# freedom-e-sdk **Repository Path**: cithub/freedom-e-sdk ## Basic Information - **Project Name**: freedom-e-sdk - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: HEAD - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2019-07-25 - **Last Updated**: 2024-06-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SiFive Freedom E SDK README # This repository, maintained by SiFive Inc, makes it easy to get started developing software for the Freedom E and Freedom S Embedded RISC-V Platforms. This SDK is intended to work on any target supported by SiFive's distributions of the RISC-V GNU Toolchain. [Documentation for Freedom E SDK is available here](https://sifive.github.io/freedom-e-sdk-docs/index.html) Freedom E SDK was recently transitioned to using the Freedom Metal compatibility library. If you're looking for the old Freedom E SDK, software examples, and board support files, you can find those on the [v1\_0 branch](https://github.com/sifive/freedom-e-sdk/tree/v1_0). #### What is Freedom Metal? ### [Freedom Metal](https://github.com/sifive/freedom-metal) ([Documentation](https://sifive.github.io/freedom-metal-docs/index.html)) is a library developed by SiFive for writing portable software for all of SiFive's RISC-V IP, RISC-V FPGA evaluation images, and development boards. Programs written against the Freedom Metal API are intended to build and run for all SiFive RISC-V targets. This makes Freedom Metal suitable for writing portable tests, bare metal application programming, and as a hardware abstraction layer for porting operating systems to RISC-V. ### Contents ### #### Freedom Metal Compatibility Library #### * Board Support Packages (found under `bsp/`) - Supported Targets: - [SiFive HiFive 1](https://www.sifive.com/boards/hifive1) - sifive-hifive1 - [SiFive HiFive 1 Rev B](https://www.sifive.com/boards/hifive1-rev-b) - sifive-hifive1-revb - [SiFive HiFive Unleashed](https://www.sifive.com/boards/hifive-unleashed) - sifive-hifive-unleashed - [SiFive Freedom E310 Arty](https://github.com/sifive/freedom) - freedom-e310-arty - [QEMU Emulation of the SiFive E31](https://github.com/sifive/freedom-tools) - qemu-sifive-e31 - [QEMU Emulation of the SiFive S51](https://github.com/sifive/freedom-tools) - qemu-sifive-s51 - [QEMU Emulation of the SiFive U54](https://github.com/sifive/freedom-tools) - qemu-sifive-u54 - [QEMU Emulation of the SiFive U54MC](https://github.com/sifive/freedom-tools) - qemu-sifive-u54mc - The board support files for the Freedom Metal library are located entirely within a single target directory in `bsp//`. For example, the HiFive 1 board support files for Freedom Metal are entirely within `bsp/sifive-hifive1/` and consist of the following: * design.dts - The DeviceTree description of the target. This file is used to parameterize the Freedom Metal library to the target device. It is included as reference so that users of Freedom Metal are aware of what features and peripherals are available on the target. * metal.h - The Freedom Metal machine header which is used internally to Freedom Metal to instantiate structures to support the target device. * metal.%.lds - Generated linker scripts for the target. The different scripts allow for different memory configurations. * openocd.cfg (for development board and FPGA targets) - Used to configure OpenOCD for flashing and debugging the target device. * settings.mk - Used to set `-march` and `-mabi` arguments to the RISC-V GNU Toolchain. * A Few Example Programs (found under `software/`) - empty - An empty project. Serves as a good starting point for your own program. - hello - Prints "Hello, World!" to stdout, if a serial device is present on the target. - sifive-welcome - Prints a welcome message and interacts with the LEDs. - return-pass - Returns status code 0 indicating program success. - return-fail - Returns status code 1 indicating program failure. - example-itim - Demonstrates how to statically link application code into the Instruction Tightly Integrated Memory (ITIM) if an ITIM is present on the target. - software-interrupt - Demonstrates how to register a handler for and trigger a software interrupt - timer-interrupt - Demonstrates how to register a handler for and trigger a timer interrupt - local-interrupt - Demonstrates how to register a handler for and trigger a local interrupt - example-pmp - Demonstrates how to configure a Physical Memory Protection (PMP) region - example-spi - Demonstrates how to use the SPI API to transfer bytes to a peripheral - dhrystone - "Dhrystone" Benchmark Program by Reinhold P. Weicker - coremark - "CoreMark" Benchmark Program that measures the performance of embedded microcrontrollers (MCU) - cflush - A simple example demo how to use cflush (Data) L1 and use FENCE to ensure flush complete. - example-rtc - Demonstrates how to use the RTC API to start a Real-Time Clock, set a compare value, and handle an interrupt when the clock matches the compare value. - example-watchdog - Demonstrates how to use the Watchdog API to set a watchdog timer to trigger an interrupt on timeout. - example-user-mode - Demonstrates how to drop to user mode privilege level. - example-user-syscall - Demonstrates how to register a handler for the "syscall from user mode" exception, drop to the user mode privilege level, and then issue a syscall. - plic-interrupts - A simple example demonstrating how PLIC interrupts get uses on an Arty board. - test-coreip - Assembly test code which executes instructions and checks for expected results. The tests are designed to work on SiFive CPU designs in RTL simulation or on the Arty FPGA board. - clic-vector-interrupts - A simple example demonstrating how to use CLIC non vector interrupts - clic-selective-vector-interrupts - A simple example demonstrating how to use CLIC selective vector interrupts - clic-hardware-vector-interrupts - A simple example demonstrating the use of CLIC hardware vector interrupts ### Setting up the SDK ### #### Prerequisites #### To use this SDK, you will need the following software available on your machine: * GNU Make * Git * RISC-V GNU Toolchain * RISC-V QEMU 4.1.0 (for use with the qemu-sifive-\* simulation targets) * RISC-V OpenOCD (for use with development board and FPGA targets) * Segger J-LINK (for use with certain development boards) ##### Install the RISC-V Toolchain and OpenOCD ##### The RISC-V GNU Toolchain and OpenOCD are available from the SiFive Website at https://www.sifive.com/boards For OpenOCD and/or RISC-V GNU Toolchain, download the .tar.gz for your platform, and unpack it to your desired location. Then, use the `RISCV_PATH` and `RISCV_OPENOCD_PATH` variables when using the tools: ``` cp openocd--.tar.gz /my/desired/location/ cp riscv64-unknown-elf-gcc--.tar.gz /my/desired/location cd /my/desired/location tar -xvf openocd--.tar.gz tar -xvf riscv64-unknown-elf-gcc--.tar.gz export RISCV_OPENOCD_PATH=/my/desired/location/openocd export RISCV_PATH=/my/desired/location/riscv64-unknown-elf-gcc-- ``` ##### Install RISC-V QEMU 4.1.0 The RISC-V QEMU Emulator is available from the SiFive Website at https://www.sifive.com/boards Download the .tar.gz for your platform and unpack it to your desired location. Then, add QEMU to your path: ``` cp riscv-qemu---.tar.gz /my/desired/location tar -xvf riscv-qemu---.tar.gz export PATH=$PATH:/my/desired/location/riscv-qemu---/bin ``` ##### Install Segger J-Link Software Some targets supported by Freedom E SDK (like the SiFive HiFive1 Rev B) use Segger J-Link OB for programming and debugging. If you intend to use these targets, install the Segger J-Link Software and Documentation Pack for your machine: [Segger J-Link Software Downloads](https://www.segger.com/downloads/jlink#J-LinkSoftwareAndDocumentationPack) #### Cloning the Repository #### This repository can be cloned by running the following commands: ``` git clone --recursive https://github.com/sifive/freedom-e-sdk.git cd freedom-e-sdk ``` The `--recursive` option is required to clone the git submodules included in the repository. If at first you omit the `--recursive` option, you can achieve the same effect by updating submodules using the command: ``` git submodule update --init --recursive ``` ### Updating your SDK ### If you'd like to update your SDK to the latest version: ``` git pull origin master git submodule update --init --recursive ``` ### Using the Tools ### #### Building an Example #### To compile a bare-metal RISC-V program: ``` make [PROGRAM=hello] [TARGET=sifive-hifive1] [CONFIGURATION=debug] software ``` The square brackets in the above command indicate optional parameters for the Make invocation. As you can see, the default values of these parameters tell the build script to build the `hello` example for the `sifive-hifive1` target with the `debug` configuration. If, for example, you wished to build the `timer-interrupt` example for the S51 Arty FPGA Evaluation target, with the `release` configuration, you would instead run the command ``` make PROGRAM=timer-interrupt TARGET=coreip-s51-arty CONFIGURATION=release software ``` ##### Building an Benchmark Program #### Building a benchmark program is slightly special in that certain section is required to be loaded in specific memory region. A specialize linker file has been created for its optimal run. ``` make PROGRAM=dhrystone TARGET=coreip-e31-arty LINK_TARGET=ramrodata software ``` #### Uploading to the Target Board #### ``` make [PROGRAM=hello] [TARGET=sifive-hifive1] [CONFIGURATION=debug] upload ``` #### Debugging a Target Program #### ``` make [PROGRAM=hello] [TARGET=sifive-hifive1] [CONFIGURATION=debug] debug ``` #### Cleaning a Target Program Build Directory #### ``` make [PROGRAM=hello] [TARGET=sifive-hifive1] [CONFIGURATION=debug] clean ``` #### Create a Standalone Project #### You can export a program to a standalone project directory using the `standalone` target. The resulting project will be locked to a specific `TARGET`. Note that this functionality is only supported for Freedom Metal programs, not the Legacy Freedom E SDK. `STANDALONE_DEST` is a required argument to provide the desired project location. ``` make [PROGRAM=hello] [TARGET=sifive-hifive1] [INCLUDE_METAL_SOURCES=1] STANDALONE_DEST=/path/to/desired/location standalone ``` Run `make help` for more commands. ### For More Information ### Documentation, Forums, and much more available at [dev.sifive.com](https://dev.sifive.com)