# SRN.pytorch **Repository Path**: atari/SRN.pytorch ## Basic Information - **Project Name**: SRN.pytorch - **Description**: 同步 https://github.com/chenjun2hao/SRN.pytorch - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-21 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Towards Accurate Scene Text Recognition with Semantic Reasoning Networks Unofficial PyTorch implementation of the [paper](https://arxiv.org/abs/2003.12294), which integrates not only global semantic reasoning module but also parallel visual attention module and visual-semantic fusion decoder.the semanti reasoning network(SRN) can be trained end-to-end. At present, the accuracy of the paper cannot be achieved. And i borrowed code from [deep-text-recognition-benchmark](https://github.com/clovaai/deep-text-recognition-benchmark) **model** **result** | IIIT5k_3000 | SVT | IC03_860 | IC03_867 | IC13_857 | IC13_1015 | IC15_1811 | IC15_2077 | SVTP | CUTE80 | | ----------- | ------| ---------| ---------| ---------| --------- | ----------| --------- | ---- | ------ | | 84.600 | 83.617| 92.907 | 92.849 | 90.315 | 88.177 | 71.010 | 68.064 | 71.008 | 68.641 | **total_accuracy: 80.597** --- **Feature** - predict the character at once time - DistributedDataParallel training --- ## Requirements Pytorch >= 1.1.0 ## Test 1. download the evaluation data from [deep-text-recognition-benchmark](https://github.com/clovaai/deep-text-recognition-benchmark) 2. download the pretrained model from [Baidu](https://pan.baidu.com/s/1E5xeajIl_fvtrGWyrE9CeA), Password: d2qn 3. test on the evaluation data ```bash python test.py --eval_data path-to-data --saved_model path-to-model ``` --- ## Train 1. download the training data from [deep-text-recognition-benchmark](https://github.com/clovaai/deep-text-recognition-benchmark) 2. training from scratch ```bash python train.py --train_data path-to-train-data --valid-data path-to-valid-data ``` ## Reference 1. [bert_ocr.pytorch](https://github.com/chenjun2hao/Bert_OCR.pytorch) 2. [deep-text-recognition-benchmark](https://github.com/clovaai/deep-text-recognition-benchmark) 3. [2D Attentional Irregular Scene Text Recognizer](https://arxiv.org/pdf/1906.05708.pdf) 4. [Towards Accurate Scene Text Recognition with Semantic Reasoning Networks](https://arxiv.org/abs/2003.12294) ## difference with the origin paper - use resnet for 1D feature not resnetFpn 2D feature - use add not gated unit for visual-semanti fusion decoder ## other It is difficult to achieve the accuracy of the paper, hope more people to try and share