# practicalAI-cn **Repository Path**: cui_jiang/practicalAI-cn ## Basic Information - **Project Name**: practicalAI-cn - **Description**: AI实战-practicalAI 中文版 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-18 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # AI实战-[practicalAI](https://github.com/GokuMohandas/practicalAI) 中文版 [![Colab](https://img.shields.io/badge/launch-Google%20Colab-orange.svg)](https://github.com/GokuMohandas/practicalAI#notebooks) [![MIT](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://github.com/GokuMohandas/practicalAI/blob/master/LICENSE) 让你有能力使用机器学习从数据中获取有价值的见解。 - 🔥 使用 [PyTorch](https://pytorch.org/) 实现基本的机器学习算法和深度神经网络。 - 🖥️ 不需要任何设置,在浏览器中使用 [Google Colab](https://colab.research.google.com/) 运行所有程序。 - 📦 不仅仅是教程,而是学习产品级的面向对象机器学习编程。 ## Notebooks |基础|深度学习|进阶|主题| |-|-|-|-| |📓 [Notebooks](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/00_Notebooks.ipynb)|🔥 [PyTorch](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/07_PyTorch.ipynb)|📚 [高级循环神经网络 Advanced RNNs](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/14_Advanced_RNNs.ipynb)|📸 [计算机视觉 Computer Vision](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/15_Computer_Vision.ipynb)| |🐍 [Python](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/01_Python.ipynb)|🎛️ [多层感知 Multilayer Perceptrons](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/08_Multilayer_Perceptron.ipynb)|🏎️ Highway and Residual Networks|⏰ 时间序列分析 Time Series Analysis| |🔢 [NumPy](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/02_NumPy.ipynb)|🔎 [数据和模型 Data & Models](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/09_Data_and_Models.ipynb)|🔮 自编码器 Autoencoders|🏘️ Topic Modeling| | 🐼 [Pandas](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/03_Pandas.ipynb) |📦 [面向对象的机器学习 Object-Oriented ML](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/10_Object_Oriented_ML.ipynb)|🎭 生成对抗网络 Generative Adversarial Networks|🛒 推荐系统 Recommendation Systems| |📈 [线性回归 Linear Regression](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/04_Linear_Regression.ipynb)|🖼️ [卷积神经网络 Convolutional Neural Networks](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/11_Convolutional_Neural_Networks.ipynb)|🐝 空间变换模型 Spatial Transformer Networks|🗣️ 预训练语言模型 Pretrained Language Modeling| |📊 [逻辑回归 Logistic Regression](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/05_Logistic_Regression.ipynb)|📝 [嵌入层 Embeddings](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/12_Embeddings.ipynb)||🤷 多任务学习 Multitask Learning| |🌳 [随机森林 Random Forests](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/06_Random_Forests.ipynb)|📗 [递归神经网络 Recurrent Neural Networks](https://nbviewer.jupyter.org/github/MLEveryday/practicalAI-cn/blob/master/notebooks/13_Recurrent_Neural_Networks.ipynb)||🎯 Low Shot Learning| |💥 k-均值聚类 KMeans Clustering|||🍒 强化学习 Reinforcement Learning| ## 查看 notebooks 如果不需要运行 notebooks,使用 Jupyter nbviewer 就可以方便地查看它们。 将 `https://github.com/` 替换为 `https://nbviewer.jupyter.org/github/` ,或者打开 `https://nbviewer.jupyter.org` 并输入 notebook 的 URL。 ## 运行 notebooks 1. 在本项目的 [`notebooks`](/notebooks/) 文件夹获取 notebook; 2. 你可以在 Google Colab(推荐)或本地电脑运行这些 notebook; 3. 点击一个 notebook,然后替换URL地址中 `https://github.com/` 为 `https://colab.research.google.com/github/` ,或者使用这个 [Chrome扩展](https://chrome.google.com/webstore/detail/open-in-colab/iogfkhleblhcpcekbiedikdehleodpjo) 一键完成; 4. 登录你自己的 Google 账户; 5. 点击工具栏上的 `复制到云端硬盘`,会在一个新的标签页打开 notebook; 5. 通过去掉标题中的`副本`完成 notebook 重命名; 6. 运行代码、修改等,所有这些都会自动保存到你的个人 Google Drive。 ## 贡献 notebooks 1. 修改后下载 Google Colab notebook 为 .ipynb 文件; 2. 转到 https://github.com/GokuMohandas/practicalAI/tree/master/notebooks ; 3. 点击 `Upload files`. 5. 上传这个 .ipynb 文件; 6. 写一个详细详细的提交标题和说明; 7. 适当命名你的分支; 8. 点击 `Propose changes`。 ## 贡献列表 欢迎任何人参与和完善。 |Notebook|译者| |--|--| |00_Notebooks.ipynb|[@amusi](https://github.com/amusi)| |01_Python.ipynb|[@amusi](https://github.com/amusi)| |02_NumPy.ipynb|[@amusi](https://github.com/amusi)| |03_Pandas.ipynb|[@amusi](https://github.com/amusi)| |04_Linear_Regression.ipynb|[@jasonhhao](https://github.com/jasonhhao)| |05_Logistic_Regression.ipynb|[@jasonhhao](https://github.com/jasonhhao)| |06_Random_Forests.ipynb|[@jasonhhao](https://github.com/jasonhhao)| |07_PyTorch.ipynb|[@amusi](https://github.com/amusi)| |08_Multilayer_Perceptron.ipynb|[@zhyongquan](https://github.com/zhyongquan)| |09_Data_and_Models.ipynb|[@zhyongquan](https://github.com/zhyongquan)| |10_Object_Oriented_ML.ipynb|[@zhyongquan](https://github.com/zhyongquan)| |11_Convolutional_Neural_Networks.ipynb|| |12_Embeddings.ipynb|[@wengJJ](https://github.com/wengJJ)| |13_Recurrent_Neural_Networks.ipynb|| |14_Advanced_RNNs.ipynb|| |15_Computer_Vision.ipynb|||