# RealNet
**Repository Path**: atari/RealNet
## Basic Information
- **Project Name**: RealNet
- **Description**: 同步 https://github.com/cnulab/RealNet
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-04-10
- **Last Updated**: 2024-04-10
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# RealNet
**💡 This is the official implementation of the paper "RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection (CVPR 2024)" [[arxiv]](https://arxiv.org/abs/2403.05897)**  
  
  
RealNet is a simple yet effective framework that incorporates three key innovations: First, we propose Strength-controllable Diffusion Anomaly Synthesis (SDAS), a diffusion process-based synthesis strategy capable of generating samples with varying anomaly strengths that mimic the distribution of real anomalous samples. Second, we develop Anomaly-aware Features Selection (AFS), a method for selecting representative and discriminative pre-trained feature subsets to improve anomaly detection performance while controlling computational costs. Third, we introduce Reconstruction Residuals Selection (RRS), a strategy that adaptively selects discriminative residuals for comprehensive identification of anomalous regions across multiple levels of granularity.


