# FPMC **Repository Path**: branchlets/FPMC ## Basic Information - **Project Name**: FPMC - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-10-11 - **Last Updated**: 2024-10-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FPMC FPMC[1] implementation for python3 with Numba. ## Dependencies - Python3 - Numpy - Numba >= 25.0 ## How to run Just type python3 run.py data/ If Numba is not installed, implementation in generic python will be used. Numba version is 10x faster than generic version. ## Notes This implemtation is the same as original paper except: - Number of negative sample: default is 10 - Use one basket to predict one item. That is, size of "next basket - i" is 1. ## Data format Please refer to data/idxseq.txt. The format is: [user index] [item index] ... [item index] The last one item is regarded as next item (next basket), and is what our FPMC will predict. ## Reference - [1] Rendle, S., Freudenthaler, C., & Schmidt-Thieme, L. (2010). Factorizing personalized Markov chains for next-basket recommendation. Proceedings of the 19th International Conference on World Wide Web - WWW ’10, 811. http://doi.org/10.1145/1772690.1772773