# yolov11-tensorrt **Repository Path**: betterjason/yolov11-tensorrt ## Basic Information - **Project Name**: yolov11-tensorrt - **Description**: No description available - **Primary Language**: Unknown - **License**: AGPL-3.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-22 - **Last Updated**: 2025-01-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
YOLOv11-TensorRT =========================== [![python](https://img.shields.io/badge/python-3.10.12-green)](https://www.python.org/downloads/release/python-31012/) [![cuda](https://img.shields.io/badge/cuda-11.6-green)](https://developer.nvidia.com/cuda-downloads) [![trt](https://img.shields.io/badge/TRT-8.6-green)](https://developer.nvidia.com/tensorrt) [![mit](https://img.shields.io/badge/license-MIT-blue)](https://github.com/spacewalk01/TensorRT-YOLOv9/tree/main?tab=MIT-1-ov-file#readme)

This repository hosts a C++ implementation of the state-of-the-art YOLOv11 object detection model from ultralytics, leveraging the TensorRT API for efficient, real-time inference. ## Installation ### 1. Clone the Repository ```bash git clone https://github.com/spacewalk01/yolov11-tensorrt.git cd yolov11-tensorrt ``` ### 2. Install Dependencies - **For Python**: Install required Python dependencies using pip: ```bash pip install --upgrade ultralytics ``` - **For C++**: Ensure that OpenCV and TensorRT are installed. Set the correct paths for these libraries in the `CMakeLists.txt` file. ### 3. Build the C++ Code ```bash mkdir build && cd build cmake .. cmake --build . --config Release ``` ## Usage ### Exporting the Model 1. Modify the `export.py` script if needed to set the desired model name. 2. Run the Python script to export the YOLOv11 model to ONNX format: ```bash python export.py ``` ### Running Inference #### 1. Create a TensorRT Engine Convert the ONNX model to a TensorRT engine: ```bash ./yolov11-tensorrt.exe yolo11s.onnx "" ``` #### 2. Run Inference on an Image Perform object detection on an image: ```bash ./yolov11-tensorrt.exe yolo11s.engine "zidane.jpg" ``` #### 3. Run Inference on a Video Perform object detection on a video: ```bash ./yolov11-tensorrt.exe yolo11s.engine "road.mp4" ``` ## License This project is licensed under the AGPL-3.0 License. See the [LICENSE](LICENSE) file for details.