# torchkeras **Repository Path**: chenghuasheng/torchkeras ## Basic Information - **Project Name**: torchkeras - **Description**: Pytorch❤️ Keras 😋😋 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 6 - **Created**: 2022-10-04 - **Last Updated**: 2022-10-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 1,Introduction The torchkeras library is a simple tool for training neural network in pytorch jusk like in a keras style. 😋😋 With torchkeras, You need not to write your training loop with many lines of code, all you need to do is just like this three steps as below: (i) create your network and wrap it and the loss_fn together with torchkeras.KerasModel like this: `model = torchkeras.KerasModel(net,loss_fn)` (ii) fit your model with the training data and validate data. **This project seems somehow powerful, but the source code is very simple.** **Actually, less than 200 lines of Python code.** **If you want to understand or modify some details of this project, feel free to read and change the source code!!!** # 2, Use example You can install torchkeras using pip: `pip install torchkeras` Here is a complete examples using torchkeras! ```python import numpy as np import pandas as pd from matplotlib import pyplot as plt import torch from torch import nn import torch.nn.functional as F from torch.utils.data import Dataset,DataLoader,TensorDataset import torchkeras #Attention this line ``` ### (1) prepare data ```python %matplotlib inline %config InlineBackend.figure_format = 'svg' #number of samples n_positive,n_negative = 2000,2000 #positive samples r_p = 5.0 + torch.normal(0.0,1.0,size = [n_positive,1]) theta_p = 2*np.pi*torch.rand([n_positive,1]) Xp = torch.cat([r_p*torch.cos(theta_p),r_p*torch.sin(theta_p)],axis = 1) Yp = torch.ones_like(r_p) #negative samples r_n = 8.0 + torch.normal(0.0,1.0,size = [n_negative,1]) theta_n = 2*np.pi*torch.rand([n_negative,1]) Xn = torch.cat([r_n*torch.cos(theta_n),r_n*torch.sin(theta_n)],axis = 1) Yn = torch.zeros_like(r_n) #concat positive and negative samples X = torch.cat([Xp,Xn],axis = 0) Y = torch.cat([Yp,Yn],axis = 0) #visual samples plt.figure(figsize = (6,6)) plt.scatter(Xp[:,0],Xp[:,1],c = "r") plt.scatter(Xn[:,0],Xn[:,1],c = "g") plt.legend(["positive","negative"]); ``` ![](./data/input_data.png) ```python # split samples into train and valid data. ds = TensorDataset(X,Y) ds_train,ds_valid = torch.utils.data.random_split(ds,[int(len(ds)*0.7),len(ds)-int(len(ds)*0.7)]) dl_train = DataLoader(ds_train,batch_size = 100,shuffle=True,num_workers=2) dl_valid = DataLoader(ds_valid,batch_size = 100,num_workers=2) ``` ### (2) create the model ```python class Net(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(2,4) self.fc2 = nn.Linear(4,8) self.fc3 = nn.Linear(8,1) def forward(self,x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) y = nn.Sigmoid()(self.fc3(x)) return y net = Net() ### Attention here model = torchkeras.Model(net) model.summary(input_shape =(2,)) ``` ``` ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Linear-1 [-1, 4] 12 Linear-2 [-1, 8] 40 Linear-3 [-1, 1] 9 ================================================================ Total params: 61 Trainable params: 61 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.000008 Forward/backward pass size (MB): 0.000099 Params size (MB): 0.000233 Estimated Total Size (MB): 0.000340 ---------------------------------------------------------------- ``` ### (3) train the model ```python # define metric def accuracy(y_pred, y_true): y_pred = torch.where(y_pred>0.5,torch.ones_like(y_pred,dtype = torch.float32), torch.zeros_like(y_pred,dtype = torch.float32)) acc = torch.mean(1-torch.abs(y_true-y_pred)) return acc def mse(y_pred, y_true): return torch.sqrt(torch.mean((y_true - y_pred) ** 2)) # if gpu is available, use gpu device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.compile(loss_func = nn.BCELoss(),optimizer= torch.optim.Adam(model.parameters(),lr = 0.01), metrics_dict={accuracy, mse},device = device) dfhistory=model.fit(epochs=10, train_data=dl_train, val_data=dl_valid, patience=5, monitor="val_loss", save_path="save_model.pkl", verbose=True) ``` ``` Epoch 1 / 10 [========================================] 100% loss: 0.6570 accuracy: 0.5525 mse: 0.4824 val_loss: 0.6188 val_accuracy: 0.6167 val_mse: 0.4638 Validation loss decreased (inf --> 0.618847). Saving model ... Epoch 2 / 10 [========================================] 100% loss: 0.5877 accuracy: 0.6857 mse: 0.4476 val_loss: 0.5518 val_accuracy: 0.6950 val_mse: 0.4315 Validation loss decreased (0.618847 --> 0.551810). Saving model ... Epoch 3 / 10 [========================================] 100% loss: 0.4949 accuracy: 0.8079 mse: 0.3984 val_loss: 0.4342 val_accuracy: 0.8558 val_mse: 0.3645 Validation loss decreased (0.551810 --> 0.434237). Saving model ... Epoch 4 / 10 [========================================] 100% loss: 0.3819 accuracy: 0.8682 mse: 0.3359 val_loss: 0.3284 val_accuracy: 0.9117 val_mse: 0.3023 Validation loss decreased (0.434237 --> 0.328433). Saving model ... Epoch 5 / 10 [========================================] 100% loss: 0.2942 accuracy: 0.9007 mse: 0.2882 val_loss: 0.2541 val_accuracy: 0.9092 val_mse: 0.2649 Validation loss decreased (0.328433 --> 0.254060). Saving model ... Epoch 6 / 10 [========================================] 100% loss: 0.2441 accuracy: 0.9104 mse: 0.2627 val_loss: 0.2311 val_accuracy: 0.9125 val_mse: 0.2561 Validation loss decreased (0.254060 --> 0.231079). Saving model ... Epoch 7 / 10 [========================================] 100% loss: 0.2247 accuracy: 0.9100 mse: 0.2542 val_loss: 0.2218 val_accuracy: 0.9083 val_mse: 0.2546 Validation loss decreased (0.231079 --> 0.221847). Saving model ... Epoch 8 / 10 [========================================] 100% loss: 0.2091 accuracy: 0.9164 mse: 0.2441 val_loss: 0.2084 val_accuracy: 0.9192 val_mse: 0.2441 Validation loss decreased (0.221847 --> 0.208386). Saving model ... Epoch 9 / 10 [========================================] 100% loss: 0.1972 accuracy: 0.9218 mse: 0.2366 val_loss: 0.2032 val_accuracy: 0.9175 val_mse: 0.2435 Validation loss decreased (0.208386 --> 0.203234). Saving model ... Epoch 10 / 10 [========================================] 100% loss: 0.1940 accuracy: 0.9204 mse: 0.2367 val_loss: 0.2058 val_accuracy: 0.9167 val_mse: 0.2445 EarlyStopping counter: 1 out of 5 ``` ```python # visual the results fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (12,5)) ax1.scatter(Xp[:,0],Xp[:,1], c="r") ax1.scatter(Xn[:,0],Xn[:,1],c = "g") ax1.legend(["positive","negative"]); ax1.set_title("y_true") Xp_pred = X[torch.squeeze(model.forward(X)>=0.5)] Xn_pred = X[torch.squeeze(model.forward(X)<0.5)] ax2.scatter(Xp_pred[:,0],Xp_pred[:,1],c = "r") ax2.scatter(Xn_pred[:,0],Xn_pred[:,1],c = "g") ax2.legend(["positive","negative"]); ax2.set_title("y_pred") ``` ![](./data/training_result.png) ### (4) evaluate the model ```python %matplotlib inline %config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt def plot_metric(dfhistory, metric): train_metrics = dfhistory[metric] val_metrics = dfhistory['val_'+metric] epochs = range(1, len(train_metrics) + 1) plt.plot(epochs, train_metrics, 'bo--') plt.plot(epochs, val_metrics, 'ro-') plt.title('Training and validation '+ metric) plt.xlabel("Epochs") plt.ylabel(metric) plt.legend(["train_"+metric, 'val_'+metric]) plt.show() ``` ```python plot_metric(dfhistory,"loss") ``` ![](./data/loss_curve.png) ```python plot_metric(dfhistory,"accuracy") ``` ![](./data/accuracy_curve.png) ```python model.evaluate(dl_valid) ``` ``` {'val_loss': 0.13576620258390903, 'val_accuracy': 0.9441666702429453} ``` ### (5) use the model ```python model.predict(dl_valid)[0:10] ``` ``` tensor([[0.8767], [0.0154], [0.9976], [0.9990], [0.9984], [0.0071], [0.3529], [0.4061], [0.9938], [0.9997]]) ``` ```python for features,labels in dl_valid: with torch.no_grad(): predictions = model.forward(features) print(predictions[0:10]) break ``` ``` tensor([[0.9979], [0.0011], [0.9782], [0.9675], [0.9653], [0.9906], [0.1774], [0.9994], [0.9178], [0.9579]]) ``` ### (6) save the model ```python # save the model parameters model_clone = torchkeras.Model(Net()) model_clone.load_state_dict(torch.load("save_model.pkl")) model_clone.compile(loss_func = nn.BCELoss(),optimizer= torch.optim.Adam(model.parameters(),lr = 0.01), metrics_dict={"accuracy":accuracy}) model_clone.evaluate(dl_valid) ``` ``` {'val_loss': 0.17422042911251387, 'val_accuracy': 0.9358333299557368} ```