# keras-gcn **Repository Path**: cgsdfc/keras-gcn ## Basic Information - **Project Name**: keras-gcn - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2022-03-17 - **Last Updated**: 2022-03-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Deep Learning on Graphs with Keras ==== Keras-based implementation of graph convolutional networks for semi-supervised classification. Thomas N. Kipf, Max Welling, [Semi-Supervised Classification with Graph Convolutional Networks](http://arxiv.org/abs/1609.02907) (ICLR 2017) For a high-level explanation, have a look at our blog post: Thomas Kipf, [Graph Convolutional Networks](http://tkipf.github.io/graph-convolutional-networks/) (2016) **NOTE: This code is not intended to reproduce the experiments from the paper as the initialization scheme, dropout scheme, and dataset splits differ from the original implementation in TensorFlow: https://github.com/tkipf/gcn** Installation ------------ ```python setup.py install``` Dependencies ----- * keras (1.0.9 or higher) * TensorFlow or Theano Usage ----- ```python train.py``` Dataset reference (Cora) ---------- [Sen et al., Collective Classification in Network Data, AI Magazine 2008](http://linqs.cs.umd.edu/projects/projects/lbc/) ## Cite Please cite our paper if you use this code in your own work: ``` @inproceedings{kipf2017semi, title={Semi-Supervised Classification with Graph Convolutional Networks}, author={Kipf, Thomas N. and Welling, Max}, booktitle={International Conference on Learning Representations (ICLR)}, year={2017} } ```