# k8s-device-plugin **Repository Path**: blueGitRepo/k8s-device-plugin ## Basic Information - **Project Name**: k8s-device-plugin - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: dependabot/docker/deployments/container/release-0.16/nvidia/cuda-12.6.1-base-ubuntu22.04 - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-06 - **Last Updated**: 2024-09-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # NVIDIA device plugin for Kubernetes [![End-to-end Tests](https://github.com/NVIDIA/k8s-device-plugin/actions/workflows/e2e.yaml/badge.svg)](https://github.com/NVIDIA/k8s-device-plugin/actions/workflows/e2e.yaml) [![Go Report Card](https://goreportcard.com/badge/github.com/NVIDIA/k8s-device-plugin)](https://goreportcard.com/report/github.com/NVIDIA/k8s-device-plugin) [![Latest Release](https://img.shields.io/github/v/release/NVIDIA/k8s-device-plugin)](https://github.com/NVIDIA/k8s-device-plugin/releases/latest) ## Table of Contents - [About](#about) - [Prerequisites](#prerequisites) - [Quick Start](#quick-start) * [Preparing your GPU Nodes](#preparing-your-gpu-nodes) * [Enabling GPU Support in Kubernetes](#enabling-gpu-support-in-kubernetes) * [Running GPU Jobs](#running-gpu-jobs) - [Configuring the NVIDIA device plugin binary](#configuring-the-nvidia-device-plugin-binary) * [As command line flags or envvars](#as-command-line-flags-or-envvars) * [As a configuration file](#as-a-configuration-file) * [Configuration Option Details](#configuration-option-details) * [Shared Access to GPUs](#shared-access-to-gpus) * [With CUDA Time-Slicing](#with-cuda-time-slicing) * [With CUDA MPS](#with-cuda-mps) - [Deployment via `helm`](#deployment-via-helm) * [Configuring the device plugin's `helm` chart](#configuring-the-device-plugins-helm-chart) + [Passing configuration to the plugin via a `ConfigMap`.](#passing-configuration-to-the-plugin-via-a-configmap) - [Single Config File Example](#single-config-file-example) - [Multiple Config File Example](#multiple-config-file-example) - [Updating Per-Node Configuration With a Node Label](#updating-per-node-configuration-with-a-node-label) + [Setting other helm chart values](#setting-other-helm-chart-values) + [Deploying with gpu-feature-discovery for automatic node labels](#deploying-with-gpu-feature-discovery-for-automatic-node-labels) + [Deploying gpu-feature-discovery in standalone mode](#deploying-gpu-feature-discovery-in-standalone-mode) * [Deploying via `helm install` with a direct URL to the `helm` package](#deploying-via-helm-install-with-a-direct-url-to-the-helm-package) - [Building and Running Locally](#building-and-running-locally) - [Changelog](#changelog) - [Issues and Contributing](#issues-and-contributing) ## About The NVIDIA device plugin for Kubernetes is a Daemonset that allows you to automatically: - Expose the number of GPUs on each nodes of your cluster - Keep track of the health of your GPUs - Run GPU enabled containers in your Kubernetes cluster. This repository contains NVIDIA's official implementation of the [Kubernetes device plugin](https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/). As of v0.15.0 this repository also holds the implementation for GPU Feature Discovery labels, for further information on GPU Feature Discovery see [here](docs/gpu-feature-discovery/README.md). Please note that: - The NVIDIA device plugin API is beta as of Kubernetes v1.10. - The NVIDIA device plugin is currently lacking - Comprehensive GPU health checking features - GPU cleanup features - Support will only be provided for the official NVIDIA device plugin (and not for forks or other variants of this plugin). ## Prerequisites The list of prerequisites for running the NVIDIA device plugin is described below: * NVIDIA drivers ~= 384.81 * nvidia-docker >= 2.0 || nvidia-container-toolkit >= 1.7.0 (>= 1.11.0 to use integrated GPUs on Tegra-based systems) * nvidia-container-runtime configured as the default low-level runtime * Kubernetes version >= 1.10 ## Quick Start ### Preparing your GPU Nodes The following steps need to be executed on all your GPU nodes. This README assumes that the NVIDIA drivers and the `nvidia-container-toolkit` have been pre-installed. It also assumes that you have configured the `nvidia-container-runtime` as the default low-level runtime to use. Please see: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html #### Example for debian-based systems with `docker` and `containerd` ##### Install the NVIDIA Container Toolkit For instructions on installing and getting started with the NVIDIA Container Toolkit, refer to the [installation guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installation-guide). Also note the configuration instructions for: * [`containerd`](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#configuring-containerd-for-kubernetes) * [`CRI-O`](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#configuring-cri-o) * [`docker` (Deprecated)](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#configuring-docker) Remembering to restart each runtime after applying the configuration changes. If the `nvidia` runtime should be set as the default runtime (required for `docker`), the `--set-as-default` argument must also be included in the commands above. If this is not done, a RuntimeClass needs to be defined. ##### Notes on `CRI-O` configuration When running `kubernetes` with `CRI-O`, add the config file to set the `nvidia-container-runtime` as the default low-level OCI runtime under `/etc/crio/crio.conf.d/99-nvidia.conf`. This will take priority over the default `crun` config file at `/etc/crio/crio.conf.d/10-crun.conf`: ``` [crio] [crio.runtime] default_runtime = "nvidia" [crio.runtime.runtimes] [crio.runtime.runtimes.nvidia] runtime_path = "/usr/bin/nvidia-container-runtime" runtime_type = "oci" ``` As stated in the linked documentation, this file can automatically be generated with the nvidia-ctk command: ``` $ sudo nvidia-ctk runtime configure --runtime=crio --set-as-default --config=/etc/crio/crio.conf.d/99-nvidia.conf ``` `CRI-O` uses `crun` as default low-level OCI runtime so `crun` needs to be added to the runtimes of the `nvidia-container-runtime` in the config file at `/etc/nvidia-container-runtime/config.toml`: ``` [nvidia-container-runtime] runtimes = ["crun", "docker-runc", "runc"] ``` And then restart `CRI-O`: ``` $ sudo systemctl restart crio ``` ### Enabling GPU Support in Kubernetes Once you have configured the options above on all the GPU nodes in your cluster, you can enable GPU support by deploying the following Daemonset: ```shell $ kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.16.2/deployments/static/nvidia-device-plugin.yml ``` **Note:** This is a simple static daemonset meant to demonstrate the basic features of the `nvidia-device-plugin`. Please see the instructions below for [Deployment via `helm`](#deployment-via-helm) when deploying the plugin in a production setting. ### Running GPU Jobs With the daemonset deployed, NVIDIA GPUs can now be requested by a container using the `nvidia.com/gpu` resource type: ```yaml $ cat < **WARNING:** *if you don't request GPUs when using the device plugin with NVIDIA images all > the GPUs on the machine will be exposed inside your container.* ## Configuring the NVIDIA device plugin binary The NVIDIA device plugin has a number of options that can be configured for it. These options can be configured as command line flags, environment variables, or via a config file when launching the device plugin. Here we explain what each of these options are and how to configure them directly against the plugin binary. The following section explains how to set these configurations when deploying the plugin via `helm`. ### As command line flags or envvars | Flag | Envvar | Default Value | |--------------------------|-------------------------|-----------------| | `--mig-strategy` | `$MIG_STRATEGY` | `"none"` | | `--fail-on-init-error` | `$FAIL_ON_INIT_ERROR` | `true` | | `--nvidia-driver-root` | `$NVIDIA_DRIVER_ROOT` | `"/"` | | `--pass-device-specs` | `$PASS_DEVICE_SPECS` | `false` | | `--device-list-strategy` | `$DEVICE_LIST_STRATEGY` | `"envvar"` | | `--device-id-strategy` | `$DEVICE_ID_STRATEGY` | `"uuid"` | | `--config-file` | `$CONFIG_FILE` | `""` | ### As a configuration file ``` version: v1 flags: migStrategy: "none" failOnInitError: true nvidiaDriverRoot: "/" plugin: passDeviceSpecs: false deviceListStrategy: "envvar" deviceIDStrategy: "uuid" ``` **Note:** The configuration file has an explicit `plugin` section because it is a shared configuration between the plugin and [`gpu-feature-discovery`](https://github.com/NVIDIA/gpu-feature-discovery). All options inside the `plugin` section are specific to the plugin. All options outside of this section are shared. ### Configuration Option Details **`MIG_STRATEGY`**: the desired strategy for exposing MIG devices on GPUs that support it `[none | single | mixed] (default 'none')` The `MIG_STRATEGY` option configures the daemonset to be able to expose Multi-Instance GPUs (MIG) on GPUs that support them. More information on what these strategies are and how they should be used can be found in [Supporting Multi-Instance GPUs (MIG) in Kubernetes](https://docs.google.com/document/d/1mdgMQ8g7WmaI_XVVRrCvHPFPOMCm5LQD5JefgAh6N8g). **Note:** With a `MIG_STRATEGY` of mixed, you will have additional resources available to you of the form `nvidia.com/mig-g.gb` that you can set in your pod spec to get access to a specific MIG device. **`FAIL_ON_INIT_ERROR`**: fail the plugin if an error is encountered during initialization, otherwise block indefinitely `(default 'true')` When set to true, the `FAIL_ON_INIT_ERROR` option fails the plugin if an error is encountered during initialization. When set to false, it prints an error message and blocks the plugin indefinitely instead of failing. Blocking indefinitely follows legacy semantics that allow the plugin to deploy successfully on nodes that don't have GPUs on them (and aren't supposed to have GPUs on them) without throwing an error. In this way, you can blindly deploy a daemonset with the plugin on all nodes in your cluster, whether they have GPUs on them or not, without encountering an error. However, doing so means that there is no way to detect an actual error on nodes that are supposed to have GPUs on them. Failing if an initialization error is encountered is now the default and should be adopted by all new deployments. **`NVIDIA_DRIVER_ROOT`**: the root path for the NVIDIA driver installation `(default '/')` When the NVIDIA drivers are installed directly on the host, this should be set to `'/'`. When installed elsewhere (e.g. via a driver container), this should be set to the root filesystem where the drivers are installed (e.g. `'/run/nvidia/driver'`). **Note:** This option is only necessary when used in conjunction with the `$PASS_DEVICE_SPECS` option described below. It tells the plugin what prefix to add to any device file paths passed back as part of the device specs. **`PASS_DEVICE_SPECS`**: pass the paths and desired device node permissions for any NVIDIA devices being allocated to the container `(default 'false')` This option exists for the sole purpose of allowing the device plugin to interoperate with the `CPUManager` in Kubernetes. Setting this flag also requires one to deploy the daemonset with elevated privileges, so only do so if you know you need to interoperate with the `CPUManager`. **`DEVICE_LIST_STRATEGY`**: the desired strategy for passing the device list to the underlying runtime `[envvar | volume-mounts | cdi-annotations | cdi-cri ] (default 'envvar')` **Note**: Multiple device list strategies can be specified (as a comma-separated list). The `DEVICE_LIST_STRATEGY` flag allows one to choose which strategy the plugin will use to advertise the list of GPUs allocated to a container. Possible values are: * `envvar` (default): the `NVIDIA_VISIBLE_DEVICES` environment variable as described [here](https://github.com/NVIDIA/nvidia-container-runtime#nvidia_visible_devices) is used to select the devices that are to be injected by the NVIDIA Container Runtime. * `volume-mounts`: the list of devices is passed as a set of volume mounts instead of as an environment variable to instruct the NVIDIA Container Runtime to inject the devices. Details for the rationale behind this strategy can be found [here](https://docs.google.com/document/d/1uXVF-NWZQXgP1MLb87_kMkQvidpnkNWicdpO2l9g-fw/edit#heading=h.b3ti65rojfy5). * `cdi-annotations`: CDI annotations are used to select the devices that are to be injected. Note that this does not require the NVIDIA Container Runtime, but does required a CDI-enabled container engine. * `cdi-cri`: the `CDIDevices` CRI field is used to select the CDI devices that are to be injected. This requries support in Kubernetes to forward these requests in the CRI to a CDI-enabled container engine. **`DEVICE_ID_STRATEGY`**: the desired strategy for passing device IDs to the underlying runtime `[uuid | index] (default 'uuid')` The `DEVICE_ID_STRATEGY` flag allows one to choose which strategy the plugin will use to pass the device ID of the GPUs allocated to a container. The device ID has traditionally been passed as the UUID of the GPU. This flag lets a user decide if they would like to use the UUID or the index of the GPU (as seen in the output of `nvidia-smi`) as the identifier passed to the underlying runtime. Passing the index may be desirable in situations where pods that have been allocated GPUs by the plugin get restarted with different physical GPUs attached to them. **`CONFIG_FILE`**: point the plugin at a configuration file instead of relying on command line flags or environment variables `(default '')` The order of precedence for setting each option is (1) command line flag, (2) environment variable, (3) configuration file. In this way, one could use a pre-defined configuration file, but then override the values set in it at launch time. As described below, a `ConfigMap` can be used to point the plugin at a desired configuration file when deploying via `helm`. ### Shared Access to GPUs The NVIDIA device plugin allows oversubscription of GPUs through a set of extended options in its configuration file. There are two flavors of sharing available: Time-Slicing and MPS. **Note:** The use of time-slicing and MPS are mutually exclusive. In the case of time-slicing, CUDA time-slicing is used to allow workloads sharing a GPU to interleave with each other. However, nothing special is done to isolate workloads that are granted replicas from the same underlying GPU, and each workload has access to the GPU memory and runs in the same fault-domain as of all the others (meaning if one workload crashes, they all do). In the case of MPS, a control daemon is used to manage access to the shared GPU. In contrast to time-slicing, MPS does space partitioning and allows memory and compute resources to be explicitly partitioned and enforces these limits per workload. #### With CUDA Time-Slicing The extended options for sharing using time-slicing can be seen below: ``` version: v1 sharing: timeSlicing: renameByDefault: failRequestsGreaterThanOne: resources: - name: replicas: ... ``` That is, for each named resource under `sharing.timeSlicing.resources`, a number of replicas can now be specified for that resource type. These replicas represent the number of shared accesses that will be granted for a GPU represented by that resource type. If `renameByDefault=true`, then each resource will be advertised under the name `.shared` instead of simply ``. If `failRequestsGreaterThanOne=true`, then the plugin will fail to allocate any shared resources to a container if they request more than one. The container’s pod will fail with an `UnexpectedAdmissionError` and need to be manually deleted, updated, and redeployed. For example: ``` version: v1 sharing: timeSlicing: resources: - name: nvidia.com/gpu replicas: 10 ``` If this configuration were applied to a node with 8 GPUs on it, the plugin would now advertise 80 `nvidia.com/gpu` resources to Kubernetes instead of 8. ``` $ kubectl describe node ... Capacity: nvidia.com/gpu: 80 ... ``` Likewise, if the following configuration were applied to a node, then 80 `nvidia.com/gpu.shared` resources would be advertised to Kubernetes instead of 8 `nvidia.com/gpu` resources. ``` version: v1 sharing: timeSlicing: renameByDefault: true resources: - name: nvidia.com/gpu replicas: 10 ... ``` ``` $ kubectl describe node ... Capacity: nvidia.com/gpu.shared: 80 ... ``` In both cases, the plugin simply creates 10 references to each GPU and indiscriminately hands them out to anyone that asks for them. If `failRequestsGreaterThanOne=true` were set in either of these configurations and a user requested more than one `nvidia.com/gpu` or `nvidia.com/gpu.shared` resource in their pod spec, then the container would fail with the resulting error: ``` $ kubectl describe pod gpu-pod ... Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning UnexpectedAdmissionError 13s kubelet Allocate failed due to rpc error: code = Unknown desc = request for 'nvidia.com/gpu: 2' too large: maximum request size for shared resources is 1, which is unexpected ... ``` **Note:** Unlike with "normal" GPU requests, requesting more than one shared GPU does not imply that you will get guaranteed access to a proportional amount of compute power. It only implies that you will get access to a GPU that is shared by other clients (each of which has the freedom to run as many processes on the underlying GPU as they want). Under the hood CUDA will simply give an equal share of time to all of the GPU processes across all of the clients. The `failRequestsGreaterThanOne` flag is meant to help users understand this subtlety, by treating a request of `1` as an access request rather than an exclusive resource request. Setting `failRequestsGreaterThanOne=true` is recommended, but it is set to `false` by default to retain backwards compatibility. As of now, the only supported resource available for time-slicing are `nvidia.com/gpu` as well as any of the resource types that emerge from configuring a node with the mixed MIG strategy. For example, the full set of time-sliceable resources on a T4 card would be: ``` nvidia.com/gpu ``` And the full set of time-sliceable resources on an A100 40GB card would be: ``` nvidia.com/gpu nvidia.com/mig-1g.5gb nvidia.com/mig-2g.10gb nvidia.com/mig-3g.20gb nvidia.com/mig-7g.40gb ``` Likewise, on an A100 80GB card, they would be: ``` nvidia.com/gpu nvidia.com/mig-1g.10gb nvidia.com/mig-2g.20gb nvidia.com/mig-3g.40gb nvidia.com/mig-7g.80gb ``` ### With CUDA MPS **Note**: Sharing with MPS is currently not supported on devices with MIG enabled. The extended options for sharing using MPS can be seen below: ``` version: v1 sharing: mps: renameByDefault: resources: - name: replicas: ... ``` That is, for each named resource under `sharing.mps.resources`, a number of replicas can be specified for that resource type. As is the case with time-slicing, these replicas represent the number of shared accesses that will be granted for a GPU associated with that resource type. In contrast with time-slicing, the amount of memory allowed per client (i.e. per partition) is managed by the MPS control daemon and limited to an equal fraction of the total device memory. In addition to controlling the amount of memory that each client can consume, the MPS control daemon also limits the amount of compute capacity that can be consumed by a client. If `renameByDefault=true`, then each resource will be advertised under the name `.shared` instead of simply ``. For example: ``` version: v1 sharing: mps: resources: - name: nvidia.com/gpu replicas: 10 ``` If this configuration were applied to a node with 8 GPUs on it, the plugin would now advertise 80 `nvidia.com/gpu` resources to Kubernetes instead of 8. ``` $ kubectl describe node ... Capacity: nvidia.com/gpu: 80 ... ``` Likewise, if the following configuration were applied to a node, then 80 `nvidia.com/gpu.shared` resources would be advertised to Kubernetes instead of 8 `nvidia.com/gpu` resources. ``` version: v1 sharing: mps: renameByDefault: true resources: - name: nvidia.com/gpu replicas: 10 ... ``` ``` $ kubectl describe node ... Capacity: nvidia.com/gpu.shared: 80 ... ``` Furthermore, each of these resources -- either `nvidia.com/gpu` or `nvidia.com/gpu.shared` -- would have access to the same fraction (1/10) of the total memory and compute resources of the GPU. **Note**: As of now, the only supported resource available for MPS are `nvidia.com/gpu` resources and only with full GPUs. ## Deployment via `helm` The preferred method to deploy the device plugin is as a daemonset using `helm`. Instructions for installing `helm` can be found [here](https://helm.sh/docs/intro/install/). Begin by setting up the plugin's `helm` repository and updating it at follows: ```shell $ helm repo add nvdp https://nvidia.github.io/k8s-device-plugin $ helm repo update ``` Then verify that the latest release (`v0.16.2`) of the plugin is available: ``` $ helm search repo nvdp --devel NAME CHART VERSION APP VERSION DESCRIPTION nvdp/nvidia-device-plugin 0.16.2 0.16.2 A Helm chart for ... ``` Once this repo is updated, you can begin installing packages from it to deploy the `nvidia-device-plugin` helm chart. The most basic installation command without any options is then: ``` helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --namespace nvidia-device-plugin \ --create-namespace \ --version 0.16.2 ``` **Note:** You only need the to pass the `--devel` flag to `helm search repo` and the `--version` flag to `helm upgrade -i` if this is a pre-release version (e.g. `-rc.1`). Full releases will be listed without this. ### Configuring the device plugin's `helm` chart The `helm` chart for the latest release of the plugin (`v0.16.2`) includes a number of customizable values. Prior to `v0.12.0` the most commonly used values were those that had direct mappings to the command line options of the plugin binary. As of `v0.12.0`, the preferred method to set these options is via a `ConfigMap`. The primary use case of the original values is then to override an option from the `ConfigMap` if desired. Both methods are discussed in more detail below. The full set of values that can be set are found here: [here](https://github.com/NVIDIA/k8s-device-plugin/blob/v0.16.2/deployments/helm/nvidia-device-plugin/values.yaml). #### Passing configuration to the plugin via a `ConfigMap`. In general, we provide a mechanism to pass _multiple_ configuration files to to the plugin's `helm` chart, with the ability to choose which configuration file should be applied to a node via a node label. In this way, a single chart can be used to deploy each component, but custom configurations can be applied to different nodes throughout the cluster. There are two ways to provide a `ConfigMap` for use by the plugin: 1. Via an external reference to a pre-defined `ConfigMap` 1. As a set of named config files to build an integrated `ConfigMap` associated with the chart These can be set via the chart values `config.name` and `config.map` respectively. In both cases, the value `config.default` can be set to point to one of the named configs in the `ConfigMap` and provide a default configuration for nodes that have not been customized via a node label (more on this later). ##### Single Config File Example As an example, create a valid config file on your local filesystem, such as the following: ``` cat << EOF > /tmp/dp-example-config0.yaml version: v1 flags: migStrategy: "none" failOnInitError: true nvidiaDriverRoot: "/" plugin: passDeviceSpecs: false deviceListStrategy: envvar deviceIDStrategy: uuid EOF ``` And deploy the device plugin via helm (pointing it at this config file and giving it a name): ``` $ helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --version=0.16.2 \ --namespace nvidia-device-plugin \ --create-namespace \ --set-file config.map.config=/tmp/dp-example-config0.yaml ``` Under the hood this will deploy a `ConfigMap` associated with the plugin and put the contents of the `dp-example-config0.yaml` file into it, using the name `config` as its key. It will then start the plugin such that this config gets applied when the plugin comes online. If you don’t want the plugin’s helm chart to create the `ConfigMap` for you, you can also point it at a pre-created `ConfigMap` as follows: ``` $ kubectl create ns nvidia-device-plugin ``` ``` $ kubectl create cm -n nvidia-device-plugin nvidia-plugin-configs \ --from-file=config=/tmp/dp-example-config0.yaml ``` ``` $ helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --version=0.16.2 \ --namespace nvidia-device-plugin \ --create-namespace \ --set config.name=nvidia-plugin-configs ``` ##### Multiple Config File Example For multiple config files, the procedure is similar. Create a second `config` file with the following contents: ``` cat << EOF > /tmp/dp-example-config1.yaml version: v1 flags: migStrategy: "mixed" # Only change from config0.yaml failOnInitError: true nvidiaDriverRoot: "/" plugin: passDeviceSpecs: false deviceListStrategy: envvar deviceIDStrategy: uuid EOF ``` And redeploy the device plugin via helm (pointing it at both configs with a specified default). ``` $ helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --version=0.16.2 \ --namespace nvidia-device-plugin \ --create-namespace \ --set config.default=config0 \ --set-file config.map.config0=/tmp/dp-example-config0.yaml \ --set-file config.map.config1=/tmp/dp-example-config1.yaml ``` As before, this can also be done with a pre-created `ConfigMap` if desired: ``` $ kubectl create ns nvidia-device-plugin ``` ``` $ kubectl create cm -n nvidia-device-plugin nvidia-plugin-configs \ --from-file=config0=/tmp/dp-example-config0.yaml \ --from-file=config1=/tmp/dp-example-config1.yaml ``` ``` $ helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --version=0.16.2 \ --namespace nvidia-device-plugin \ --create-namespace \ --set config.default=config0 \ --set config.name=nvidia-plugin-configs ``` **Note:** If the `config.default` flag is not explicitly set, then a default value will be inferred from the config if one of the config names is set to '`default`'. If neither of these are set, then the deployment will fail unless there is only **_one_** config provided. In the case of just a single config being provided, it will be chosen as the default because there is no other option. ##### Updating Per-Node Configuration With a Node Label With this setup, plugins on all nodes will have `config0` configured for them by default. However, the following label can be set to change which configuration is applied: ``` kubectl label nodes –-overwrite \ nvidia.com/device-plugin.config= ``` For example, applying a custom config for all nodes that have T4 GPUs installed on them might be: ``` kubectl label node \ --overwrite \ --selector=nvidia.com/gpu.product=TESLA-T4 \ nvidia.com/device-plugin.config=t4-config ``` **Note:** This label can be applied either _before_ or _after_ the plugin is started to get the desired configuration applied on the node. Anytime it changes value, the plugin will immediately be updated to start serving the desired configuration. If it is set to an unknown value, it will skip reconfiguration. If it is ever unset, it will fallback to the default. #### Setting other helm chart values As mentioned previously, the device plugin's helm chart continues to provide direct values to set the configuration options of the plugin without using a `ConfigMap`. These should only be used to set globally applicable options (which should then never be embedded in the set of config files provided by the `ConfigMap`), or used to override these options as desired. These values are as follows: ``` migStrategy: the desired strategy for exposing MIG devices on GPUs that support it [none | single | mixed] (default "none") failOnInitError: fail the plugin if an error is encountered during initialization, otherwise block indefinitely (default 'true') compatWithCPUManager: run with escalated privileges to be compatible with the static CPUManager policy (default 'false') deviceListStrategy: the desired strategy for passing the device list to the underlying runtime [envvar | volume-mounts | cdi-annotations | cdi-cri] (default "envvar") deviceIDStrategy: the desired strategy for passing device IDs to the underlying runtime [uuid | index] (default "uuid") nvidiaDriverRoot: the root path for the NVIDIA driver installation (typical values are '/' or '/run/nvidia/driver') ``` **Note:** There is no value that directly maps to the `PASS_DEVICE_SPECS` configuration option of the plugin. Instead a value called `compatWithCPUManager` is provided which acts as a proxy for this option. It both sets the `PASS_DEVICE_SPECS` option of the plugin to true **AND** makes sure that the plugin is started with elevated privileges to ensure proper compatibility with the `CPUManager`. Besides these custom configuration options for the plugin, other standard helm chart values that are commonly overridden are: ``` runtimeClassName: the runtimeClassName to use, for use with clusters that have multiple runtimes. (typical value is 'nvidia') ``` Please take a look in the [`values.yaml`](https://github.com/NVIDIA/k8s-device-plugin/blob/v0.16.2/deployments/helm/nvidia-device-plugin/values.yaml) file to see the full set of overridable parameters for the device plugin. Examples of setting these options include: Enabling compatibility with the `CPUManager` and running with a request for 100ms of CPU time and a limit of 512MB of memory. ```shell $ helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --version=0.16.2 \ --namespace nvidia-device-plugin \ --create-namespace \ --set compatWithCPUManager=true \ --set resources.requests.cpu=100m \ --set resources.limits.memory=512Mi ``` Enabling compatibility with the `CPUManager` and the `mixed` `migStrategy` ```shell $ helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --version=0.16.2 \ --namespace nvidia-device-plugin \ --create-namespace \ --set compatWithCPUManager=true \ --set migStrategy=mixed ``` #### Deploying with gpu-feature-discovery for automatic node labels As of `v0.12.0`, the device plugin's helm chart has integrated support to deploy [`gpu-feature-discovery`](https://github.com/NVIDIA/gpu-feature-discovery) (GFD) as a subchart. One can use GFD to automatically generate labels for the set of GPUs available on a node. Under the hood, it leverages Node Feature Discovery to perform this labeling. To enable it, simply set `gfd.enabled=true` during helm install. ``` helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --version=0.16.2 \ --namespace nvidia-device-plugin \ --create-namespace \ --set gfd.enabled=true ``` Under the hood this will also deploy [`node-feature-discovery`](https://github.com/kubernetes-sigs/node-feature-discovery) (NFD) since it is a prerequisite of GFD. If you already have NFD deployed on your cluster and do not wish for it to be pulled in by this installation, you can disable it with `nfd.enabled=false`. In addition to the standard node labels applied by GFD, the following label will also be included when deploying the plugin with the time-slicing extensions described [above](#shared-access-to-gpus-with-cuda-time-slicing). ``` nvidia.com/.replicas = ``` Additionally, the `nvidia.com/.product` will be modified as follows if `renameByDefault=false`. ``` nvidia.com/.product = -SHARED ``` Using these labels, users have a way of selecting a shared vs. non-shared GPU in the same way they would traditionally select one GPU model over another. That is, the `SHARED` annotation ensures that a `nodeSelector` can be used to attract pods to nodes that have shared GPUs on them. Since having `renameByDefault=true` already encodes the fact that the resource is shared on the resource name , there is no need to annotate the product name with `SHARED`. Users can already find the shared resources they need by simply requesting it in their pod spec. Note: When running with `renameByDefault=false` and `migStrategy=single` both the MIG profile name and the new `SHARED` annotation will be appended to the product name, e.g.: ``` nvidia.com/gpu.product = A100-SXM4-40GB-MIG-1g.5gb-SHARED ``` #### Deploying gpu-feature-discovery in standalone mode As of v0.16.2, the device plugin's helm chart has integrated support to deploy [`gpu-feature-discovery`](https://gitlab.com/nvidia/kubernetes/gpu-feature-discovery/-/tree/main) When gpu-feature-discovery in deploying standalone, begin by setting up the plugin's `helm` repository and updating it at follows: ```shell $ helm repo add nvdp https://nvidia.github.io/k8s-device-plugin $ helm repo update ``` Then verify that the latest release (`v0.16.2`) of the plugin is available (Note that this includes the GFD chart): ```shell $ helm search repo nvdp --devel NAME CHART VERSION APP VERSION DESCRIPTION nvdp/nvidia-device-plugin 0.16.2 0.16.2 A Helm chart for ... ``` Once this repo is updated, you can begin installing packages from it to deploy the `gpu-feature-discovery` component in standalone mode. The most basic installation command without any options is then: ``` $ helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --version 0.16.2 \ --namespace gpu-feature-discovery \ --create-namespace \ --set devicePlugin.enabled=false ``` Disabling auto-deployment of NFD and running with a MIG strategy of 'mixed' in the default namespace. ```shell $ helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --version=0.16.2 \ --set allowDefaultNamespace=true \ --set nfd.enabled=false \ --set migStrategy=mixed \ --set devicePlugin.enabled=false ``` **Note:** You only need the to pass the `--devel` flag to `helm search repo` and the `--version` flag to `helm upgrade -i` if this is a pre-release version (e.g. `-rc.1`). Full releases will be listed without this. ### Deploying via `helm install` with a direct URL to the `helm` package If you prefer not to install from the `nvidia-device-plugin` `helm` repo, you can run `helm install` directly against the tarball of the plugin's `helm` package. The example below installs the same chart as the method above, except that it uses a direct URL to the `helm` chart instead of via the `helm` repo. Using the default values for the flags: ```shell $ helm upgrade -i nvdp \ --namespace nvidia-device-plugin \ --create-namespace \ https://nvidia.github.io/k8s-device-plugin/stable/nvidia-device-plugin-0.16.2.tgz ``` ## Building and Running Locally The next sections are focused on building the device plugin locally and running it. It is intended purely for development and testing, and not required by most users. It assumes you are pinning to the latest release tag (i.e. `v0.16.2`), but can easily be modified to work with any available tag or branch. ### With Docker #### Build Option 1, pull the prebuilt image from [Docker Hub](https://hub.docker.com/r/nvidia/k8s-device-plugin): ```shell $ docker pull nvcr.io/nvidia/k8s-device-plugin:v0.16.2 $ docker tag nvcr.io/nvidia/k8s-device-plugin:v0.16.2 nvcr.io/nvidia/k8s-device-plugin:devel ``` Option 2, build without cloning the repository: ```shell $ docker build \ -t nvcr.io/nvidia/k8s-device-plugin:devel \ -f deployments/container/Dockerfile.ubuntu \ https://github.com/NVIDIA/k8s-device-plugin.git#v0.16.2 ``` Option 3, if you want to modify the code: ```shell $ git clone https://github.com/NVIDIA/k8s-device-plugin.git && cd k8s-device-plugin $ docker build \ -t nvcr.io/nvidia/k8s-device-plugin:devel \ -f deployments/container/Dockerfile.ubuntu \ . ``` #### Run Without compatibility for the `CPUManager` static policy: ```shell $ docker run \ -it \ --security-opt=no-new-privileges \ --cap-drop=ALL \ --network=none \ -v /var/lib/kubelet/device-plugins:/var/lib/kubelet/device-plugins \ nvcr.io/nvidia/k8s-device-plugin:devel ``` With compatibility for the `CPUManager` static policy: ```shell $ docker run \ -it \ --privileged \ --network=none \ -v /var/lib/kubelet/device-plugins:/var/lib/kubelet/device-plugins \ nvcr.io/nvidia/k8s-device-plugin:devel --pass-device-specs ``` ### Without Docker #### Build ```shell $ C_INCLUDE_PATH=/usr/local/cuda/include LIBRARY_PATH=/usr/local/cuda/lib64 go build ``` #### Run Without compatibility for the `CPUManager` static policy: ```shell $ ./k8s-device-plugin ``` With compatibility for the `CPUManager` static policy: ```shell $ ./k8s-device-plugin --pass-device-specs ``` ## Changelog See the [changelog](CHANGELOG.md) ## Issues and Contributing [Checkout the Contributing document!](CONTRIBUTING.md) * You can report a bug by [filing a new issue](https://github.com/NVIDIA/k8s-device-plugin/issues/new) * You can contribute by opening a [pull request](https://help.github.com/articles/using-pull-requests/) ### Versioning Before v1.10 the versioning scheme of the device plugin had to match exactly the version of Kubernetes. After the promotion of device plugins to beta this condition was was no longer required. We quickly noticed that this versioning scheme was very confusing for users as they still expected to see a version of the device plugin for each version of Kubernetes. This versioning scheme applies to the tags `v1.8`, `v1.9`, `v1.10`, `v1.11`, `v1.12`. We have now changed the versioning to follow [SEMVER](https://semver.org/). The first version following this scheme has been tagged `v0.0.0`. Going forward, the major version of the device plugin will only change following a change in the device plugin API itself. For example, version `v1beta1` of the device plugin API corresponds to version `v0.x.x` of the device plugin. If a new `v2beta2` version of the device plugin API comes out, then the device plugin will increase its major version to `1.x.x`. As of now, the device plugin API for Kubernetes >= v1.10 is `v1beta1`. If you have a version of Kubernetes >= 1.10 you can deploy any device plugin version > `v0.0.0`. ### Upgrading Kubernetes with the Device Plugin Upgrading Kubernetes when you have a device plugin deployed doesn't require you to do any, particular changes to your workflow. The API is versioned and is pretty stable (though it is not guaranteed to be non breaking). Starting with Kubernetes version 1.10, you can use `v0.3.0` of the device plugin to perform upgrades, and Kubernetes won't require you to deploy a different version of the device plugin. Once a node comes back online after the upgrade, you will see GPUs re-registering themselves automatically. Upgrading the device plugin itself is a more complex task. It is recommended to drain GPU tasks as we cannot guarantee that GPU tasks will survive a rolling upgrade. However we make best efforts to preserve GPU tasks during an upgrade.