# DA-Zero-DCE
**Repository Path**: code_jason/DA-Zero-DCE
## Basic Information
- **Project Name**: DA-Zero-DCE
- **Description**: CVPR2020图像与视频增强
Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
https://li-chongyi.github.io/Proj_Zero-DCE.html
代码原地址:https://github.com/Li-Chongyi/Zero-DCE
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2022-11-16
- **Last Updated**: 2023-10-27
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE.html. Have fun!
The implementation of Zero-DCE is for non-commercial use only.
# Pytorch
Pytorch implementation of Zero-DCE
## Requirements
1. Python 3.7
2. Pytorch 1.0.0
3. opencv
4. torchvision 0.2.1
5. cuda100
Zero-DCE does not need special configurations. Just basic environment.
Or you can create a conda environment to run our code like this:
conda create --name zerodce_env opencv pytorch==1.0.0 torchvision==0.2.1 cuda100 python=3.7 -c pytorch
### Folder structure
Download the Zero-DCE_code first.
The following shows the basic folder structure.
```
├── data
│ ├── test_data # testing data. You can make a new folder for your testing data, like LIME, MEF, and NPE.
│ │ ├── LIME
│ │ └── MEF
│ │ └── NPE
│ └── train_data
├── lowlight_test.py # testing code
├── lowlight_train.py # training code
├── model.py # Zero-DEC network
├── dataloader.py
├── snapshots
│ ├── Epoch99.pth # A pre-trained snapshot (Epoch99.pth)
```
### Test:
cd Zero-DCE_code
```
python lowlight_test.py
```
The script will process the images in the sub-folders of "test_data" folder and make a new folder "result" in the "data". You can find the enhanced images in the "result" folder.
### Train:
1) cd Zero-DCE_code
2) download the training data google drive or baidu cloud [password: 1234]
3) unzip and put the downloaded "train_data" folder to "data" folder
```
python lowlight_train.py
```
## Bibtex
```
@inproceedings{Zero-DCE,
author = {Guo, Chunle Guo and Li, Chongyi and Guo, Jichang and Loy, Chen Change and Hou, Junhui and Kwong, Sam and Cong, Runmin},
title = {Zero-reference deep curve estimation for low-light image enhancement},
booktitle = {Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)},
pages = {1780-1789},
month = {June},
year = {2020}
}
```
(Full paper: http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_Zero-Reference_Deep_Curve_Estimation_for_Low-Light_Image_Enhancement_CVPR_2020_paper.pdf)
## Contact
If you have any questions, please contact Chongyi Li at lichongyi25@gmail.com or Chunle Guo at guochunle@tju.edu.cn.
## TensorFlow Version
Thanks tuvovan (vovantu.hust@gmail.com) who re-produces our code by TF. The results of TF version look similar with our Pytorch version. But I do not have enough time to check the details.
https://github.com/tuvovan/Zero_DCE_TF