

div.Tensor

+

div.Tensor

div_npu

+

div_npu

122

div_.Tensor

+

div_.Tensor

div_npu_

+

div_npu_

123

div.out

+

div.out

div_out_npu

+

div_out_npu

124

div.Scalar

+

div.Scalar

div_npu

+

div_npu

125

div_.Scalar

+

div_.Scalar

div_npu_

+

div_npu_

126

dot

+

dot

dot_npu

+

dot_npu

127

dot.out

+

dot.out

dot_out_npu

+

dot_out_npu

128

embedding

+

embedding

embedding_npu

+

embedding_npu

129

embedding_backward

+

embedding_backward

embedding_backward_npu

+

embedding_backward_npu

130

embedding_dense_backward

+

embedding_dense_backward

embedding_dense_backward_npu

+

embedding_dense_backward_npu

131

embedding_renorm_

+

embedding_renorm_

embedding_renorm_npu_

+

embedding_renorm_npu_

132

_embedding_bag

+

_embedding_bag

_embedding_bag_npu

+

_embedding_bag_npu

133

empty.memory_format

+

empty.memory_format

empty_npu

+

empty_npu

134

resize_

+

resize_

resize_npu_

+

resize_npu_

135

empty_like

+

empty_like

empty_like_npu

+

empty_like_npu

136

empty_strided

+

empty_strided

empty_strided_npu

+

empty_strided_npu

137

erf

+

erf

erf_npu

+

erf_npu

138

erf_

+

erf_

erf_npu_

+

erf_npu_

139

erf.out

+

erf.out

erf_out_npu

+

erf_out_npu

140

erfc

+

erfc

erfc_npu

+

erfc_npu

141

erfc_

+

erfc_

erfc_npu_

+

erfc_npu_

142

erfc.out

+

erfc.out

erfc_out_npu

+

erfc_out_npu

143

exp

+

exp

exp_npu

+

exp_npu

144

exp_

+

exp_

exp_npu_

+

exp_npu_

145

exp.out

+

exp.out

exp_out_npu

+

exp_out_npu

146

expm1

+

expm1

expm1_npu

+

expm1_npu

147

expm1_

+

expm1_

expm1_npu_

+

expm1_npu_

148

expm1.out

+

expm1.out

expm1_out_npu

+

expm1_out_npu

149

eye

+

eye

eye_npu

+

eye_npu

150

eye.m

+

eye.m

eye_npu

+

eye_npu

151

eye.out

+

eye.out

eye_out_npu

+

eye_out_npu

152

eye.m_out

+

eye.m_out

eye_out_npu

+

eye_out_npu

153

fill_.Scalar

+

fill_.Scalar

fill_npu_

+

fill_npu_

154

fill_.Tensor

+

fill_.Tensor

fill_npu_

+

fill_npu_

155

floor

+

floor

floor_npu

+

floor_npu

156

floor_

+

floor_

floor_npu_

+

floor_npu_

157

floor.out

+

floor.out

floor_out_npu

+

floor_out_npu

158

floor_divide

+

floor_divide

floor_divide_npu

+

floor_divide_npu

159

floor_divide_.Tensor

+

floor_divide_.Tensor

floor_divide_npu_

+

floor_divide_npu_

160

floor_divide.out

+

floor_divide.out

floor_divide_out_npu

+

floor_divide_out_npu

161

floor_divide.Scalar

+

floor_divide.Scalar

floor_divide_npu

+

floor_divide_npu

162

floor_divide_.Scalar

+

floor_divide_.Scalar

floor_divide_npu_

+

floor_divide_npu_

163

frac

+

frac

frac_npu

+

frac_npu

164

frac_

+

frac_

frac_npu_

+

frac_npu_

165

frac.out

+

frac.out

frac_out_npu

+

frac_out_npu

166

full.names

+

full.names

full_npu

+

full_npu

167

full

+

full

full_npu

+

full_npu

168

full.out

+

full.out

full_out_npu

+

full_out_npu

169

grid_sampler

+

grid_sampler

grid_sampler_npu

+

grid_sampler_npu

170

grid_sampler_3d

+

grid_sampler_3d

grid_sampler_3d_npu

+

grid_sampler_3d_npu

171

grid_sampler_3d_backward

+

grid_sampler_3d_backward

grid_sampler_3d_backward_npu

+

grid_sampler_3d_backward_npu

172

hann_window

+

hann_window

hann_window_npu

+

hann_window_npu

173

hann_window.periodic

+

hann_window.periodic

hann_window_npu

+

hann_window_npu

174

hamming_window

+

hamming_window

hamming_window_npu

+

hamming_window_npu

175

hamming_window.periodic

+

hamming_window.periodic

hamming_window_npu

+

hamming_window_npu

176

hamming_window.periodic_alpha

+

hamming_window.periodic_alpha

hamming_window_npu

+

hamming_window_npu

177

hamming_window.periodic_alpha_beta

+

hamming_window.periodic_alpha_beta

hamming_window_npu

+

hamming_window_npu

178

ger

+

ger

ger_npu

+

ger_npu

179

ger.out

+

ger.out

ger_out_npu

+

ger_out_npu

180

index.Tensor

+

index.Tensor

index_npu

+

index_npu

181

index_put_

+

index_put_

index_put_npu_

+

index_put_npu_

182

index_put

+

index_put

index_put_npu

+

index_put_npu

183

_index_put_impl_

+

_index_put_impl_

_index_put_impl_npu_

+

_index_put_impl_npu_

184

inverse

+

inverse

inverse_npu

+

inverse_npu

185

inverse.out

+

inverse.out

inverse_out_npu

+

inverse_out_npu

186

isclose

+

isclose

isclose_npu

+

isclose_npu

187

isnan

+

isnan

isnan_npu

+

isnan_npu

188

is_nonzero

+

is_nonzero

is_nonzero_npu

+

is_nonzero_npu

189

kl_div

+

kl_div

kl_div_npu

+

kl_div_npu

190

kl_div_backward

+

kl_div_backward

kl_div_backward_npu

+

kl_div_backward_npu

191

kthvalue

+

kthvalue

kthvalue_npu

+

kthvalue_npu

192

kthvalue.values

+

kthvalue.values

kthvalue_out_npu

+

kthvalue_out_npu

193

kthvalue.dimname

+

kthvalue.dimname

kthvalue_npu

+

kthvalue_npu

194

kthvalue.dimname_out

+

kthvalue.dimname_out

kthvalue_out_npu

+

kthvalue_out_npu

195

native_layer_norm

+

native_layer_norm

layer_norm_npu

+

layer_norm_npu

196

native_layer_norm_backward

+

native_layer_norm_backward

layer_norm_backward_npu

+

layer_norm_backward_npu

197

linspace

+

linspace

linspace_npu

+

linspace_npu

198

linspace.out

+

linspace.out

linspace_out_npu

+

linspace_out_npu

199

log

+

log

log_npu

+

log_npu

200

log_

+

log_

log_npu_

+

log_npu_

201

log.out

+

log.out

log_out_npu

+

log_out_npu

202

log10

+

log10

log10_npu

+

log10_npu

203

log10_

+

log10_

log10_npu_

+

log10_npu_

204

log10.out

+

log10.out

log10_out_npu

+

log10_out_npu

205

log1p

+

log1p

log1p_npu

+

log1p_npu

206

log1p_

+

log1p_

log1p_npu_

+

log1p_npu_

207

log1p.out

+

log1p.out

log1p_out_npu

+

log1p_out_npu

208

log2

+

log2

log2_npu

+

log2_npu

209

log2_

+

log2_

log2_npu_

+

log2_npu_

210

log2.out

+

log2.out

log2_out_npu

+

log2_out_npu

211

logspace

+

logspace

logspace_npu

+

logspace_npu

212

logspace.out

+

logspace.out

logspace_out_npu

+

logspace_out_npu

213

log_softmax.int

+

log_softmax.int

log_softmax_npu

+

log_softmax_npu

214

log_softmax.Dimname

+

log_softmax.Dimname

log_softmax_npu

+

log_softmax_npu

215

_log_softmax

+

_log_softmax

_log_softmax_npu

+

_log_softmax_npu

216

_log_softmax_backward_data

+

_log_softmax_backward_data

_log_softmax_backward_npu

+

_log_softmax_backward_npu

217

logsumexp

+

logsumexp

logsumexp_npu

+

logsumexp_npu

218

logsumexp.out

+

logsumexp.out

logsumexp_out_npu

+

logsumexp_out_npu

219

logsumexp.names

+

logsumexp.names

logsumexp_npu

+

logsumexp_npu

220

logsumexp.names_out

+

logsumexp.names_out

logsumexp_out_npu

+

logsumexp_out_npu

221

matmul

+

matmul

matmul_npu

+

matmul_npu

222

matmul.out

+

matmul.out

matmul_out_npu

+

matmul_out_npu

223

max.dim

+

max.dim

max_npu

+

max_npu

224

max.dim_max

+

max.dim_max

max_out_npu

+

max_out_npu

225

max_values

+

max_values

max_npu

+

max_npu

226

max.names_dim

+

max.names_dim

max_npu

+

max_npu

227

max.names_dim_max

+

max.names_dim_max

max_out_npu

+

max_out_npu

228

max_values.names

+

max_values.names

max_npu

+

max_npu

229

max_pool2d

+

max_pool2d

max_pool2d_npu

+

max_pool2d_npu

230

mean

+

mean

mean_npu

+

mean_npu

231

mean.dim

+

mean.dim

mean_npu

+

mean_npu

232

mean.out

+

mean.out

mean_out_npu

+

mean_out_npu

233

mean.names_dim

+

mean.names_dim

mean_npu

+

mean_npu

234

mean.names_out

+

mean.names_out

mean_out_npu

+

mean_out_npu

235

median.dim

+

median.dim

median_npu

+

median_npu

236

median.dim_values

+

median.dim_values

median_out_npu

+

median_out_npu

237

median.names_dim

+

median.names_dim

median_npu

+

median_npu

238

median.names_dim_values

+

median.names_dim_values

median_out_npu

+

median_out_npu

239

min.dim

+

min.dim

min_npu

+

min_npu

240

min.dim_min

+

min.dim_min

min_out_npu

+

min_out_npu

241

min_values

+

min_values

min_npu

+

min_npu

242

min.names_dim

+

min.names_dim

min_npu

+

min_npu

243

min.names_dim_min

+

min.names_dim_min

min_out_npu

+

min_out_npu

244

min_values.names

+

min_values.names

min_npu

+

min_npu

245

mm

+

mm

mm_npu

+

mm_npu

246

mm.out

+

mm.out

mm_out_npu

+

mm_out_npu

247

mul.Tensor

+

mul.Tensor

mul_npu

+

mul_npu

248

mul_.Tensor

+

mul_.Tensor

mul_npu_

+

mul_npu_

249

mul.out

+

mul.out

mul_out_npu

+

mul_out_npu

250

mul.Scalar

+

mul.Scalar

mul_npu

+

mul_npu

251

mul_.Scalar

+

mul_.Scalar

mul_npu_

+

mul_npu_

252

mv

+

mv

mv_npu

+

mv_npu

253

mv.out

+

mv.out

mv_out_npu

+

mv_out_npu

254

narrow_copy

+

narrow_copy

narrow_copy_npu

+

narrow_copy_npu

255

native_batch_norm

+

native_batch_norm

batch_norm_npu

+

batch_norm_npu

256

native_batch_norm_backward

+

batch_norm_stats

batch_norm_backward_npu

+

batch_norm_stats_npu

257

_nnpack_spatial_convolution

+

batch_norm_elemt

_nnpack_spatial_convolution_npu

+

batch_norm_elemt_npu

258

ones.names

+

batch_norm_elemt.out

ones_npu

+

batch_norm_elemt_out_npu

259

ones

+

native_batch_norm_backward

ones_npu

+

batch_norm_backward_npu

260

ones.out

+

batch_norm_backward_reduce

ones_out_npu

+

batch_norm_backward_reduce_npu

261

ones_like

+

_nnpack_spatial_convolution

ones_like_npu

+

_nnpack_spatial_convolution_npu

262

cdist

+

ones.names

cdist_npu

+

ones_npu

263

_cdist_forward

+

ones

_cdist_forward_npu

+

ones_npu

264

_cdist_backward

+

ones.out

_cdist_backward_npu

+

ones_out_npu

265

pdist

+

ones_like

pdist_npu

+

ones_like_npu

266

_pdist_forward

+

cdist

_pdist_forward_npu

+

cdist_npu

267

randperm

+

_cdist_forward

randperm_npu

+

_cdist_forward_npu

268

randperm.generator

+

_cdist_backward

randperm_npu

+

_cdist_backward_npu

269

randperm.out

+

pdist

randperm_out_npu

+

pdist_npu

270

randperm.generator_out

+

_pdist_forward

randperm_out_npu

+

_pdist_forward_npu

271

range.step

+

randperm

range_npu

+

randperm_npu

272

range

+

randperm.generator

range_npu

+

randperm_npu

273

range.out

+

randperm.out

range_out_npu

+

randperm_out_npu

274

reciprocal

+

randperm.generator_out

reciprocal_npu

+

randperm_out_npu

275

reciprocal_

+

range.step

reciprocal_npu_

+

range_npu

276

reciprocal.out

+

range

reciprocal_out_npu

+

range_npu

277

neg

+

range.out

neg_npu

+

range_out_npu

278

neg_

+

reciprocal

neg_npu_

+

reciprocal_npu

279

neg.out

+

reciprocal_

neg_out_npu

+

reciprocal_npu_

280

repeat

+

reciprocal.out

repeat_npu

+

reciprocal_out_npu

281

repeat_interleave.self_int

+

neg

repeat_interleave_npu

+

neg_npu

282

round

+

neg_

round_npu

+

neg_npu_

283

round_

+

neg.out

round_npu_

+

neg_out_npu

284

round.out

+

repeat

round_out_npu

+

repeat_npu

285

relu

+

repeat_interleave.self_int

relu_npu

+

repeat_interleave_npu

286

relu_

+

round

relu_npu_

+

round_npu

287

prelu

+

round_

prelu_npu

+

round_npu_

288

prelu_backward

+

round.out

prelu_backward_npu

+

round_out_npu

289

gelu

+

relu

gelu_npu

+

relu_npu

290

gelu_backward

+

relu_

gelu_backward_npu

+

relu_npu_

291

hardshrink

+

prelu

hardshrink_npu

+

prelu_npu

292

hardshrink_backward

+

prelu_backward

hardshrink_backward_npu

+

prelu_backward_npu

293

rsqrt

+

gelu

rsqrt_npu

+

gelu_npu

294

rsqrt_

+

gelu_backward

rsqrt_npu_

+

gelu_backward_npu

295

rsqrt.out

+

hardshrink

rsqrt_out_npu

+

hardshrink_npu

296

selu

+

hardshrink_backward

selu_npu

+

hardshrink_backward_npu

297

selu_

+

rsqrt

selu_npu_

+

rsqrt_npu

298

celu

+

rsqrt_

celu_npu

+

rsqrt_npu_

299

celu_

+

rsqrt.out

celu_npu_

+

rsqrt_out_npu

300

sigmoid

+

selu

sigmoid_npu

+

selu_npu

301

sigmoid_

+

selu_

sigmoid_npu_

+

selu_npu_

302

sigmoid.out

+

celu

sigmoid_out_npu

+

celu_npu

303

sin

+

celu_

sin_npu

+

celu_npu_

304

sin_

+

sigmoid

sin_npu_

+

sigmoid_npu

305

sin.out

+

sigmoid_

sin_out_npu

+

sigmoid_npu_

306

sinh

+

sigmoid.out

sinh_npu

+

sigmoid_out_npu

307

sinh_

+

sin

sinh_npu_

+

sin_npu

308

sinh.out

+

sin_

sinh_out_npu

+

sin_npu_

309

slogdet

+

sin.out

slogdet_npu

+

sin_out_npu

310

softmax.int

+

sinh

softmax_npu

+

sinh_npu

311

softmax.Dimname

+

sinh_

softmax_npu

+

sinh_npu_

312

_softmax

+

sinh.out

_softmax_npu

+

sinh_out_npu

313

_softmax_backward_data

+

slogdet

_softmax_backward_npu

+

slogdet_npu

314

stack

+

softmax.int

stack_npu

+

softmax_npu

315

stack.out

+

softmax.Dimname

stack_out_npu

+

softmax_npu

316

sum

+

_softmax

sum_npu

+

_softmax_npu

317

sum.dim_IntList

+

_softmax_backward_data

sum_npu

+

_softmax_backward_npu

318

sum.dim_DimnameList

+

stack

sum_npu

+

stack_npu

319

sum.IntList_out

+

stack.out

sum_out_npu

+

stack_out_npu

320

sum.DimnameList_out

+

sum

sum_out_npu

+

sum_npu

321

sqrt

+

sum.dim_IntList

sqrt_npu

+

sum_npu

322

sqrt_

+

sum.dim_DimnameList

sqrt_npu_

+

sum_npu

323

sqrt.out

+

sum.IntList_out

sqrt_out_npu

+

sum_out_npu

324

std

+

sum.DimnameList_out

std_npu

+

sum_out_npu

325

std.dim

+

sqrt

std_dim_npu

+

sqrt_npu

326

std_mean

+

sqrt_

std_mean_npu

+

sqrt_npu_

327

std_mean.dim

+

sqrt.out

std_mean_dim_npu

+

sqrt_out_npu

328

std_mean.names_dim

+

std

std_mean_names_npu

+

std_npu

329

std.out

+

std.dim

std_out_npu

+

std_dim_npu

330

std.names_dim

+

std_mean

std_names_npu

+

std_mean_npu

331

std.names_out

+

std_mean.dim

std_out_npu

+

std_mean_dim_npu

332

prod

+

std_mean.names_dim

prod_npu

+

std_mean_names_npu

333

prod.dim_int

+

std.out

prod_npu

+

std_out_npu

334

prod.int_out

+

std.names_dim

prod_out_npu

+

std_names_npu

335

prod.dim_Dimname

+

std.names_out

prod_npu

+

std_out_npu

336

prod.Dimname_out

+

prod

prod_out_npu

+

prod_npu

337

tan

+

prod.dim_int

tan_npu

+

prod_npu

338

tan_

+

prod.int_out

tan_npu_

+

prod_out_npu

339

tan.out

+

prod.dim_Dimname

tan_out_npu

+

prod_npu

340

tanh

+

prod.Dimname_out

tanh_npu

+

prod_out_npu

341

tanh_

+

tan

tanh_npu_

+

tan_npu

342

tanh.out

+

tan_

tanh_out_npu

+

tan_npu_

343

threshold

+

tan.out

threshold_npu

+

tan_out_npu

344

threshold_

+

tanh

threshold_npu_

+

tanh_npu

345

threshold.out

+

tanh_

threshold_out_npu

+

tanh_npu_

346

threshold_backward

+

tanh.out

threshold_backward_npu

+

tanh_out_npu

347

one_hot

+

threshold

one_hot_npu1

+

threshold_npu

348

flip

+

threshold_

flip_npu

+

threshold_npu_

349

roll

+

threshold.out

roll_npu

+

threshold_out_npu

350

true_divide.Tensor

+

threshold_backward

true_divide_npu

+

threshold_backward_npu

351

true_divide_.Tensor

+

one_hot

true_divide_npu_

+

one_hot_npu1

352

true_divide.out

+

flip

true_divide_out_npu

+

flip_npu

353

true_divide.Scalar

+

roll

true_divide_npu

+

roll_npu

354

true_divide_.Scalar

+

true_divide.Tensor

true_divide_npu_

+

true_divide_npu

355

trunc

+

true_divide_.Tensor

trunc_npu

+

true_divide_npu_

356

trunc_

+

true_divide.out

trunc_npu_

+

true_divide_out_npu

357

trunc.out

+

true_divide.Scalar

trunc_out_npu

+

true_divide_npu

358

_unique2

+

true_divide_.Scalar

_unique2_npu

+

true_divide_npu_

359

var

+

trunc

var_npu

+

trunc_npu

360

var.dim

+

trunc_

var_npu

+

trunc_npu_

361

var.out

+

trunc.out

var_out_npu

+

trunc_out_npu

362

var.names_dim

+

_unique2

var_npu

+

_unique2_npu

363

var.names_out

+

var

var_out_npu

+

var_npu

364

var_mean

+

var.dim

var_mean_npu

+

var_npu

365

var_mean.dim

+

var.out

var_mean_npu

+

var_out_npu

366

var_mean.names_dim

+

var.names_dim

var_mean_npu

+

var_npu

367

where.self

+

var.names_out

where_npu

+

var_out_npu

368

where

+

var_mean

where_npu

+

var_mean_npu

369

_s_where

+

var_mean.dim

_s_where_npu

+

var_mean_npu

370

zeros.names

+

var_mean.names_dim

zeros_npu

+

var_mean_npu

371

zeros

+

where.self

zeros_npu

+

where_npu

372

zeros.out

+

where

zeros_out_npu

+

where_npu

373

zeros_like

+

_s_where

zeros_like_npu

+

_s_where_npu

374

norm.ScalarOpt_dtype

+

zeros.names

norm_npu

+

zeros_npu

375

norm.Scalar

+

zeros

norm_npu

+

zeros_npu

376

norm.ScalarOpt_dim_dtype

+

zeros.out

norm_npu

+

zeros_out_npu

377

norm.ScalarOpt_dim

+

zeros_like

norm_npu

+

zeros_like_npu

378

norm.dtype_out

+

norm.ScalarOpt_dtype

norm_out_npu

+

norm_npu

379

norm.out

+

norm.Scalar

norm_out_npu

+

norm_npu

380

clone

+

norm.ScalarOpt_dim_dtype

clone_npu

+

norm_npu

381

resize_as_

+

norm.ScalarOpt_dim

resize_as_npu_

+

norm_npu

382

pow.Tensor_Scalar_out

+

norm.dtype_out

pow_out_npu

+

norm_out_npu

383

pow.Tensor_Scalar

+

norm.out

pow_npu

+

norm_out_npu

384

zero_

+

clone

zero_npu_

+

clone_npu

385

sub.out

+

resize_as_

sub_out_npu

+

resize_as_npu_

386

sub.Tensor

+

pow.Tensor_Scalar_out

sub_npu

+

pow_out_npu

387

sub_.Tensor

+

pow.Tensor_Scalar

sub_npu_

+

pow_npu

388

sub.Scalar

+

zero_

sub_npu

+

zero_npu_

389

sub_.Scalar

+

sub.out

sub_npu_

+

sub_out_npu

390

rsub.Tensor

+

sub.Tensor

rsub_npu

+

sub_npu

391

rsub.Scalar

+

sub_.Tensor

rsub_npu

+

sub_npu_

392

addmm.out

+

sub.Scalar

addmm_out_npu

+

sub_npu

393

addmm

+

sub_.Scalar

addmm_npu

+

sub_npu_

394

addmm_

+

rsub.Tensor

addmm_npu_

+

rsub_npu

395

quantize_per_tensor

+

rsub.Scalar

quantize_per_tensor_npu

+

rsub_npu

396

quantize_per_channel

+

addmm.out

quantize_per_channel_npu

+

addmm_out_npu

397

to.dtype_layout

+

addmm

to_npu

+

addmm_npu

398

to.device

+

addmm_

to_device_npu

+

addmm_npu_

399

to.dtype

+

quantize_per_tensor

to_dtype_npu

+

quantize_per_tensor_npu

400

to.other

+

quantize_per_channel

to_other_npu

+

quantize_per_channel_npu

401

_local_scalar_dense

+

to.dtype_layout

_local_scalar_dense_npu

+

to_npu

402

lstm.input

+

to.device

lstm_npu

+

to_device_npu

403

lstm.data

+

to.dtype

lstm_npu

+

to_dtype_npu

404

gru.input

+

to.other

gru_npu_

+

to_other_npu

405

_pack_padded_sequence

+

_local_scalar_dense

_pack_padded_sequence_npu

+

_local_scalar_dense_npu

406

_pad_packed_sequence

+

lstm.input

_pad_packed_sequence_npu

+

lstm_npu

407

set_.source_Storage

+

lstm.data

set_npu_

+

lstm_npu

408

set_.source_Storage_storage_offset

+

gru.input

set_npu_

+

gru_npu_

409

set_.source_Tensor

+

_pack_padded_sequence

set_npu_

+

_pack_padded_sequence_npu

410

set_

+

_pad_packed_sequence

set_npu_

+

_pad_packed_sequence_npu

411

masked_fill_.Scalar

+

set_.source_Storage

masked_fill_npu_

+

set_npu_

412

masked_fill_.Tensor

+

set_.source_Storage_storage_offset

masked_fill_npu_

+

set_npu_

413

masked_scatter_

+

set_.source_Tensor

masked_scatter_npu_

+

set_npu_

414

view

+

set_

view_npu

+

set_npu_

415

put_

+

masked_fill_.Scalar

put_npu_

+

masked_fill_npu_

416

index_add_

+

masked_fill_.Tensor

index_add_npu_

+

masked_fill_npu_

417

index_add

+

masked_scatter_

index_add_npu

+

masked_scatter_npu_

418

index_add.dimname

+

view

index_add_npu

+

view_npu

419

index_fill_.int_Scalar

+

put_

index_fill_npu_

+

put_npu_

420

index_fill.int_Scalar

+

index_add_

index_fill_npu

+

index_add_npu_

421

index_fill_.int_Tensor

+

index_add

index_fill_npu_

+

index_add_npu

422

index_fill.int_Tensor

+

index_add.dimname

index_fill_npu

+

index_add_npu

423

scatter_.src

+

index_fill_.int_Scalar

scatter_npu_

+

index_fill_npu_

424

scatter_.value

+

index_fill.int_Scalar

scatter_npu_

+

index_fill_npu

425

scatter_add_

+

index_fill_.int_Tensor

scatter_add_npu_

+

index_fill_npu_

426

scatter_add

+

index_fill.int_Tensor

scatter_add_npu

+

index_fill_npu

427

scatter_add.dimname

+

scatter_.src

scatter_add_npu

+

scatter_npu_

428

lt_.Scalar

+

scatter_.value

lt_npu_

+

scatter_npu_

429

lt_.Tensor

+

scatter_add_

lt_npu_

+

scatter_add_npu_

430

gt_.Scalar

+

scatter_add

gt_npu_

+

scatter_add_npu

431

gt_.Tensor

+

scatter_add.dimname

gt_npu_

+

scatter_add_npu

432

le_.Scalar

+

lt_.Scalar

le_npu_

+

lt_npu_

433

le_.Tensor

+

lt_.Tensor

le_npu_

+

lt_npu_

434

ge_.Scalar

+

gt_.Scalar

ge_npu_

+

gt_npu_

435

ge_.Tensor

+

gt_.Tensor

ge_npu_

+

gt_npu_

436

eq_.Scalar

+

le_.Scalar

eq_npu_

+

le_npu_

437

eq_.Tensor

+

le_.Tensor

eq_npu_

+

le_npu_

438

ne_.Scalar

+

ge_.Scalar

ne_npu_

+

ge_npu_

439

ne_.Tensor

+

ge_.Tensor

ne_npu_

+

ge_npu_

440

bitwise_and.Tensor_out

+

eq_.Scalar

bitwise_and_out_npu

+

eq_npu_

441

bitwise_and.Scalar_out

+

eq_.Tensor

bitwise_and_out_npu

+

eq_npu_

442

bitwise_and.Scalar

+

ne_.Scalar

bitwise_and_npu

+

ne_npu_

443

bitwise_and.Tensor

+

ne_.Tensor

bitwise_and_npu

+

ne_npu_

444

bitwise_and_.Scalar

+

bitwise_and.Tensor_out

bitwise_and_npu_

+

bitwise_and_out_npu

445

bitwise_and_.Tensor

+

bitwise_and.Scalar_out

bitwise_and_npu_

+

bitwise_and_out_npu

446

__and__.Scalar

+

bitwise_and.Scalar

__and___npu

+

bitwise_and_npu

447

__and__.Tensor

+

bitwise_and.Tensor

__and___npu

+

bitwise_and_npu

448

bitwise_or.Tensor_out

+

bitwise_and_.Scalar

bitwise_or_out_npu

+

bitwise_and_npu_

449

bitwise_or.Scalar_out

+

bitwise_and_.Tensor

bitwise_or_out_npu

+

bitwise_and_npu_

450

bitwise_or.Scalar

+

__and__.Scalar

bitwise_or_npu

+

__and___npu

451

bitwise_or.Tensor

+

__and__.Tensor

bitwise_or_npu

+

__and___npu

452

bitwise_or_.Scalar

+

bitwise_or.Tensor_out

bitwise_or_npu_

+

bitwise_or_out_npu

453

bitwise_or_.Tensor

+

bitwise_or.Scalar_out

bitwise_or_npu_

+

bitwise_or_out_npu

454

__or__.Scalar

+

bitwise_or.Scalar

__or___npu

+

bitwise_or_npu

455

__or__.Tensor

+

bitwise_or.Tensor

__or___npu

+

bitwise_or_npu

456

__ior__.Scalar

+

bitwise_or_.Scalar

__ior___npu

+

bitwise_or_npu_

457

__ior__.Tensor

+

bitwise_or_.Tensor

__ior___npu

+

bitwise_or_npu_

458

bitwise_xor.Tensor_out

+

__or__.Scalar

bitwise_xor_out_npu

+

__or___npu

459

bitwise_xor.Scalar_out

+

__or__.Tensor

bitwise_xor_out_npu

+

__or___npu

460

bitwise_xor.Scalar

+

__ior__.Scalar

bitwise_xor_npu

+

__ior___npu

461

bitwise_xor.Tensor

+

__ior__.Tensor

bitwise_xor_npu

+

__ior___npu

462

bitwise_xor_.Scalar

+

bitwise_xor.Tensor_out

bitwise_xor_npu_

+

bitwise_xor_out_npu

463

bitwise_xor_.Tensor

+

bitwise_xor.Scalar_out

bitwise_xor_npu_

+

bitwise_xor_out_npu

464

__xor__.Scalar

+

bitwise_xor.Scalar

__xor___npu

+

bitwise_xor_npu

465

__xor__.Tensor

+

bitwise_xor.Tensor

__xor___npu

+

bitwise_xor_npu

466

__lshift__.Scalar

+

bitwise_xor_.Scalar

__lshift___npu

+

bitwise_xor_npu_

467

__lshift__.Tensor

+

bitwise_xor_.Tensor

__lshift___npu

+

bitwise_xor_npu_

468

__ilshift__.Scalar

+

__xor__.Scalar

__iLshift___npu

+

__xor___npu

469

__ilshift__.Tensor

+

__xor__.Tensor

__iLshift___npu

+

__xor___npu

470

__rshift__.Scalar

+

__lshift__.Scalar

__rshift___npu

+

__lshift___npu

471

__rshift__.Tensor

+

__lshift__.Tensor

__rshift___npu

+

__lshift___npu

472

__irshift__.Scalar

+

__ilshift__.Scalar

__iRshift___npu

+

__iLshift___npu

473

__irshift__.Tensor

+

__ilshift__.Tensor

__iRshift___npu

+

__iLshift___npu

474

atan2_

+

__rshift__.Scalar

atan2_npu_

+

__rshift___npu

475

tril_

+

__rshift__.Tensor

tril_npu_

+

__rshift___npu

476

triu_

+

__irshift__.Scalar

triu_npu_

+

__iRshift___npu

477

renorm_

+

__irshift__.Tensor

renorm_npu_

+

__iRshift___npu

478

pow_.Scalar

+

atan2_

pow_npu_

+

atan2_npu_

479

pow_.Tensor

+

tril_

pow_npu_

+

tril_npu_

480

lerp_.Scalar

+

triu_

lerp_npu_

+

triu_npu_

481

lerp_.Tensor

+

renorm_

lerp_npu_

+

renorm_npu_

482

fmod_.Scalar

+

pow_.Scalar

fmod_npu_

+

pow_npu_

483

fmod_.Tensor

+

pow_.Tensor

fmod_npu_

+

pow_npu_

484

remainder_.Scalar

+

lerp_.Scalar

remainder_npu_

+

lerp_npu_

485

remainder_.Tensor

+

lerp_.Tensor

remainder_npu_

+

lerp_npu_

486

addbmm_

+

fmod_.Scalar

addbmm_npu_

+

fmod_npu_

487

addbmm.out

+

fmod_.Tensor

addbmm_out_npu

+

fmod_npu_

488

addbmm

+

remainder_.Scalar

addbmm_npu

+

remainder_npu_

489

addcdiv_

+

remainder_.Tensor

addcdiv_npu_

+

remainder_npu_

490

random_.from

+

addbmm_

random_npu_

+

addbmm_npu_

491

random_.to

+

addbmm.out

random_npu_

+

addbmm_out_npu

492

random_

+

addbmm

random_npu_

+

addbmm_npu

493

uniform_

+

addcdiv_

uniform_npu_

+

addcdiv_npu_

494

diag.out

+

random_.from

diag_out_npu

+

random_npu_

495

diag

+

random_.to

diag_npu

+

random_npu_

496

cross.out

+

random_

cross_out_npu

+

random_npu_

497

cross

+

uniform_

cross_npu

+

uniform_npu_

498

triu.out

+

diag.out

triu_out_npu

+

diag_out_npu

499

triu

+

diag

triu_npu

+

diag_npu

500

tril.out

+

cross.out

tril_out_npu

+

cross_out_npu

501

tril

+

cross

tril_npu

+

cross_npu

502

tril_indices

+

triu.out

tril_indices_npu

+

triu_out_npu

503

triu_indices

+

triu

triu_indices_npu

+

triu_npu

504

ne.Scalar_out

+

tril.out

ne_out_npu

+

tril_out_npu

505

ne.Scalar

+

tril

ne_npu

+

tril_npu

506

ne.Tensor_out

+

tril_indices

ne_out_npu

+

tril_indices_npu

507

ne.Tensor

+

triu_indices

ne_npu

+

triu_indices_npu

508

eq.Scalar_out

+

ne.Scalar_out

eq_out_npu

+

ne_out_npu

509

eq.Scalar

+

ne.Scalar

eq_npu

+

ne_npu

510

eq.Tensor_out

+

ne.Tensor_out

eq_out_npu

+

ne_out_npu

511

eq.Tensor

+

ne.Tensor

eq_npu

+

ne_npu

512

ge.Scalar_out

+

eq.Scalar_out

ge_out_npu

+

eq_out_npu

513

ge.Scalar

+

eq.Scalar

ge_npu

+

eq_npu

514

ge.Tensor_out

+

eq.Tensor_out

ge_out_npu

+

eq_out_npu

515

ge.Tensor

+

eq.Tensor

ge_npu

+

eq_npu

516

le.Scalar_out

+

ge.Scalar_out

le_out_npu

+

ge_out_npu

517

le.Scalar

+

ge.Scalar

le_npu

+

ge_npu

518

le.Tensor_out

+

ge.Tensor_out

le_out_npu

+

ge_out_npu

519

le.Tensor

+

ge.Tensor

le_npu

+

ge_npu

520

gt.Scalar_out

+

le.Scalar_out

gt_out_npu

+

le_out_npu

521

gt.Scalar

+

le.Scalar

gt_npu

+

le_npu

522

gt.Tensor_out

+

le.Tensor_out

gt_out_npu

+

le_out_npu

523

gt.Tensor

+

le.Tensor

gt_npu

+

le_npu

524

lt.Scalar_out

+

gt.Scalar_out

lt_out_npu

+

gt_out_npu

525

lt.Scalar

+

gt.Scalar

lt_npu

+

gt_npu

526

lt.Tensor_out

+

gt.Tensor_out

lt_out_npu

+

gt_out_npu

527

lt.Tensor

+

gt.Tensor

lt_npu

+

gt_npu

528

take.out

+

lt.Scalar_out

take_out_npu

+

lt_out_npu

529

take

+

lt.Scalar

take_npu

+

lt_npu

530

index_select.out

+

lt.Tensor_out

index_select_out_npu

+

lt_out_npu

531

index_select

+

lt.Tensor

index_select_npu

+

lt_npu

532

index_select.dimname_out

+

take.out

index_select_out_npu

+

take_out_npu

533

index_select.dimname

+

take

index_select_npu

+

take_npu

534

masked_select.out

+

index_select.out

masked_select_out_npu

+

index_select_out_npu

535

masked_select

+

index_select

masked_select_npu

+

index_select_npu

536

nonzero.out

+

index_select.dimname_out

nonzero_out_npu

+

index_select_out_npu

537

nonzero

+

index_select.dimname

nonzero_npu

+

index_select_npu

538

gather.out

+

masked_select.out

gather_out_npu

+

masked_select_out_npu

539

gather

+

masked_select

gather_npu

+

masked_select_npu

540

gather.dimname_out

+

nonzero.out

gather_out_npu

+

nonzero_out_npu

541

gather.dimname

+

nonzero

gather_npu

+

nonzero_npu

542

addcmul.out

+

gather.out

addcmul_out_npu

+

gather_out_npu

543

addcmul

+

gather

addcmul_npu

+

gather_npu

544

addcmul_

+

gather.dimname_out

addcmul_npu_

+

gather_out_npu

545

addcdiv.out

+

gather.dimname

addcdiv_out_npu

+

gather_npu

546

addcdiv

+

addcmul.out

addcdiv_npu

+

addcmul_out_npu

547

_triangular_solve_helper

+

addcmul

_triangular_solve_helper_npu

+

addcmul_npu

548

_symeig_helper

+

addcmul_

_symeig_helper_npu

+

addcmul_npu_

549

_svd_helper

+

addcdiv.out

_svd_helper_npu

+

addcdiv_out_npu

550

qr.Q

+

addcdiv

qr_out_npu

+

addcdiv_npu

551

qr

+

_triangular_solve_helper

qr_npu

+

_triangular_solve_helper_npu

552

multinomial.out

+

_symeig_helper

multinomial_out_npu

+

_symeig_helper_npu

553

multinomial

+

_svd_helper

multinomial_npu

+

_svd_helper_npu

554

erfinv

+

qr.Q

erfinv_npu

+

qr_out_npu

555

erfinv_

+

qr

erfinv_npu_

+

qr_npu

556

erfinv.out

+

multinomial.out

erfinv_out_npu

+

multinomial_out_npu

557

sign

+

multinomial

sign_npu

+

multinomial_npu

558

sign_

+

erfinv

sign_npu_

+

erfinv_npu

559

sign.out

+

erfinv_

sign_out_npu

+

erfinv_npu_

560

atan2.out

+

erfinv.out

atan2_out_npu

+

erfinv_out_npu

561

atan2

+

sign

atan2_npu

+

sign_npu

562

lerp.Scalar_out

+

sign_

lerp_out_npu

+

sign_npu_

563

lerp.Tensor_out

+

sign.out

lerp_out_npu

+

sign_out_npu

564

lerp.Scalar

+

atan2.out

lerp_npu

+

atan2_out_npu

565

lerp.Tensor

+

atan2

lerp_npu

+

atan2_npu

566

fmod.Scalar_out

+

lerp.Scalar_out

fmod_out_npu

+

lerp_out_npu

567

fmod.Scalar

+

lerp.Tensor_out

fmod_npu

+

lerp_out_npu

568

fmod.Tensor_out

+

lerp.Scalar

fmod_out_npu

+

lerp_npu

569

fmod.Tensor

+

lerp.Tensor

fmod_npu

+

lerp_npu

570

remainder.Scalar_out

+

fmod.Scalar_out

remainder_out_npu

+

fmod_out_npu

571

remainder.Scalar

+

fmod.Scalar

remainder_npu

+

fmod_npu

572

remainder.Tensor_out

+

fmod.Tensor_out

remainder_out_npu

+

fmod_out_npu

573

remainder.Tensor

+

fmod.Tensor

remainder_npu

+

fmod_npu

574

min.out

+

remainder.Scalar_out

min_out_npu

+

remainder_out_npu

575

min.other

+

remainder.Scalar

min_npu

+

remainder_npu

576

min

+

remainder.Tensor_out

min_npu

+

remainder_out_npu

577

max.out

+

remainder.Tensor

max_out_npu

+

remainder_npu

578

max.other

+

min.out

max_npu

+

min_out_npu

579

max

+

min.other

max_npu

+

min_npu

580

median

+

min

median_npu

+

min_npu

581

sort.values

+

max.out

sort_out_npu

+

max_out_npu

582

sort

+

max.other

sort_npu

+

max_npu

583

sort.dimname_values

+

max

sort_out_npu

+

max_npu

584

sort.dimname

+

median

sort_npu

+

median_npu

585

argsort

+

sort.values

argsort_npu

+

sort_out_npu

586

argsort.dimname

+

sort

argsort_npu

+

sort_npu

587

topk.values

+

sort.dimname_values

topk_out_npu

+

sort_out_npu

588

topk

+

sort.dimname

topk_npu

+

sort_npu

589

all

+

argsort

all_npu

+

argsort_npu

590

any

+

argsort.dimname

any_npu

+

argsort_npu

591

renorm.out

+

topk.values

renorm_out_npu

+

topk_out_npu

592

renorm

+

topk

renorm_npu

+

topk_npu

593

unfold

+

all

unfold

+

all_npu

594

equal

+

any

equal_npu

+

any_npu

595

pow.Tensor_Tensor_out

+

renorm.out

pow_out_npu

+

renorm_out_npu

596

pow.Tensor_Tensor

+

renorm

pow_npu

+

renorm_npu

597

pow.Scalar_out

+

unfold

pow_out_npu

+

unfold

598

pow.Scalar

+

equal

pow_npu

+

equal_npu

599

normal_

+

pow.Tensor_Tensor_out

normal_npu_

+

pow_out_npu

600

normal.Tensor_float_out

+

pow.Tensor_Tensor

normal_out_npu

+

pow_npu

601

normal.Tensor_float

+

pow.Scalar_out

normal_npu

+

pow_out_npu

602

normal.float_Tensor_out

+

pow.Scalar

normal_out_npu

+

pow_npu

603

normal.float_Tensor

+

normal_

normal_npu

+

normal_npu_

604

normal.Tensor_Tensor_out

+

normal.Tensor_float_out

normal_out_npu

+

normal_out_npu

605

normal.Tensor_Tensor

+

normal.Tensor_float

normal_npu

+

normal_npu

606

normal.float_float

+

normal.float_Tensor_out

normal_npu

+

normal_out_npu

607

normal.float_float_out

+

normal.float_Tensor

normal_out_npu

+

normal_npu

608

_addr

+

normal.Tensor_Tensor_out

_addr_npu

+

normal_out_npu

609

_addr_

+

normal.Tensor_Tensor

_addr_npu_

+

normal_npu

610

_addr.out

+

normal.float_float

_addr_out_npu

+

normal_npu

611

_index_copy_

+

normal.float_float_out

index_copy_npu_

+

normal_out_npu

612

_cumsum

+

_addr

_cumsum_npu

+

_addr_npu

613

_cumsum.out

+

_addr_

_cumsum_out_npu

+

_addr_npu_

614

_cumprod

+

_addr.out

_cumprod_npu

+

_addr_out_npu

615

_cumprod.out

+

_index_copy_

_cumprod_out_npu

+

index_copy_npu_

616

_var

+

_cumsum

_var_npu

+

_cumsum_npu

617

_amp_non_finite_check_and_unscale_

+

_cumsum.out

_amp_non_finite_check_and_unscale_npu_

+

_cumsum_out_npu

618

_cat

+

_cumprod

_cat_npu

+

_cumprod_npu

619

_cat.out

+

_cumprod.out

_cat_out_npu

+

_cumprod_out_npu

620

_max

+

_var

_max_npu

+

_var_npu

621

_max.max

+

_amp_non_finite_check_and_unscale_

_max_out_npu

+

_amp_non_finite_check_and_unscale_npu_

622

_min

+

_cat

_min_npu

+

_cat_npu

623

_min.min

+

_cat.out

_min_out_npu

+

_cat_out_npu

624

mse_loss.out

+

_max

mse_loss_out_npu

+

_max_npu

625

mse_loss

+

_max.max

mse_loss_npu

+

_max_out_npu

626

mse_loss_backward.grad_input

+

_min

mse_loss_backward_out_npu

+

_min_npu

627

mse_loss_backward

+

_min.min

mse_loss_backward_npu

+

_min_out_npu

628

l1_loss.out

+

mse_loss.out

l1_loss_out_npu

+

mse_loss_out_npu

629

l1_loss

+

mse_loss

l1_loss_npu

+

mse_loss_npu

630

l1_loss_backward.grad_input

+

mse_loss_backward.grad_input

l1_loss_backward_out_npu

+

mse_loss_backward_out_npu

631

l1_loss_backward

+

mse_loss_backward

l1_loss_backward_npu

+

mse_loss_backward_npu

632

multilabel_margin_loss.out

+

l1_loss.out

multilabel_margin_loss_out_npu

+

l1_loss_out_npu

633

multilabel_margin_loss

+

l1_loss

multilabel_margin_loss_npu

+

l1_loss_npu

634

multilabel_margin_loss_forward.output

+

l1_loss_backward.grad_input

multilabel_margin_loss_forward_out_npu

+

l1_loss_backward_out_npu

635

multilabel_margin_loss_forward

+

l1_loss_backward

multilabel_margin_loss_forward_npu

+

l1_loss_backward_npu

636

nll_loss.out

+

multilabel_margin_loss.out

nll_loss_out_npu

+

multilabel_margin_loss_out_npu

637

nll_loss

+

multilabel_margin_loss

nll_loss_npu

+

multilabel_margin_loss_npu

638

nll_loss_forward.output

+

multilabel_margin_loss_forward.output

nll_loss_forward_out_npu

+

multilabel_margin_loss_forward_out_npu

639

nll_loss_forward

+

multilabel_margin_loss_forward

nll_loss_forward_npu

+

multilabel_margin_loss_forward_npu

640

nll_loss_backward.grad_input

+

nll_loss.out

nll_loss_backward_out_npu

+

nll_loss_out_npu

641

nll_loss_backward

+

nll_loss

nll_loss_backward_npu

+

nll_loss_npu

642

nll_loss2d.out

+

nll_loss_forward.output

nll_loss2d_out_npu

+

nll_loss_forward_out_npu

643

nll_loss2d

+

nll_loss_forward

nll_loss2d_npu

+

nll_loss_forward_npu

644

nll_loss2d_forward.output

+

nll_loss_backward.grad_input

nll_loss2d_forward_out_npu

+

nll_loss_backward_out_npu

645

nll_loss2d_forward

+

nll_loss_backward

nll_loss2d_forward_npu

+

nll_loss_backward_npu

646

nll_loss2d_backward.grad_input

+

nll_loss2d.out

nll_loss2d_backward_out_npu

+

nll_loss2d_out_npu

647

nll_loss2d_backward

+

nll_loss2d

nll_loss2d_backward_npu

+

nll_loss2d_npu

648

smooth_l1_loss.out

+

nll_loss2d_forward.output

smooth_l1_loss_out_npu

+

nll_loss2d_forward_out_npu

649

smooth_l1_loss

+

nll_loss2d_forward

smooth_l1_loss_npu

+

nll_loss2d_forward_npu

650

smooth_l1_loss_backward.grad_input

+

nll_loss2d_backward.grad_input

smooth_l1_loss_backward_out_npu

+

nll_loss2d_backward_out_npu

651

smooth_l1_loss_backward

+

nll_loss2d_backward

smooth_l1_loss_backward_npu

+

nll_loss2d_backward_npu

652

soft_margin_loss.out

+

smooth_l1_loss.out

soft_margin_loss_out_npu

+

smooth_l1_loss_out_npu

653

soft_margin_loss

+

smooth_l1_loss

soft_margin_loss_npu

+

smooth_l1_loss_npu

654

soft_margin_loss_backward.grad_input

+

smooth_l1_loss_backward.grad_input

soft_margin_loss_backward_out_npu

+

smooth_l1_loss_backward_out_npu

655

soft_margin_loss_backward

+

smooth_l1_loss_backward

soft_margin_loss_backward_npu

+

smooth_l1_loss_backward_npu

656

elu.out

+

soft_margin_loss.out

elu_out_npu

+

soft_margin_loss_out_npu

657

elu

+

soft_margin_loss

elu_npu

+

soft_margin_loss_npu

658

elu_backward.grad_input

+

soft_margin_loss_backward.grad_input

elu_backward_out_npu

+

soft_margin_loss_backward_out_npu

659

elu_backward

+

soft_margin_loss_backward

elu_backward_npu

+

soft_margin_loss_backward_npu

660

elu_

+

elu.out

elu_npu_

+

elu_out_npu

661

glu.out

+

elu

glu_out_npu

+

elu_npu

662

glu

+

elu_backward.grad_input

glu_npu

+

elu_backward_out_npu

663

glu_backward.grad_input

+

elu_backward

glu_backward_out_npu

+

elu_backward_npu

664

glu_backward

+

elu_

glu_backward_npu

+

elu_npu_

665

hardsigmoid.out

+

glu.out

hardsigmoid_out_npu

+

glu_out_npu

666

hardsigmoid

+

glu

hardsigmoid_npu

+

glu_npu

667

hardsigmoid_

+

glu_backward.grad_input

hardsigmoid_npu_

+

glu_backward_out_npu

668

hardsigmoid_backward

+

glu_backward

hardsigmoid_backward_npu

+

glu_backward_npu

669

hardtanh.out

+

hardsigmoid.out

hardtanh_out_npu

+

hardsigmoid_out_npu

670

hardtanh

+

hardsigmoid

hardtanh_npu

+

hardsigmoid_npu

671

hardtanh_backward.grad_input

+

hardsigmoid_

hardtanh_backward_out_npu

+

hardsigmoid_npu_

672

hardtanh_backward

+

hardsigmoid_backward

hardtanh_backward_npu

+

hardsigmoid_backward_npu

673

hardtanh_

+

hardtanh.out

hardtanh_npu_

+

hardtanh_out_npu

674

leaky_relu.out

+

hardtanh

leaky_relu_out_npu

+

hardtanh_npu

675

leaky_relu

+

hardtanh_backward.grad_input

leaky_relu_npu

+

hardtanh_backward_out_npu

676

leaky_relu_backward

+

hardtanh_backward

leaky_relu_backward_npu

+

hardtanh_backward_npu

677

leaky_relu_

+

hardtanh_

leaky_relu_npu_

+

hardtanh_npu_

678

log_sigmoid.out

+

leaky_relu.out

log_sigmoid_out_npu

+

leaky_relu_out_npu

679

log_sigmoid

+

leaky_relu

log_sigmoid_npu

+

leaky_relu_npu

680

log_sigmoid_forward.output

+

leaky_relu_backward

log_sigmoid_forward_out_npu

+

leaky_relu_backward_npu

681

log_sigmoid_forward

+

leaky_relu_

log_sigmoid_forward_npu

+

leaky_relu_npu_

682

log_sigmoid_backward.grad_input

+

log_sigmoid.out

log_sigmoid_backward_out_npu

+

log_sigmoid_out_npu

683

log_sigmoid_backward

+

log_sigmoid

log_sigmoid_backward_npu

+

log_sigmoid_npu

684

rrelu_with_noise.out

+

log_sigmoid_forward.output

rrelu_with_noise_out_npu

+

log_sigmoid_forward_out_npu

685

rrelu_with_noise

+

log_sigmoid_forward

rrelu_with_noise_npu

+

log_sigmoid_forward_npu

686

rrelu_with_noise_backward

+

log_sigmoid_backward.grad_input

rrelu_with_noise_backward_npu

+

log_sigmoid_backward_out_npu

687

rrelu_with_noise_

+

log_sigmoid_backward

rrelu_with_noise_npu_

+

log_sigmoid_backward_npu

688

softplus.out

+

rrelu_with_noise.out

softplus_out_npu

+

rrelu_with_noise_out_npu

689

softplus

+

rrelu_with_noise

softplus_npu

+

rrelu_with_noise_npu

690

softplus_backward.grad_input

+

rrelu_with_noise_backward

softplus_backward_out_npu

+

rrelu_with_noise_backward_npu

691

softplus_backward

+

rrelu_with_noise_

softplus_backward_npu

+

rrelu_with_noise_npu_

692

softshrink.out

+

softplus.out

softshrink_out_npu

+

softplus_out_npu

693

softshrink

+

softplus

softshrink_npu

+

softplus_npu

694

softshrink_backward.grad_input

+

softplus_backward.grad_input

softshrink_backward_out_npu

+

softplus_backward_out_npu

695

softshrink_backward

+

softplus_backward

softshrink_backward_npu

+

softplus_backward_npu

696

adaptive_avg_pool2d.out

+

softshrink.out

adaptive_avg_pool2d_out_npu

+

softshrink_out_npu

697

adaptive_avg_pool2d

+

softshrink

adaptive_avg_pool2d_npu

+

softshrink_npu

698

_adaptive_avg_pool2d

+

softshrink_backward.grad_input

_adaptive_avg_pool2d_npu

+

softshrink_backward_out_npu

699

_adaptive_avg_pool2d_backward

+

softshrink_backward

adaptive_avg_pool2d_backward_npu

+

softshrink_backward_npu

700

adaptive_avg_pool3d.out

+

adaptive_avg_pool2d.out

adaptive_avg_pool3d_out_npu

+

adaptive_avg_pool2d_out_npu

701

adaptive_avg_pool3d

+

adaptive_avg_pool2d

adaptive_avg_pool3d_npu

+

adaptive_avg_pool2d_npu

702

adaptive_avg_pool3d_backward.grad_input

+

_adaptive_avg_pool2d

adaptive_avg_pool3d_backward_out_npu

+

_adaptive_avg_pool2d_npu

703

adaptive_avg_pool3d_backward

+

_adaptive_avg_pool2d_backward

adaptive_avg_pool3d_backward_npu

+

adaptive_avg_pool2d_backward_npu

704

adaptive_max_pool2d.out

+

adaptive_avg_pool3d.out

adaptive_max_pool2d_out_npu

+

adaptive_avg_pool3d_out_npu

705

adaptive_max_pool2d

+

adaptive_avg_pool3d

adaptive_max_pool2d_npu

+

adaptive_avg_pool3d_npu

706

adaptive_max_pool2d_backward.grad_input

+

adaptive_avg_pool3d_backward.grad_input

adaptive_max_pool2d_backward_out_npu

+

adaptive_avg_pool3d_backward_out_npu

707

adaptive_max_pool2d_backward

+

adaptive_avg_pool3d_backward

adaptive_max_pool2d_backward_npu

+

adaptive_avg_pool3d_backward_npu

708

avg_pool2d.out

+

adaptive_max_pool2d.out

avg_pool2d_out_npu

+

adaptive_max_pool2d_out_npu

709

avg_pool2d

+

adaptive_max_pool2d

avg_pool2d_npu

+

adaptive_max_pool2d_npu

710

avg_pool2d_backward.grad_input

+

adaptive_max_pool2d_backward.grad_input

avg_pool2d_backward_out_npu

+

adaptive_max_pool2d_backward_out_npu

711

avg_pool2d_backward

+

adaptive_max_pool2d_backward

avg_pool2d_backward_npu

+

adaptive_max_pool2d_backward_npu

712

avg_pool3d.out

+

avg_pool2d.out

avg_pool3d_out_npu

+

avg_pool2d_out_npu

713

avg_pool3d

+

avg_pool2d

avg_pool3d_npu

+

avg_pool2d_npu

714

avg_pool3d_backward.grad_input

+

avg_pool2d_backward.grad_input

avg_pool3d_backward_out_npu

+

avg_pool2d_backward_out_npu

715

avg_pool3d_backward

+

avg_pool2d_backward

avg_pool3d_backward_npu

+

avg_pool2d_backward_npu

716

max_pool2d_with_indices.out

+

avg_pool3d.out

max_pool2d_with_indices_out_npu

+

avg_pool3d_out_npu

717

max_pool2d_with_indices

+

avg_pool3d

max_pool2d_with_indices_npu

+

avg_pool3d_npu

718

max_pool2d_with_indices_backward.grad_input

+

avg_pool3d_backward.grad_input

max_pool2d_with_indices_backward_out_npu

+

avg_pool3d_backward_out_npu

719

max_pool2d_with_indices_backward

+

avg_pool3d_backward

max_pool2d_with_indices_backward_npu

+

avg_pool3d_backward_npu

720

max_pool3d_with_indices.out

+

max_pool2d_with_indices.out

max_pool3d_with_indices_out_npu

+

max_pool2d_with_indices_out_npu

721

max_pool3d_with_indices

+

max_pool2d_with_indices

max_pool3d_with_indices_npu

+

max_pool2d_with_indices_npu

722

max_pool3d_with_indices_backward.grad_input

+

max_pool2d_with_indices_backward.grad_input

max_pool3d_with_indices_backward_out_npu

+

max_pool2d_with_indices_backward_out_npu

723

max_pool3d_with_indices_backward

+

max_pool2d_with_indices_backward

max_pool3d_with_indices_backward_npu

+

max_pool2d_with_indices_backward_npu

724

reflection_pad2d.out

+

max_pool3d_with_indices.out

reflection_pad2d_out_npu

+

max_pool3d_with_indices_out_npu

725

reflection_pad2d

+

max_pool3d_with_indices

reflection_pad2d_npu

+

max_pool3d_with_indices_npu

726

replication_pad2d.out

+

max_pool3d_with_indices_backward.grad_input

replication_pad2d_out_npu

+

max_pool3d_with_indices_backward_out_npu

727

replication_pad2d

+

max_pool3d_with_indices_backward

replication_pad2d_npu

+

max_pool3d_with_indices_backward_npu

728

upsample_linear1d.out

+

max_unpool2d.out

upsample_linear1d_out_npu

+

max_unpool2d_out_npu

729

upsample_linear1d

+

max_unpool2d

upsample_linear1d_npu

+

max_unpool2d_npu

730

upsample_linear1d_backward

+

max_unpool2d_backward.grad_input

upsample_linear1d_backward_npu

+

max_unpool2d_backward_out_npu

731

upsample_bilinear2d.out

+

max_unpool2d_backward

upsample_bilinear2d_out_npu

+

max_unpool2d_backward_npu

732

upsample_bilinear2d

+

max_unpool3d.out

upsample_bilinear2d_npu

+

max_unpool3d_out_npu

733

upsample_bilinear2d_backward.grad_input

+

max_unpool3d

upsample_bilinear2d_backward_out_npu

+

max_unpool3d_npu

734

upsample_bilinear2d_backward

+

max_unpool3d_backward.grad_input

upsample_bilinear2d_backward_npu

+

max_unpool3d_backward_out_npu

735

upsample_bicubic2d.out

+

max_unpool3d_backward

upsample_bicubic2d_out_npu

+

max_unpool3d_backward_npu

736

upsample_bicubic2d

+

reflection_pad2d.out

upsample_bicubic2d_npu

+

reflection_pad2d_out_npu

737

upsample_bicubic2d_backward.grad_input

+

reflection_pad2d

upsample_bicubic2d_backward_out_npu

+

reflection_pad2d_npu

738

upsample_bicubic2d_backward

+

reflection_pad2d_backward.grad_input

upsample_bicubic2d_backward_npu

+

reflection_pad2d_backward_out_npu

739

upsample_trilinear3d.out

+

reflection_pad2d_backward

upsample_trilinear3d_out_npu

+

reflection_pad2d_backward_npu

740

upsample_trilinear3d

+

replication_pad2d.out

upsample_trilinear3d_npu

+

replication_pad2d_out_npu

741

upsample_trilinear3d_backward.grad_input

+

replication_pad2d

upsample_trilinear3d_backward_out_npu

+

replication_pad2d_npu

742

upsample_trilinear3d_backward

+

replication_pad2d_backward.grad_input

upsample_trilinear3d_backward_npu

+

replication_pad2d_backward_out_npu

743

upsample_nearest1d.out

+

replication_pad2d_backward

upsample_nearest1d_out_npu

+

replication_pad2d_backward_npu

744

upsample_nearest1d

+

upsample_linear1d.out

upsample_nearest1d_npu

+

upsample_linear1d_out_npu

745

upsample_nearest1d_backward.grad_input

+

upsample_linear1d

upsample_nearest1d_backward_out_npu

+

upsample_linear1d_npu

746

upsample_nearest1d_backward

+

upsample_linear1d_backward

upsample_nearest1d_backward_npu

+

upsample_linear1d_backward_npu

747

upsample_nearest2d.out

+

upsample_bilinear2d.out

upsample_nearest2d_out_npu

+

upsample_bilinear2d_out_npu

748

upsample_nearest2d

+

upsample_bilinear2d

upsample_nearest2d_npu

+

upsample_bilinear2d_npu

749

upsample_nearest2d_backward.grad_input

+

upsample_bilinear2d_backward.grad_input

upsample_nearest2d_backward_out_npu

+

upsample_bilinear2d_backward_out_npu

750

upsample_nearest2d_backward

+

upsample_bilinear2d_backward

upsample_nearest2d_backward_npu

+

upsample_bilinear2d_backward_npu

751

upsample_nearest3d.out

+

upsample_bicubic2d.out

upsample_nearest3d_out_npu

+

upsample_bicubic2d_out_npu

752

upsample_nearest3d

+

upsample_bicubic2d

upsample_nearest3d_npu

+

upsample_bicubic2d_npu

753

upsample_nearest3d_backward.grad_input

+

upsample_bicubic2d_backward.grad_input

upsample_nearest3d_backward_out_npu

+

upsample_bicubic2d_backward_out_npu

754

upsample_nearest3d_backward

+

upsample_bicubic2d_backward

upsample_nearest3d_backward_npu

+

upsample_bicubic2d_backward_npu

755

sigmoid_backward.grad_input

+

upsample_trilinear3d.out

sigmoid_backward_out_npu

+

upsample_trilinear3d_out_npu

756

sigmoid_backward

+

upsample_trilinear3d

sigmoid_backward_npu

+

upsample_trilinear3d_npu

757

tanh_backward.grad_input

+

upsample_trilinear3d_backward.grad_input

tanh_backward_out_npu

+

upsample_trilinear3d_backward_out_npu

758

tanh_backward

+

upsample_trilinear3d_backward

tanh_backward_npu

+

upsample_trilinear3d_backward_npu

759

slow_conv_transpose2d.out

+

upsample_nearest1d.out

slow_conv_transpose2d_out_npu

+

upsample_nearest1d_out_npu

760

slow_conv_transpose2d

+

upsample_nearest1d

slow_conv_transpose2d_npu

+

upsample_nearest1d_npu

761

slow_conv_transpose2d_backward.grad_output

+

upsample_nearest1d_backward.grad_input

slow_conv_transpose2d_backward_out_npu

+

upsample_nearest1d_backward_out_npu

762

slow_conv_transpose2d_backward.output_mask

+

upsample_nearest1d_backward

slow_conv_transpose2d_backward_npu

+

upsample_nearest1d_backward_npu

763

thnn_conv2d.out

+

upsample_nearest2d.out

thnn_conv2d_out_npu

+

upsample_nearest2d_out_npu

764

thnn_conv2d

+

upsample_nearest2d

thnn_conv2d_npu

+

upsample_nearest2d_npu

765

thnn_conv2d_forward.output

+

upsample_nearest2d_backward.grad_input

thnn_conv2d_forward_out_npu

+

upsample_nearest2d_backward_out_npu

766

thnn_conv2d_forward

+

upsample_nearest2d_backward

thnn_conv2d_forward_npu

+

upsample_nearest2d_backward_npu

767

thnn_conv2d_backward.output_mask

+

upsample_nearest3d.out

thnn_conv2d_backward_npu

+

upsample_nearest3d_out_npu

768

thnn_conv_depthwise2d.out

+

upsample_nearest3d

thnn_conv_depthwise2d_out_npu

+

upsample_nearest3d_npu

769

thnn_conv_depthwise2d

+

upsample_nearest3d_backward.grad_input

thnn_conv_depthwise2d_npu

+

upsample_nearest3d_backward_out_npu

770

thnn_conv_depthwise2d_forward.out

+

upsample_nearest3d_backward

thnn_conv_depthwise2d_forward_out_npu

+

upsample_nearest3d_backward_npu

771

thnn_conv_depthwise2d_forward

+

sigmoid_backward.grad_input

thnn_conv_depthwise2d_forward_npu

+

sigmoid_backward_out_npu

772

thnn_conv_depthwise2d_backward.grad_input

+

sigmoid_backward

thnn_conv_depthwise2d_backward_out_npu

+

sigmoid_backward_npu

773

thnn_conv_depthwise2d_backward.output_mask

+

tanh_backward.grad_input

thnn_conv_depthwise2d_backward_npu

+

tanh_backward_out_npu

774

slow_conv3d.out

+

tanh_backward

slow_conv3d_out_npu

+

tanh_backward_npu

775

slow_conv3d

+

slow_conv_transpose2d.out

slow_conv3d_npu

+

slow_conv_transpose2d_out_npu

776

slow_conv3d_forward.output

+

slow_conv_transpose2d

slow_conv3d_forward_out_npu

+

slow_conv_transpose2d_npu

777

slow_conv3d_forward

+

slow_conv_transpose2d_backward.grad_output

slow_conv3d_forward_npu

+

slow_conv_transpose2d_backward_out_npu

778

slow_conv_dilated2d

+

slow_conv_transpose2d_backward.output_mask

slow_conv_dilated2d_npu

+

slow_conv_transpose2d_backward_npu

779

slow_conv_dilated2d_backward

+

thnn_conv2d.out

slow_conv_dilated2d_backward_npu

+

thnn_conv2d_out_npu

780

col2im.out

+

thnn_conv2d

im2col_backward_out_npu

+

thnn_conv2d_npu

781

col2im

+

thnn_conv2d_forward.output

im2col_backward_npu

+

thnn_conv2d_forward_out_npu

782

col2im_backward.grad_input

+

thnn_conv2d_forward

im2col_out_npu

+

thnn_conv2d_forward_npu

783

col2im_backward

+

thnn_conv2d_backward.output_mask

im2col_npu

+

thnn_conv2d_backward_npu

784

im2col.out

+

thnn_conv_depthwise2d.out

im2col_out_npu

+

thnn_conv_depthwise2d_out_npu

785

im2col

+

thnn_conv_depthwise2d

im2col_npu

+

thnn_conv_depthwise2d_npu

786

im2col_backward.grad_input

+

thnn_conv_depthwise2d_forward.out

im2col_backward_out_npu

+

thnn_conv_depthwise2d_forward_out_npu

787

im2col_backward

+

thnn_conv_depthwise2d_forward

im2col_backward_npu

+

thnn_conv_depthwise2d_forward_npu

788

+

788

isfinite

+

thnn_conv_depthwise2d_backward.grad_input

isfinite_npu

+

thnn_conv_depthwise2d_backward_out_npu

+

789

+

thnn_conv_depthwise2d_backward.output_mask

+

thnn_conv_depthwise2d_backward_npu

+

790

+

slow_conv3d.out

+

slow_conv3d_out_npu

+

791

+

slow_conv3d

+

slow_conv3d_npu

+

792

+

slow_conv3d_forward.output

+

slow_conv3d_forward_out_npu

+

793

+

slow_conv3d_forward

+

slow_conv3d_forward_npu

+

794

+

slow_conv_dilated2d

+

slow_conv_dilated2d_npu

+

795

+

slow_conv_dilated2d_backward

+

slow_conv_dilated2d_backward_npu

+

796

+

col2im.out

+

im2col_backward_out_npu

+

797

+

col2im

+

im2col_backward_npu

+

798

+

col2im_backward.grad_input

+

im2col_out_npu

+

799

+

col2im_backward

+

im2col_npu

+

800

+

im2col.out

+

im2col_out_npu

+

801

+

im2col

+

im2col_npu

+

802

+

im2col_backward.grad_input

+

im2col_backward_out_npu

+

803

+

im2col_backward

+

im2col_backward_npu

+

804

+

isfinite

+

isfinite_npu

-

PyTorch昇腾自定义算子

+

PyTorch昇腾自定义算子

序号

diff --git "a/docs/zh/\346\224\257\346\214\201ONNX\347\256\227\345\255\220\346\270\205\345\215\225/\346\224\257\346\214\201ONNX\347\256\227\345\255\220\346\270\205\345\215\225.md" "b/docs/zh/\346\224\257\346\214\201ONNX\347\256\227\345\255\220\346\270\205\345\215\225/\346\224\257\346\214\201ONNX\347\256\227\345\255\220\346\270\205\345\215\225.md" index f3b021d809821ad0257010a9a6629ba296c28017..2c606fdd00673c1876bddcd3cc3e13de476e5a29 100644 --- "a/docs/zh/\346\224\257\346\214\201ONNX\347\256\227\345\255\220\346\270\205\345\215\225/\346\224\257\346\214\201ONNX\347\256\227\345\255\220\346\270\205\345\215\225.md" +++ "b/docs/zh/\346\224\257\346\214\201ONNX\347\256\227\345\255\220\346\270\205\345\215\225/\346\224\257\346\214\201ONNX\347\256\227\345\255\220\346\270\205\345\215\225.md" @@ -422,7 +422,7 @@ keep\_dim:可选,keep\_dim默认为1,支持1或0。 【约束】 -算子不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时fp32类型输入 +算子不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时float32类型输入 ### 支持的ONNX版本 @@ -454,7 +454,7 @@ axis:数据类型为int,含义:指定计算轴;取值范围:\[-r, r-1\ 【约束】 -算子不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时fp32类型输入 +算子不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时float32类型输入 ### 支持的ONNX版本 @@ -820,7 +820,7 @@ kernel\_shape\_H或kernel\_shape\_W取值超过\[1,255\],或者kernel\_shape\_ ceil\_mode参数仅在auto\_pad='NOTSET'时生效; -不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时fp32类型输入; +不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时float32类型输入; auto\_pad属性值SAME\_UPPER, SAME\_LOWER统一使用的TBE的SAME属性,即TBE算子没有根据这个属性区分pad的填充位置,可能会带来精度问题 @@ -1170,7 +1170,7 @@ dilations只支持1 output\_shape支持限制:实现部分功能。现在支持output shape的大小,小于原始输入大小,但是不支持大于原始输入大小 -算子不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时fp32,fp64的输入 +算子不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时float32,float64的输入 属性auto\_pad不支持 "SAME\_UPPER","SAME\_LOWER" @@ -1252,7 +1252,7 @@ strides:4个整数的列表,指定沿高度H和宽度W的卷积步长。H和 当输出张量的W = 1,H != 1时,算子不支持 -不支持atc工具--precision\_mode=must\_keep\_origin\_dtype参数时输入类型为fp32和fp64 +不支持atc工具--precision\_mode=must\_keep\_origin\_dtype参数时输入类型为float32和float64 ### 支持的ONNX版本 @@ -1440,7 +1440,7 @@ modulated:bool,指定DeformableConv2D版本,true表示v2版本,false表 权重张量,W维度取值范围为\[1, 63\],H取值范围为\[1, 63\] -不支持atc工具--precision\_mode=must\_keep\_origin\_dtype参数时输入类型为fp32和fp64 +不支持atc工具--precision\_mode=must\_keep\_origin\_dtype参数时输入类型为float32和float64 ### 支持的ONNX版本 @@ -1950,7 +1950,7 @@ beta:float,该参数暂不支持 【约束】 -v8/v9/v10版本不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时fp32类型输入 +v8/v9/v10版本不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时float32类型输入 ### 支持的ONNX版本 @@ -2438,7 +2438,7 @@ y:tensor,数据类型:float16 【属性】 -auto\_pad:string,默认为NOTSET,支持:NOTSET, SAME\_UPPER, SAME\_LOWER 或者 VALID +auto\_pad:string,默认为NOTSET,支持:NOTSET, SAME\_UPPER或者 VALID kernel\_shape:必选,int列表,kernel每个轴上的尺寸 @@ -2448,10 +2448,6 @@ pads:int列表 strides:int列表 -【约束】 - -auto\_pad属性值SAME\_UPPER, SAME\_LOWER统一使用的TBE的SAME属性,即TBE算子没有根据这个属性区分pad的填充位置,可能会带来精度问题 - ### 支持的ONNX版本 Opset v11/v12/v13 @@ -2655,7 +2651,7 @@ kernel\_shape\_H或kernel\_shape\_W取值超过\[1,255\],或者kernel\_shape\_ auto\_pad属性是VALID时,ceil\_mode属性值必须为0 -不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时fp32类型输入 +不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时float32类型输入 pads属性和auto\_pad属性不可同时使用 @@ -2689,7 +2685,7 @@ spatial\_scale: float,默认值:1.0 【约束】 -不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时fp32类型输入 +不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时float32类型输入 ### 支持的ONNX版本 @@ -3691,7 +3687,7 @@ spatial\_scale:float,默认为1.0,含义:相对于输入图像的空间 batch\_indices数据类型只能写int32不能写int64 -不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时fp32,fp64的输入 +不支持atc工具参数--precision\_mode=must\_keep\_origin\_dtype时float32,float64的输入 ### 支持的ONNX版本 @@ -3885,7 +3881,7 @@ Opset v9/v10/v11/ v12/v13 一个输入 -x:fp16,fp32,double类型的tensor +x:float16,float32,double类型的tensor 两个属性 @@ -4531,19 +4527,25 @@ x:数据类型支持float16、float32、int32 pads:数据类型支持int32 、int64 +constant\_value:可选。默认情况下为0、空字符串或False,如果选择的模式为\`constant\`,则要使用的标量值。 + 【输出】 一个输出 y:数据类型和输入x一致 +【属性】 + +mode:str类型,支持模式有:constant,reflect,edge + 【约束】 当mode值为constant时,目前仅支持constant\_value=0 ### 支持的ONNX版本 -Opset v8/v9/v10/v11/v12/v13 +Opset v11

Pow