# UOMvSC **Repository Path**: cgsdfc/UOMvSC ## Basic Information - **Project Name**: UOMvSC - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-22 - **Last Updated**: 2023-11-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README #

`Unified One-step Multi-view Spectral Clustering (IEEE TKDE 2022)`

> **Authors:** Chang Tang, Zhenglai Li (co-first author), Jun Wang, Xinwang Liu, Wei Zhang, En Zhu This repository contains simple Matlab implementation of our paper [UOMvSC](https://ieeexplore.ieee.org/document/9769920). ### 1. Features - **Joint exploring the information of graphs and embedding matrices.** Under the observation that the inner product of the embedding matrix is a low-rank approximation of the graph, we combine graphs and embedding matrices of different views to obtain a unified graph. - **Simple but effective one-step clustering manner.** We directly capture the discrete clustering indicator matrix from the unified graph with an effective optimization algorithm. ### 2. Usage + Prepare the data: - Partial datasets used in our paper can be downloaded from [BaiduYun](https://pan.baidu.com/s/1FSSzkbA8KqCxaktfv6atww)(s3u3). + Prerequisites for Matlab: - Test on Matlab R2018a + Conduct clustering ### 3. Citation Please cite our paper if you find the work useful: @article{Li_2022_UOMvSC, author={Tang, Chang and Li, Zhenglai and Wang, Jun and Liu, Xinwang and Zhang, Wei and Zhu, En}, journal={IEEE Transactions on Knowledge and Data Engineering}, title={Unified One-step Multi-view Spectral Clustering}, year={2022}, volume={}, number={}, pages={1-1}, doi={10.1109/TKDE.2022.3172687} }