代码拉取完成,页面将自动刷新
import argparse
import torch
from scipy.io.wavfile import write
from deepspeech_pytorch.loader.data_loader import load_audio, NoiseInjection
parser = argparse.ArgumentParser()
parser.add_argument('--input-path', default='input.wav', help='The input audio to inject noise into')
parser.add_argument('--noise-path', default='noise.wav', help='The noise file to mix in')
parser.add_argument('--output-path', default='output.wav', help='The noise file to mix in')
parser.add_argument('--sample-rate', default=16000, help='Sample rate to save output as')
parser.add_argument('--noise-level', type=float, default=1.0,
help='The Signal to Noise ratio (higher means more noise)')
args = parser.parse_args()
noise_injector = NoiseInjection()
data = load_audio(args.input_path)
mixed_data = noise_injector.inject_noise_sample(data, args.noise_path, args.noise_level)
mixed_data = torch.tensor(mixed_data, dtype=torch.float).unsqueeze(1) # Add channels dim
write(filename=args.output_path,
data=mixed_data.numpy(),
rate=args.sample_rate)
print('Saved mixed file to %s' % args.output_path)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。