# pytorch-classification **Repository Path**: codepool_admin/pytorch-classification ## Basic Information - **Project Name**: pytorch-classification - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-21 - **Last Updated**: 2025-01-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ImageNet training in PyTorch This implements training of popular model architectures, such as ResNet, AlexNet, and VGG on the ImageNet dataset. ## Requirements - Install PyTorch ([pytorch.org](http://pytorch.org)) - `pip install -r requirements.txt` - Download the ImageNet dataset and move validation images to labeled subfolders - To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh ## Training To train a model, run `main.py` with the desired model architecture and the path to the ImageNet dataset: ```bash python main.py -a resnet18 [imagenet-folder with train and val folders] ``` The default learning rate schedule starts at 0.1 and decays by a factor of 10 every 30 epochs. This is appropriate for ResNet and models with batch normalization, but too high for AlexNet and VGG. Use 0.01 as the initial learning rate for AlexNet or VGG: ```bash python main.py -a alexnet --lr 0.01 [imagenet-folder with train and val folders] ``` ## Multi-processing Distributed Data Parallel Training You should always use the NCCL backend for multi-processing distributed training since it currently provides the best distributed training performance. ### Single node, multiple GPUs: ```bash python main.py -a resnet50 --dist-url 'tcp://127.0.0.1:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] ``` ### Multiple nodes: Node 0: ```bash python main.py -a resnet50 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 2 --rank 0 [imagenet-folder with train and val folders] ``` Node 1: ```bash python main.py -a resnet50 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 2 --rank 1 [imagenet-folder with train and val folders] ``` ## Usage ``` usage: main.py [-h] [--arch ARCH] [-j N] [--epochs N] [--start-epoch N] [-b N] [--lr LR] [--momentum M] [--weight-decay W] [--print-freq N] [--resume PATH] [-e] [--pretrained] [--world-size WORLD_SIZE] [--rank RANK] [--dist-url DIST_URL] [--dist-backend DIST_BACKEND] [--seed SEED] [--gpu GPU] [--multiprocessing-distributed] DIR PyTorch ImageNet Training positional arguments: DIR path to dataset optional arguments: -h, --help show this help message and exit --arch ARCH, -a ARCH model architecture: alexnet | densenet121 | densenet161 | densenet169 | densenet201 | resnet101 | resnet152 | resnet18 | resnet34 | resnet50 | squeezenet1_0 | squeezenet1_1 | vgg11 | vgg11_bn | vgg13 | vgg13_bn | vgg16 | vgg16_bn | vgg19 | vgg19_bn (default: resnet18) -j N, --workers N number of data loading workers (default: 4) --epochs N number of total epochs to run --start-epoch N manual epoch number (useful on restarts) -b N, --batch-size N mini-batch size (default: 256), this is the total batch size of all GPUs on the current node when using Data Parallel or Distributed Data Parallel --lr LR, --learning-rate LR initial learning rate --momentum M momentum --weight-decay W, --wd W weight decay (default: 1e-4) --print-freq N, -p N print frequency (default: 10) --resume PATH path to latest checkpoint (default: none) -e, --evaluate evaluate model on validation set --pretrained use pre-trained model --world-size WORLD_SIZE number of nodes for distributed training --rank RANK node rank for distributed training --dist-url DIST_URL url used to set up distributed training --dist-backend DIST_BACKEND distributed backend --seed SEED seed for initializing training. --gpu GPU GPU id to use. --multiprocessing-distributed Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either single node or multi node data parallel training ```