# OpenCVJniFaceDetect **Repository Path**: chenjim/OpenCVJniFaceDetect ## Basic Information - **Project Name**: OpenCVJniFaceDetect - **Description**: Android基于OpenCV通过JNI识别并显示人脸位置 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2020-04-14 - **Last Updated**: 2022-09-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README @[toc] ## Android基于OpenCV通过JNI识别并显示人脸位置 > OpenCV介绍地址:[https://docs.opencv.org/2.4/doc/tutorials/introduction/android_binary_package/O4A_SDK.html](https://docs.opencv.org/2.4/doc/tutorials/introduction/android_binary_package/O4A_SDK.html) Android OpenCV Java Demo地址: [https://github.com/kongqw/OpenCVForAndroid](https://github.com/kongqw/OpenCVForAndroid),其中人脸比对在[Master分支](https://github.com/kongqw/FaceDetectLibrary/tree/master) 本文基于JNI实现,源码地址:[Gitee:OpenCVJniFaceDetect ](https://gitee.com/chenjim/OpenCVJniFaceDetect) ### 设计思路 取Camera API 中onPreviewFrame 回调的YUV数据送到JNI, 进一步用OpenCV的API识别并画出人脸区域,再通过ANativeWindow显示到surface。 ### 代码设计说明 #### 效果如下 #### 代码结构如下 其中 `app\src\main\cpp\include` 来自 `opencv-3.4.3-android-sdk\sdk\native\jni\include` `app\src\main\assets\lbpcascade_frontalface.xml` 来自 `opencv-3.4.3-android-sdk\sdk\etc\lbpcascades` `app\src\main\jniLibs\` 来自 `opencv-3.4.3-android-sdk\sdk\native\libs` #### JNI识别人脸并画区域代码如下 ```C++ // nv21的数据 jbyte *data = env->GetByteArrayElements(data_, NULL); //mat data->Mat //1、高 2、宽 Mat src(h + h / 2, w, CV_8UC1, data); //颜色格式的转换 nv21->RGBA //将 nv21的yuv数据转成了rgba cvtColor(src, src, COLOR_YUV2RGBA_NV21); // 可以将Mat的数据写到存储卡,正在写的过程 退出了,导致文件丢失数据 //imwrite("/sdcard/src.jpg",src); if (cameraId == 1) { //前置摄像头,需要逆时针旋转90度 rotate(src, src, ROTATE_90_COUNTERCLOCKWISE); //水平翻转 镜像 flip(src, src, 1); } else { //顺时针旋转90度 rotate(src, src, ROTATE_90_CLOCKWISE); } Mat gray; //灰色 cvtColor(src, gray, COLOR_RGBA2GRAY); //增强对比度 (直方图均衡) equalizeHist(gray, gray); std::vector faces; //定位人脸 N个 tracker->process(gray); tracker->getObjects(faces); for (Rect face : faces) { //画矩形 分别指定 bgra rectangle(src, face, Scalar(255, 0, 0)); } ``` #### 通过ANativeWindow显示RGBA数据到surface代码如下 ```C++ ANativeWindow_setBuffersGeometry(window, src.cols, src.rows, WINDOW_FORMAT_RGBA_8888); ANativeWindow_Buffer buffer; do { //lock失败 直接brek出去 if (ANativeWindow_lock(window, &buffer, 0)) { ANativeWindow_release(window); window = 0; break; } //src.data : rgba的数据 //把src.data 拷贝到 buffer.bits 里去 // 一行一行的拷贝 //一行需要多少像素 * 4(RGBA),当stride>width时直接memcpy会显示异常 //memcpy(buffer.bits, src.data, buffer.stride * buffer.height * 4); UpdateFrameBuffer(&buffer, src.data); //提交刷新 ANativeWindow_unlockAndPost(window); } while (0); ``` #### 将RGA数据填充到ANativeWindow_Buffer代码如下 参考自[Github:ndk-samples:webp_view.cpp#UpdateFrameBuffer](https://github.com/android/ndk-samples/blob/master/webp/view/src/main/cpp/webp_view.cpp) ```C++ * * UpdateFrameBuffer(): * Internal function to perform bits copying onto current frame buffer * src: * - if nullptr, blank it * - otherwise, copy to given buf * assumption: * src and bug MUST be in the same geometry format & layout */ void UpdateFrameBuffer(ANativeWindow_Buffer *buf, uint8_t *src) { // src is either null: to blank the screen // or holding exact pixels with the same fmt [stride is the SAME] uint8_t *dst = reinterpret_cast (buf->bits); uint32_t bpp; switch (buf->format) { case WINDOW_FORMAT_RGB_565: bpp = 2; break; case WINDOW_FORMAT_RGBA_8888: case WINDOW_FORMAT_RGBX_8888: bpp = 4; break; default: assert(0); return; } uint32_t stride, width; stride = buf->stride * bpp; width = buf->width * bpp; if (src) { for (auto height = 0; height < buf->height; ++height) { memcpy(dst, src, width); dst += stride, src += width; } } else { for (auto height = 0; height < buf->height; ++height) { memset(dst, 0, width); dst += stride; } } } ``` ### 注意问题说明 - OpenCV 需要依赖 gnustl_static, NDK r18b中 gnustl_static被移除了,注意选择NDK17及以下版本 - 目前Camera预览数据是640X480,在骁龙820手机设备上单帧需要10ms左右,加大尺寸效率会降低 - OpenCV提供的模型对侧脸、脸部明暗相差大等情况的识别效果不是特别好