# ncnn-android-yolox **Repository Path**: atari/ncnn-android-yolox ## Basic Information - **Project Name**: ncnn-android-yolox - **Description**: 同步 https://github.com/FeiGeChuanShu/ncnn-android-yolox - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-07-20 - **Last Updated**: 2021-11-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README The yolox object detection This is a sample ncnn android project, it depends on ncnn library and opencv https://github.com/Tencent/ncnn https://github.com/nihui/opencv-mobile ## how to build and run ### step1 https://github.com/Tencent/ncnn/releases * Download ncnn-YYYYMMDD-android-vulkan.zip or build ncnn for android yourself * Extract ncnn-YYYYMMDD-android-vulkan.zip into **app/src/main/jni** and change the **ncnn_DIR** path to yours in **app/src/main/jni/CMakeLists.txt** ### step2 https://github.com/nihui/opencv-mobile * Download opencv-mobile-XYZ-android.zip * Extract opencv-mobile-XYZ-android.zip into **app/src/main/jni** and change the **OpenCV_DIR** path to yours in **app/src/main/jni/CMakeLists.txt** ### step3 * Open this project with Android Studio, build it and enjoy! ## some notes * Android ndk camera is used for best efficiency * Crash may happen on very old devices for lacking HAL3 camera interface * All models are manually modified to accept dynamic input shape * Most small models run slower on GPU than on CPU, this is common * FPS may be lower in dark environment because of longer camera exposure time ## screenshot ![](screenshot.png) ## reference https://github.com/nihui/ncnn-android-nanodet https://github.com/Megvii-BaseDetection/YOLOX