# DA-Zero-DCE **Repository Path**: code_jason/DA-Zero-DCE ## Basic Information - **Project Name**: DA-Zero-DCE - **Description**: CVPR2020图像与视频增强 Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement https://li-chongyi.github.io/Proj_Zero-DCE.html 代码原地址:https://github.com/Li-Chongyi/Zero-DCE - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2022-11-16 - **Last Updated**: 2023-10-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE.html. Have fun! The implementation of Zero-DCE is for non-commercial use only. # Pytorch Pytorch implementation of Zero-DCE ## Requirements 1. Python 3.7 2. Pytorch 1.0.0 3. opencv 4. torchvision 0.2.1 5. cuda100 Zero-DCE does not need special configurations. Just basic environment. Or you can create a conda environment to run our code like this: conda create --name zerodce_env opencv pytorch==1.0.0 torchvision==0.2.1 cuda100 python=3.7 -c pytorch ### Folder structure Download the Zero-DCE_code first. The following shows the basic folder structure. ``` ├── data │ ├── test_data # testing data. You can make a new folder for your testing data, like LIME, MEF, and NPE. │ │ ├── LIME │ │ └── MEF │ │ └── NPE │ └── train_data ├── lowlight_test.py # testing code ├── lowlight_train.py # training code ├── model.py # Zero-DEC network ├── dataloader.py ├── snapshots │ ├── Epoch99.pth # A pre-trained snapshot (Epoch99.pth) ``` ### Test: cd Zero-DCE_code ``` python lowlight_test.py ``` The script will process the images in the sub-folders of "test_data" folder and make a new folder "result" in the "data". You can find the enhanced images in the "result" folder. ### Train: 1) cd Zero-DCE_code 2) download the training data google drive or baidu cloud [password: 1234] 3) unzip and put the downloaded "train_data" folder to "data" folder ``` python lowlight_train.py ``` ## Bibtex ``` @inproceedings{Zero-DCE, author = {Guo, Chunle Guo and Li, Chongyi and Guo, Jichang and Loy, Chen Change and Hou, Junhui and Kwong, Sam and Cong, Runmin}, title = {Zero-reference deep curve estimation for low-light image enhancement}, booktitle = {Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)}, pages = {1780-1789}, month = {June}, year = {2020} } ``` (Full paper: http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_Zero-Reference_Deep_Curve_Estimation_for_Low-Light_Image_Enhancement_CVPR_2020_paper.pdf) ## Contact If you have any questions, please contact Chongyi Li at lichongyi25@gmail.com or Chunle Guo at guochunle@tju.edu.cn. ## TensorFlow Version Thanks tuvovan (vovantu.hust@gmail.com) who re-produces our code by TF. The results of TF version look similar with our Pytorch version. But I do not have enough time to check the details. https://github.com/tuvovan/Zero_DCE_TF