# EfficientNet-Lite **Repository Path**: atari/EfficientNet-Lite ## Basic Information - **Project Name**: EfficientNet-Lite - **Description**: 同步 https://github.com/RangiLyu/EfficientNet-Lite - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2021-02-20 - **Last Updated**: 2022-06-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # EfficientNet-Lite Pytorch Pytorch implementation of Google's [EfficientNet-lite](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite). Provide imagenet pre-train models. In EfficientNet-Lite, all SE modules are removed and all swish layers are replaced with ReLU6. It's more friendly for edge devices than EfficientNet-B series. Model details: |**Model** | **Params** | **MAdds** | **Top1 Acc(Official)** | **Top1 Acc(This repo)** | **Top5 Acc**| |----------|-----|-------|-------|-------|-------| |efficientnet-lite0 | 4.7M | 407M | 75.1% | 71.73% |90.17% | |efficientnet-lite1 | 5.4M | 631M | 76.7% | 74.71% |92.01% | |efficientnet-lite2 | 6.1M | 899M | 77.6% | 77.14% |93.54% | |efficientnet-lite3 | 8.2M | 1.44B | 79.8% | 78.91% |94.37% | |efficientnet-lite4 |13.0M | 2.64B | 81.5% | 80.34% |95.06% | ## Download Model |**Pre-train Model** | |----------| |efficientnet-lite0 [Download Link](https://github.com/RangiLyu/EfficientNet-Lite/releases/download/v1.0/efficientnet_lite0.pth) | |efficientnet-lite1 [Download Link](https://github.com/RangiLyu/EfficientNet-Lite/releases/download/v1.0/efficientnet_lite1.pth) | |efficientnet-lite2 [Download Link](https://github.com/RangiLyu/EfficientNet-Lite/releases/download/v1.0/efficientnet_lite2.pth) | |efficientnet-lite3 [Download Link](https://github.com/RangiLyu/EfficientNet-Lite/releases/download/v1.0/efficientnet_lite3.pth) | |efficientnet-lite4 [Download Link](https://github.com/RangiLyu/EfficientNet-Lite/releases/download/v1.0/efficientnet_lite4.pth) | ## Train ``` python train.py --model_name efficientnet_lite0 --train_dir YOUR_TRAINDATASET_PATH --val_dir YOUR_VALDATASET_PATH ``` ## Eval ``` python train.py --eval --eval_resume YOUR_MODEL_PATH --model_name efficientnet_lite0 --train_dir YOUR_TRAINDATASET_PATH --val_dir YOUR_VALDATASET_PATH ``` eval reaults: ``` efficientnet_lite0 TEST Iter 0: loss = 2.100231, Top-1 err = 0.282700, Top-5 err = 0.098280, val_time = 120.648957 efficientnet_lite1 TEST Iter 0: loss = 2.076898, Top-1 err = 0.252940, Top-5 err = 0.079880, val_time = 126.869352 efficientnet_lite2 TEST Iter 0: loss = 1.929238, Top-1 err = 0.228660, Top-5 err = 0.064640, val_time = 142.668548 efficientnet_lite3 TEST Iter 0: loss = 1.782202, Top-1 err = 0.210920, Top-5 err = 0.056260, val_time = 147.359098 efficientnet_lite4 TEST Iter 0: loss = 1.714834, Top-1 err = 0.196580, Top-5 err = 0.049440, val_time = 158.336004 ```