# PyTorch-Tutorial2 **Repository Path**: codes_test/PyTorch-Tutorial2 ## Basic Information - **Project Name**: PyTorch-Tutorial2 - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-12 - **Last Updated**: 2025-06-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README


### If you'd like to use **Tensorflow**, no worries, I made a new **Tensorflow Tutorial** just like PyTorch. Here is the link: [https://github.com/MorvanZhou/Tensorflow-Tutorial](https://github.com/MorvanZhou/Tensorflow-Tutorial) # pyTorch Tutorials In these tutorials for pyTorch, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. Thanks for [liufuyang's](https://github.com/liufuyang) [**notebook files**](tutorial-contents-notebooks) which is a great contribution to this tutorial. * pyTorch basic * [torch and numpy](tutorial-contents/201_torch_numpy.py) * [Variable](tutorial-contents/202_variable.py) * [Activation](tutorial-contents/203_activation.py) * Build your first network * [Regression](tutorial-contents/301_regression.py) * [Classification](tutorial-contents/302_classification.py) * [An easy way](tutorial-contents/303_build_nn_quickly.py) * [Save and reload](tutorial-contents/304_save_reload.py) * [Train on batch](tutorial-contents/305_batch_train.py) * [Optimizers](tutorial-contents/306_optimizer.py) * Advanced neural network * [CNN](tutorial-contents/401_CNN.py) * [RNN-Classification](tutorial-contents/402_RNN_classifier.py) * [RNN-Regression](tutorial-contents/403_RNN_regressor.py) * [AutoEncoder](tutorial-contents/404_autoencoder.py) * [DQN Reinforcement Learning](tutorial-contents/405_DQN_Reinforcement_learning.py) * [A3C Reinforcement Learning](https://github.com/MorvanZhou/pytorch-A3C) * [GAN (Generative Adversarial Nets)](tutorial-contents/406_GAN.py) / [Conditional GAN](tutorial-contents/406_conditional_GAN.py) * Others (WIP) * [Why torch dynamic](tutorial-contents/501_why_torch_dynamic_graph.py) * [Train on GPU](tutorial-contents/502_GPU.py) * [Dropout](tutorial-contents/503_dropout.py) * [Batch Normalization](tutorial-contents/504_batch_normalization.py) **For Chinese speakers: All methods mentioned below have their video and text tutorial in Chinese. Visit [莫烦 Python](https://mofanpy.com/tutorials/) for more. You can watch my [Youtube channel](https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg) as well.** ### [Regression](tutorial-contents/301_regression.py) ### [Classification](tutorial-contents/302_classification.py) ### [CNN](tutorial-contents/401_CNN.py) ### [RNN](tutorial-contents/403_RNN_regressor.py) ### [Autoencoder](tutorial-contents/404_autoencoder.py) ### [GAN (Generative Adversarial Nets)](tutorial-contents/406_GAN.py) ### [Dropout](tutorial-contents/503_dropout.py) ### [Batch Normalization](tutorial-contents/504_batch_normalization.py) # Donation *If this does help you, please consider donating to support me for better tutorials. Any contribution is greatly appreciated!*
Paypal
Patreon