# end-to-end-for-chinese-plate-recognition **Repository Path**: chsinx/end-to-end-for-chinese-plate-recognition ## Basic Information - **Project Name**: end-to-end-for-chinese-plate-recognition - **Description**: 多标签分类,端到端的中文车牌识别基于mxnet, End-to-End Chinese plate recognition base on mxnet - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-21 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # end-to-end-for-plate-recognition 多标签分类,端到端的中文车牌识别基于mxnet . 从[xlvector的ocr代码](https://github.com/szad670401/learning-dl/tree/master/mxnet/ocr)修改,减少了参数,由于我没有显卡。单线程 9 samples/s 速度 ,用CPU在MBP上跑了50w张样本。识别率到了81%。不过还没有完全收敛。 ## 训练好的模型 https://github.com/ibyte2011/end-to-end-for-chinese-plate-recognition ## 关于车牌识别 生成的车牌对于实际车牌并不是效果很好,在结合真实样本和GAN,训练了一个更好的模型,对真实车牌表现很好。 并实现了一整套车牌识别的系统命名为HyperLPR https://github.com/zeusees/HyperLPR ## 依赖: + Numpy + Mxnet + Opencv ## 生成的车牌样张 通过渲染车牌加上畸变、噪声、与自然环境结合生成车牌的样本。 ![image](./recognize_samples/00.jpg) ![image](./recognize_samples/01.jpg) ![image](./recognize_samples/02.jpg) ![image](./recognize_samples/03.jpg) ![image](./recognize_samples/04.jpg) ![image](./recognize_samples/06.jpg) ![image](./recognize_samples/07.jpg) ![image](./recognize_samples/08.jpg) ![image](./recognize_samples/02.jpg) ![image](./recognize_samples/09.jpg) ![image](./recognize_samples/10.jpg) ![image](./recognize_samples/11.jpg) ## 识别样张