# ShuffleNetV2-pytorch **Repository Path**: beijieer/ShuffleNetV2-pytorch ## Basic Information - **Project Name**: ShuffleNetV2-pytorch - **Description**: Implementation of ShuffleNetV2 for pytorch - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2021-11-03 - **Last Updated**: 2021-11-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ShuffleNetv2 in PyTorch An implementation of `ShuffleNetv2` in PyTorch. `ShuffleNetv2` is an efficient convolutional neural network architecture for mobile devices. For more information check the paper: [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164) ## Usage Clone the repo: ```bash git clone https://github.com/Randl/ShuffleNetV2-pytorch pip install -r requirements.txt ``` Use the model defined in `model.py` to run ImageNet example: ```bash python imagenet.py --dataroot "/path/to/imagenet/" ``` To continue training from checkpoint ```bash python imagenet.py --dataroot "/path/to/imagenet/" --resume "/path/to/checkpoint/folder" ``` ## Results For x0.5 model I achieved 0.4% lower top-1 accuracy than claimed. |Classification Checkpoint| MACs (M) | Parameters (M)| Top-1 Accuracy| Top-5 Accuracy| Claimed top-1| Claimed top-5| |-------------------------|------------|---------------|---------------|---------------|---------------|---------------| | [shufflenet_v2_0.5]|41 |1.37 | 59.86| 81.63| 60.3| -| You can test it with ```bash python imagenet.py --dataroot "/path/to/imagenet/" --resume "results/shufflenet_v2_0.5/model_best.pth.tar" -e --scaling 0.5 ```