# kcws **Repository Path**: cylinux_admin/kcws ## Basic Information - **Project Name**: kcws - **Description**: kcws 是一个基于深度学习的分词系统和语料项目。 Deep Learning Chinese Word Segment - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 28 - **Created**: 2017-03-01 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### 引用    本项目模型基本是参考论文:http://www.aclweb.org/anthology/N16-1030 ### 构建 1. 安装好bazel代码构建工具,clone下来tensorflow项目代码,配置好(./configure) 2. clone 本项目地址到tensorflow同级目录,切换到本项目代码目录,运行./configure 3. 编译后台服务 > bazel build //kcws/cc:seg_backend_api ### 训练 1. 关注待字闺中公众号 回复 kcws 获取语料下载地址: ![logo](https://github.com/koth/kcws/blob/master/docs/qrcode_dzgz.jpg?raw=true "待字闺中") 2. 解压语料到一个目录 3. 切换到代码目录,运行: > python kcws/train/process_anno_file.py <语料目录> chars_for_w2v.txt > bazel build third_party/word2vec:word2vec > 使用word2vec 训练 chars_for_w2v (注意-binary 0),得到字嵌入结果vec.txt > ./bazel-bin/third_party/word2vec/word2vec -train chars_for_w2v.txt -output kcws/models/vec.txt -size 50 -sample 1e-4 -negative 5 -hs 1 -binary 0 -iter 5 > bazel build kcws/train:generate_training > ./bazel-bin/kcws/train/generate_training vec.txt <语料目录> all.txt > python kcws/train/filter_sentence.py all.txt (得到train.txt , test.txt) 4. 安装好tensorflow,切换到kcws代码目录,运行: > python kcws/train/train_cws_lstm.py --word2vec_path vec.txt --train_data_path <绝对路径到train.txt> --test_data_path test.txt --max_sentence_len 80 --learning_rate 0.001 5. 生成vocab > bazel build kcws/cc:dump_vocab > ./bazel-bin/kcws/cc/dump_vocab kcws/models/vec.txt vocab.txt 6. 运行web service > ./bazel-bin/kcws/cc/seg_backend_api --model_path=kcws/models/seg_model.pbtxt(绝对路径到seg_model.pbtxt>) --vocab_path=vocab.txt(<绝对路径到vocab.txt>) --max_sentence_len=80 ### demo http://45.32.100.248:9090/ 附: 使用相同模型训练的公司名识别demo: http://45.32.100.248:18080