# COAST **Repository Path**: ccran/COAST ## Basic Information - **Project Name**: COAST - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-18 - **Last Updated**: 2025-06-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![image](https://github.com/NEUIR/COAST/blob/main/Figure/title.png)

📜 Paper • 🤗 Data • 🤖 Model

## 1. Introduction This paper presents a benchmark, DebugEval, which is used to evaluate the code debugging ability of LLMs (Large Language Models) and proposals a framework for synthesizing training data using multiple agents, COAST. ### 1.1 DEBUGEVAL #### DebugEval designs four task scenarios: BUG Localization, BUG Identification, Code Repair, and Code Recognition to comprehensively evaluate the code debugging capability of LLMs. ![image](https://github.com/NEUIR/COAST/blob/main/Figure/benchmark_00.png). ### 1.2 COAST #### COAST is a framework for making use of multiple agents working together to synthesize training data to improve code debugging capability of LLMs. ![image](https://github.com/NEUIR/COAST/blob/main/Figure/COAST_00.png). ## 2. Installation You can clone the repository using the following command: ``` git clone https://github.com/NEUIR/COAST cd COAST ``` ## 3. Inference and Evaluation Download the dataset we provide. ``` cd src ``` Please refer to `src/README.md` for more details. ## 4. Fine-Tuning We use DeepSeek-Coder-6.7B-Ins and Llama3-8B-Ins as the base model, and train the models with COAST framework. ### 4.1 For DeepSeek-Coder-6.7B-Ins ``` cd neural_compiler ``` Please refer to `neural_compiler/README.md` for more details. ### 4.2 For Llama3-8B-Ins ``` cd LLaMA-Factory ``` Please refer to `LLaMA-Factory/README.md` for more details. We provide the trained NeuDebugger models. ## 5. Result ![image](https://github.com/NEUIR/DebugEval/blob/main/Figure/performance_00.png) ## 6. Citation Please cite the paper and star the repo if you use DebugEval and find it helpful. Feel free to contact 2301983@stu.neu.edu.cn or open an issue if you have any questions. ``` @misc{yang2025coastenhancingcodedebugging, title={COAST: Enhancing the Code Debugging Ability of LLMs through Communicative Agent Based Data Synthesis}, author={Weiqing Yang and Hanbin Wang and Zhenghao Liu and Xinze Li and Yukun Yan and Shuo Wang and Yu Gu and Minghe Yu and Zhiyuan Liu and Ge Yu}, year={2025}, eprint={2408.05006}, archivePrefix={arXiv}, primaryClass={cs.SE}, url={https://arxiv.org/abs/2408.05006}, } ```