代码拉取完成,页面将自动刷新
同步操作将从 FightingforYoung/ply 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
/*
Apply a 3-D transformation to an object from a PLY file.
Greg Turk
-----------------------------------------------------------------------
Copyright (c) 1998 Georgia Institute of Technology. All rights reserved.
Permission to use, copy, modify and distribute this software and its
documentation for any purpose is hereby granted without fee, provided
that the above copyright notice and this permission notice appear in
all copies of this software and that you do not sell the software.
THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <stdio.h>
#include <math.h>
#include <ply.h>
/* user's vertex and face definitions for a polygonal object */
typedef struct Vertex {
float x,y,z;
void *other_props; /* other properties */
} Vertex;
char *elem_names[] = { /* list of the kinds of elements in the user's object */
"vertex", "face"
};
static PlyProperty vert_props[] = {
{"x", Float32, Float32, offsetof(Vertex,x), 0, 0, 0, 0},
{"y", Float32, Float32, offsetof(Vertex,y), 0, 0, 0, 0},
{"z", Float32, Float32, offsetof(Vertex,z), 0, 0, 0, 0},
};
/*** the PLY object ***/
int nverts;
Vertex **vlist;
PlyFile *in_ply; /* input PLY file */
PlyOtherProp *vert_other;
/*** transformation records ***/
#define TRANSLATE 1
#define SCALE 2
#define ROTATE 3
typedef struct Transform {
int type; /* scale, translate or rotate */
float x,y,z;
float angle;
} Transform;
static Transform *transforms = NULL;
static int num_trans = 0;
static int max_trans = 1;
typedef float gtMatrix[4][4];
typedef float gtVector[3];
void get_rotation(float angle, float ax, float ay, float az, gtMatrix mat);
/******************************************************************************
Create a new transformation record.
******************************************************************************/
Transform *new_transform()
{
/* allocate space for transformations, if necessary */
if (transforms == NULL) {
transforms = (Transform *) malloc (sizeof (Transform) * max_trans);
}
else if (num_trans >= max_trans) {
max_trans += 1;
transforms = (Transform *)
realloc (transforms, sizeof (Transform) * max_trans);
}
num_trans++;
return (&transforms[num_trans-1]);
}
/******************************************************************************
Main routine.
******************************************************************************/
main(int argc, char *argv[])
{
int i,j;
char *s;
char *progname;
Transform *trans;
progname = argv[0];
while (--argc > 0 && (*++argv)[0]=='-') {
for (s = argv[0]+1; *s; s++)
switch (*s) {
case 's':
trans = new_transform();
trans->type = SCALE;
trans->x = atof (*++argv);
trans->y = atof (*++argv);
trans->z = atof (*++argv);
argc -= 3;
break;
case 't':
trans = new_transform();
trans->type = TRANSLATE;
trans->x = atof (*++argv);
trans->y = atof (*++argv);
trans->z = atof (*++argv);
argc -= 3;
break;
case 'r':
trans = new_transform();
trans->type = ROTATE;
trans->angle = atof (*++argv);
trans->x = atof (*++argv);
trans->y = atof (*++argv);
trans->z = atof (*++argv);
argc -= 4;
break;
default:
fprintf (stderr, "usage: %s [flags] <in.ply >out.ply\n", progname);
fprintf (stderr, " -t xtrans ytrans ztrans\n");
fprintf (stderr, " -s xscale yscale zscale\n");
fprintf (stderr, " -r angle (in degrees) xaxis yaxis zaxis\n");
fprintf (stderr, "\n");
fprintf (stderr,
"Transformations are applied in the order in which they appear\n");
fprintf (stderr,
"in the command line. There is no limit on the number of\n");
fprintf (stderr, "transformations that may be used.\n");
exit (-1);
break;
}
}
read_file();
transform();
write_file();
}
/******************************************************************************
Transform the PLY object.
******************************************************************************/
transform()
{
int i,k;
Vertex *vert;
float x,y,z;
float xx,yy,zz;
float angle;
gtMatrix rmat;
for (k = 0; k < num_trans; k++) {
x = transforms[k].x;
y = transforms[k].y;
z = transforms[k].z;
angle = transforms[k].angle;
switch (transforms[k].type) {
case TRANSLATE:
for (i = 0; i < nverts; i++) {
vert = vlist[i];
vert->x += x;
vert->y += y;
vert->z += z;
}
break;
case SCALE:
for (i = 0; i < nverts; i++) {
vert = vlist[i];
vert->x *= x;
vert->y *= y;
vert->z *= z;
}
break;
case ROTATE:
get_rotation (angle, x, y, z, rmat);
for (i = 0; i < nverts; i++) {
vert = vlist[i];
xx = vert->x;
yy = vert->y;
zz = vert->z;
vert->x = xx * rmat[0][0] + yy * rmat[1][0] + zz * rmat[2][0];
vert->y = xx * rmat[0][1] + yy * rmat[1][1] + zz * rmat[2][1];
vert->z = xx * rmat[0][2] + yy * rmat[1][2] + zz * rmat[2][2];
}
break;
}
}
}
/******************************************************************************
Copy a matrix.
Entry:
dest - destination matrix
source - source matrix to copy
******************************************************************************/
static void copy_matrix(gtMatrix dest, gtMatrix source)
{
int i,j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
dest[i][j] = source[i][j];
}
/******************************************************************************
Set a matrix to the identity matrix.
******************************************************************************/
static void identity_matrix(gtMatrix mat)
{
int i,j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
mat[i][j] = (i == j);
}
/******************************************************************************
Transpose a matrix.
******************************************************************************/
static void transpose_matrix(gtMatrix m)
{
int i,j;
gtMatrix m2;
/* copy */
copy_matrix (m2, m);
/* transpose */
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
m[i][j] = m2[j][i];
}
/******************************************************************************
Multiply two matrices.
Entry:
m1,m2 - matrices to multipy
Exit:
dest - result of m1 * m2
******************************************************************************/
static void mult_matrix(gtMatrix dest, gtMatrix m1, gtMatrix m2)
{
int i,j,k;
gtMatrix m;
/* perform multiplication */
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++) {
m[i][j] = 0;
for (k = 0; k < 4; k++)
m[i][j] += m1[k][j] * m2[i][k];
}
/* copy the answer */
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
dest[i][j] = m[i][j];
}
/******************************************************************************
Normalize a vector.
******************************************************************************/
void normalize_vector(gtVector v)
{
float len,recip;
len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
if (len == 0) {
fprintf (stderr, "normalize_vector: zero length vector\n");
return;
}
recip = 1.0 / sqrt (len);
v[0] *= recip;
v[1] *= recip;
v[2] *= recip;
}
/******************************************************************************
Form the cross-product of two vectors.
Entry:
a,b - vectors to form cross-product of
Exit:
c - a cross b
******************************************************************************/
void cross(gtVector c, gtVector a, gtVector b)
{
gtVector vtemp;
/* perform cross-product */
vtemp[0] = a[1]*b[2] - a[2]*b[1];
vtemp[1] = a[2]*b[0] - a[0]*b[2];
vtemp[2] = a[0]*b[1] - a[1]*b[0];
/* copy the result */
c[0] = vtemp[0];
c[1] = vtemp[1];
c[2] = vtemp[2];
}
/******************************************************************************
Determine the matrix that rotates around an arbitrary axis.
Entry:
angle - number of degrees to rotate around a given axis
ax,ay,az - the given axis
Exit:
mat - the rotation matrix
******************************************************************************/
void get_rotation(float angle, float ax, float ay, float az, gtMatrix mat)
{
gtMatrix r1,r2,r3;
float theta;
gtVector n;
gtVector a,b,c;
a[0] = ax;
a[1] = ay;
a[2] = az;
normalize_vector(a);
/* create vector not parallel to "a" */
ax = fabs(a[0]);
ay = fabs(a[1]);
az = fabs(a[2]);
n[0] = n[1] = n[2] = 0;
if (ax > ay) {
if (ay > az)
n[2] = 1; /* z is smallest */
else
n[1] = 1; /* y is smallest */
}
else {
if (ax > az)
n[2] = 1; /* z is smallest */
else
n[0] = 1; /* x is smallest */
}
/* create "b" orthogonal to "a" */
cross (b, a, n);
normalize_vector(b);
/* create "c" orthogonal to "a" and "b" */
cross (c, a, b);
/* make matrix that rotates a,b,c into x,y,z axes */
identity_matrix (r1);
r1[0][0] = a[0];
r1[1][0] = a[1];
r1[2][0] = a[2];
r1[0][1] = b[0];
r1[1][1] = b[1];
r1[2][1] = b[2];
r1[0][2] = c[0];
r1[1][2] = c[1];
r1[2][2] = c[2];
/* make matrix for rotation by theta degrees around x-axis */
theta = angle * 3.1415926535 / 180.0;
identity_matrix (r2);
r2[1][1] = cos(theta);
r2[2][2] = cos(theta);
r2[1][2] = sin(theta);
r2[2][1] = -sin(theta);
/* make matrix that is inverse of r1 */
copy_matrix (r3, r1);
transpose_matrix (r3);
/* compose these matrices for final matrix mat = r3 * r2 * r1 */
mult_matrix (mat, r3, r2);
mult_matrix (mat, mat, r1);
}
/******************************************************************************
Read in the PLY file from standard in.
******************************************************************************/
read_file()
{
int i,j;
int elem_count;
char *elem_name;
/*** Read in the original PLY object ***/
in_ply = read_ply (stdin);
for (i = 0; i < in_ply->num_elem_types; i++) {
/* prepare to read the i'th list of elements */
elem_name = setup_element_read_ply (in_ply, i, &elem_count);
if (equal_strings ("vertex", elem_name)) {
/* create a vertex list to hold all the vertices */
vlist = (Vertex **) malloc (sizeof (Vertex *) * elem_count);
nverts = elem_count;
/* set up for getting vertex elements */
setup_property_ply (in_ply, &vert_props[0]);
setup_property_ply (in_ply, &vert_props[1]);
setup_property_ply (in_ply, &vert_props[2]);
vert_other = get_other_properties_ply (in_ply,
offsetof(Vertex,other_props));
/* grab all the vertex elements */
for (j = 0; j < elem_count; j++) {
vlist[j] = (Vertex *) malloc (sizeof (Vertex));
get_element_ply (in_ply, (void *) vlist[j]);
}
}
else
get_other_element_ply (in_ply);
}
close_ply (in_ply);
}
/******************************************************************************
Write out the PLY file to standard out.
******************************************************************************/
write_file()
{
int i;
PlyFile *ply;
char **elist;
int num_elem_types;
/*** Write out the transformed PLY object ***/
elist = get_element_list_ply (in_ply, &num_elem_types);
ply = write_ply (stdout, num_elem_types, elist, in_ply->file_type);
/* describe what properties go into the vertex elements */
describe_element_ply (ply, "vertex", nverts);
describe_property_ply (ply, &vert_props[0]);
describe_property_ply (ply, &vert_props[1]);
describe_property_ply (ply, &vert_props[2]);
describe_other_properties_ply (ply, vert_other, offsetof(Vertex,other_props));
describe_other_elements_ply (ply, in_ply->other_elems);
copy_comments_ply (ply, in_ply);
append_comment_ply (ply, "modified by xformply");
copy_obj_info_ply (ply, in_ply);
header_complete_ply (ply);
/* set up and write the vertex elements */
put_element_setup_ply (ply, "vertex");
for (i = 0; i < nverts; i++)
put_element_ply (ply, (void *) vlist[i]);
put_other_elements_ply (ply);
close_ply (ply);
free_ply (ply);
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。