# mixup-cifar10 **Repository Path**: codepool_admin/mixup-cifar10 ## Basic Information - **Project Name**: mixup-cifar10 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: automated_fixup_code_of_conduct_file_exists - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2024-08-19 - **Last Updated**: 2024-12-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Mixup-CIFAR10 By [Hongyi Zhang](http://web.mit.edu/~hongyiz/www/), [Moustapha Cisse](https://mine.kaust.edu.sa/Pages/cisse.aspx), [Yann Dauphin](http://dauphin.io/), [David Lopez-Paz](https://lopezpaz.org/). Facebook AI Research ## Introduction Mixup is a generic and straightforward data augmentation principle. In essence, mixup trains a neural network on convex combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural network to favor simple linear behavior in-between training examples. This repository contains the implementation used for the results in our paper (https://arxiv.org/abs/1710.09412). ## Citation If you use this method or this code in your paper, then please cite it: ``` @article{ zhang2018mixup, title={mixup: Beyond Empirical Risk Minimization}, author={Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz}, journal={International Conference on Learning Representations}, year={2018}, url={https://openreview.net/forum?id=r1Ddp1-Rb}, } ``` ## Requirements and Installation * A computer running macOS or Linux * For training new models, you'll also need a NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl) * Python version 3.6 * A [PyTorch installation](http://pytorch.org/) ## Training Use `python train.py` to train a new model. Here is an example setting: ``` $ CUDA_VISIBLE_DEVICES=0 python train.py --lr=0.1 --seed=20170922 --decay=1e-4 ``` ## License This project is CC-BY-NC-licensed. ## Acknowledgement The CIFAR-10 reimplementation of _mixup_ is adapted from the [pytorch-cifar](https://github.com/kuangliu/pytorch-cifar) repository by [kuangliu](https://github.com/kuangliu).