2 Star 7 Fork 1

cbwang505/IITG-Captcha-Solver-OpenCV-TensorFlow

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
gputrain.py 14.01 KB
一键复制 编辑 原始数据 按行查看 历史
cbwang505 提交于 2017-03-03 23:25 +08:00 . 2017030308
import tensorflow as tf
import numpy as np
import glob
import random
from PIL import Image
from skimage import io
import configparser
import os
import cv2
# config=configparser.ConfigParser()
# config.read(os.getcwd()+"\\conf.cfg")
# PATH=config.get('input','inputDir')
# MODEL_PATH=config.get('model','modelpath')
IMAGE_HEIGHT = 36
IMAGE_WIDTH = 120
MAX_CAPTCHA = 4
CHAR_SET_LEN = 63
PATH = "F:\\tool\\TensorFlow\\cjy\\*.jpg"
# PATH = "F:\\BaiduYunDownload\\gjyzmtest20170226\\gjyzmtest\\gjyzmtest\\bin\\Debug\\yzm\\*.jpg"
def getPicture(path):
return glob.glob(path)
def getSplitData(path):
result = getPicture(path)
length = len(result)
trainLengh = int(length * 0.9)
train = result[0:trainLengh]
test = result[trainLengh:length - 1]
# train = result[0:int(length * 0.8)]
# test = [i for i in result if i not in train]
return train, test
def sampleTrain(length, trainData):
return random.sample(trainData, length)
# 把彩色图像转化为灰度图像
def convert2gray(image):
if len(image.shape) > 2:
grap = np.mean(image, -1)
return grap
else:
return image
""" 文本转向量"""
def text2vec(text):
text_len = len(text)
if text_len > MAX_CAPTCHA:
raise ValueError("验证码最长是5个字符")
vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
def char2pos(c):
if c == '_':
k = 62
return k
k = ord(c) - 48
if k > 9:
k = ord(c) - 55
if k > 35:
k = ord(c) - 61
if k > 61:
raise ValueError('No Map')
return k
for i, c in enumerate(text):
idx = i * CHAR_SET_LEN + char2pos(c)
vector[idx] = 1
return vector
""" 向量转文本"""
def vec2text(vec):
if not isinstance(vec, list):
char_pos = vec.nonzero()[0]
else:
char_pos = vec
text = []
for i, c in enumerate(char_pos):
char_idx = c % CHAR_SET_LEN
if char_idx < 10:
char_code = char_idx + ord('0')
elif char_idx < 36:
char_code = char_idx - 10 + ord('A')
elif char_idx < 62:
char_code = char_idx - 36 + ord('a')
elif char_idx == 62:
char_code = ord('_')
text.append(chr(char_code))
return "".join(text)
def getImageAndName(path):
name = path.split("\\")[-1].split(".")[0]
# captcha_image = Image.open(path)
# captcha_image = np.array(captcha_image)
# img = 1.0 - io.imread(path, as_grey=True)
img = cv2.imread(path)
return name, img
def get_imgflatten(image):
GrayImage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
tmp = cv2.medianBlur(GrayImage, 1)
ret, img = cv2.threshold(tmp, 170, 255, cv2.THRESH_BINARY_INV)
kernel = np.ones((2, 2), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
img = cv2.medianBlur(img, 1)
img = cv2.dilate(img, kernel, iterations=1)
ret, img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
return img.flatten()
def get_next_batch(data):
batch_size = len(data)
batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])
for i in range(batch_size):
text, image = getImageAndName(data[i])
# image = convert2gray(image)
# batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0
batch_x[i, :] = get_imgflatten(image)
batch_y[i, :] = text2vec(text.lower())
return batch_x, batch_y
####################################################################
# 定义CNN
def crack_captcha_cnn(X, keep_prob, w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
print(x.get_shape())
# w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
# w_c2_alpha = np.sqrt(2.0/(3*3*32))
# w_c3_alpha = np.sqrt(2.0/(3*3*64))
# w_d1_alpha = np.sqrt(2.0/(8*32*64))
# out_alpha = np.sqrt(2.0/1024)
# 3 conv layer
w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
conv1 = tf.nn.relu(
tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME', use_cudnn_on_gpu=True), b_c1))
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob)
print(conv1.get_shape())
w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
conv2 = tf.nn.relu(
tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME', use_cudnn_on_gpu=True), b_c2))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)
print(conv2.get_shape())
w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
conv3 = tf.nn.relu(
tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME', use_cudnn_on_gpu=True), b_c3))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)
print(conv3.get_shape())
# Fully connected layer
w_d = tf.Variable(w_alpha * tf.random_normal([4800, 1024]))
b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob)
w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
# out = tf.nn.softmax(out)
return out
traindata, testdata = getSplitData(PATH)
# 训练
def train_crack_captcha_cnn(max_step=200):
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # dropout
output = crack_captcha_cnn(X, keep_prob)
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(None, Y, output))
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(None, Y, output, None))
# 最后一层用来分类的softmax和sigmoid有什么不同?
# optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
# optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
# cpumode
# with tf.Session() as sess:
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
if os.path.exists('model/crack_capcha.model.meta'): # 判断模型是否存在
saver.restore(sess, tf.train.latest_checkpoint('model/')) # 存在就从模型中恢复变量
else:
sess.run(tf.global_variables_initializer())
step = 0
while True:
batch_x, batch_y = get_next_batch(sampleTrain(100, traindata))
_, lossSize = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
if step % 5 == 0:
print("step is:" + str(step), u"损失函数大小为" + str(lossSize))
batch_x_test, batch_y_test = get_next_batch(testdata)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
print("step is:" + str(step), "正确率:" + str(acc))
if step == max_step:
if not os.path.exists('model/'):
os.mkdir('model/')
saver.save(sess, "model/crack_capcha.model")
print("SavedTrainTo:model/crack_capcha.model")
break
step += 1
# batch_x_test, batch_y_test = get_next_batch(testdata)
# acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
# print("step is:"+str(step),"acc is :"+str( acc))
# # 如果准确率大于50%,保存模型,完成训练
# 训练
def train_crack_captcha_cnnalways(max_step=200):
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # dropout
output = crack_captcha_cnn(X, keep_prob)
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(None, Y, output))
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(None, Y, output, None))
# 最后一层用来分类的softmax和sigmoid有什么不同?
# optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss)
# optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
# cpumode
# with tf.Session() as sess:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.933)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)) as sess:
if os.path.exists('model/crack_capcha.model.meta'): # 判断模型是否存在
saver.restore(sess, tf.train.latest_checkpoint('model/')) # 存在就从模型中恢复变量
else:
sess.run(tf.global_variables_initializer())
step = 0
while True:
batch_x, batch_y = get_next_batch(sampleTrain(100, traindata))
_, lossSize = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
if step % 5 == 0:
print("step is:" + str(step), u"损失函数大小为" + str(lossSize))
batch_x_test, batch_y_test = get_next_batch(testdata)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
print("step is:" + str(step), "正确率:" + str(acc))
if step == max_step:
if not os.path.exists('model/'):
os.mkdir('model/')
saver.save(sess, "model/crack_capcha.model")
step = 0
print("SavedTrainTo:model/crack_capcha.model")
# break
step += 1
def crack_captcha(captcha_image):
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
# Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32)
output = crack_captcha_cnn(X, keep_prob)
saver = tf.train.Saver()
# saver = tf.train.import_meta_graph('crack_capcha.model.meta')
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('model/'))
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
text = text_list[0].tolist()
return text
def predict(testdata):
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
keep_prob = tf.placeholder(tf.float32)
output = crack_captcha_cnn(X, keep_prob)
saver = tf.train.Saver()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# sess.run(tf.global_variables_initializer())
saver.restore(sess, tf.train.latest_checkpoint('model/'))
batch_size = len(testdata)
count = 0
for i in range(batch_size):
text, image = getImageAndName(testdata[i])
# image = convert2gray(image)
# captcha_image = image.flatten() / 255
captcha_image = image.flatten()
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
predict_text = text_list[0].tolist()
predict_value = vec2text(predict_text)
flag = text == predict_value
if flag:
count += 1
print("真实值: {}, 预测值: {}, 是否相等: {}".format(text, predict_value, flag))
print('\n识别结果: {}/{}={}'.format(count, batch_size, count / batch_size))
def predict_single(image_file):
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
keep_prob = tf.placeholder(tf.float32)
output = crack_captcha_cnn(X, keep_prob)
saver = tf.train.Saver()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# sess.run(tf.global_variables_initializer())
saver.restore(sess, tf.train.latest_checkpoint('model/'))
text, image = getImageAndName(image_file)
# captcha_image = image.flatten()
captcha_image = get_imgflatten(image)
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
predict_text = text_list[0].tolist()
predict_value = vec2text(predict_text)
print('\n识别结果: {}'.format(predict_value))
# if __name__ == '__main__':
with tf.device('/gpu:0'):
# 训练一次
# train_crack_captcha_cnn(max_step=5000)
# 训练
train_crack_captcha_cnnalways(max_step=5000)
# 验证图片
# predict_single('H:\\dl\\c11.png')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/cbwang505/IITG-Captcha-Solver-OpenCV-TensorFlow.git
git@gitee.com:cbwang505/IITG-Captcha-Solver-OpenCV-TensorFlow.git
cbwang505
IITG-Captcha-Solver-OpenCV-TensorFlow
IITG-Captcha-Solver-OpenCV-TensorFlow
master

搜索帮助