# SimpleNet **Repository Path**: atari/SimpleNet ## Basic Information - **Project Name**: SimpleNet - **Description**: 同步 https://github.com/DonaldRR/SimpleNet - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-08 - **Last Updated**: 2023-12-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SimpleNet ![](imgs/cover.png) **SimpleNet: A Simple Network for Image Anomaly Detection and Localization** *Zhikang Liu, Yiming Zhou, Yuansheng Xu, Zilei Wang** [Paper link](https://openaccess.thecvf.com/content/CVPR2023/papers/Liu_SimpleNet_A_Simple_Network_for_Image_Anomaly_Detection_and_Localization_CVPR_2023_paper.pdf) ## Introduction This repo contains source code for **SimpleNet** implemented with pytorch. SimpleNet is a simple defect detection and localization network that built with a feature encoder, feature generator and defect discriminator. It is designed conceptionally simple without complex network deisng, training schemes or external data source. ## Get Started ### Environment **Python3.8** **Packages**: - torch==1.12.1 - torchvision==0.13.1 - numpy==1.22.4 - opencv-python==4.5.1 (Above environment setups are not the minimum requiremetns, other versions might work too.) ### Data Edit `run.sh` to edit dataset class and dataset path. #### MvTecAD Download the dataset from [here](https://www.mvtec.com/company/research/datasets/mvtec-ad/). The dataset folders/files follow its original structure. ### Run #### Demo train Please specicy dataset path (line1) and log folder (line10) in `run.sh` before running. `run.sh` gives the configuration to train models on MVTecAD dataset. ``` bash run.sh ``` ## Citation ``` @inproceedings{liu2023simplenet, title={SimpleNet: A Simple Network for Image Anomaly Detection and Localization}, author={Liu, Zhikang and Zhou, Yiming and Xu, Yuansheng and Wang, Zilei}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={20402--20411}, year={2023} } ``` ## Acknowledgement Thanks for great inspiration from [PatchCore](https://github.com/amazon-science/patchcore-inspection) ## License All code within the repo is under [MIT license](https://mit-license.org/)