# Meta_R-CNN-pytorch1.7 **Repository Path**: d7eu7d7/meta_-r-cnn-pytorch1.7 ## Basic Information - **Project Name**: Meta_R-CNN-pytorch1.7 - **Description**: Meta_R-CNN-pytorch1.7 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-08-31 - **Last Updated**: 2021-08-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Meta R-CNN : Towards General Solver for Instance-level Low-shot Learning. Code for reproducing the results in the following paper, and the code is built on top of [jwyang/faster-rcnn.pytorch](https://github.com/jwyang/faster-rcnn.pytorch) **Meta R-CNN : Towards General Solver for Instance-level Low-shot Learning** Xiaopeng Yan*, Ziliang Chen*, Anni Xu, Xiaoxi Wang, Xiaodan Liang, Liang Lin Sun Yat-Sen University, Presented at *IEEE International Conference on Computer Vision [(ICCV2019)](http://iccv2019.thecvf.com/)*

### License For Academic Research Use Only! ### Requirements + python packages + PyTorch = 1.7 *This project support pytorch 1.7, fuck the 0.4 off!!!* + Torchvision >= 0.8.2 + cython + pyyaml + easydict + opencv-python + matplotlib + numpy + scipy + tensorboardX You can install above package using ```pip```: ```sh pip install Cython easydict matplotlib opencv-python pyyaml scipy ``` + CUDA 10.0+ + gcc >= 4.9 ### Misc Tested on Ubuntu 14.04 with a Titan X GPU (12G) and Intel(R) Xeon(R) CPU E5-2623 v3 @ 3.00GHz. ### Getting Started Clone the repo: ``` https://gitee.com/d7eu7d7/meta_-r-cnn-pytorch1.7.git ``` ### Compilation Compile the CUDA dependencies: ```sh cd {repo_root}/lib python setup.py build develop ``` It will compile all the modules you need, including NMS, ROI_Pooing, ROI_Crop and ROI_Align. ### Data Preparation Create a data folder under the repo, ```sh cd {repo_root} mkdir data ``` **PASCAL_VOC 07+12**: Please follow the instructions in [py-faster-rcnn](https://github.com/rbgirshick/py-faster-rcnn#beyond-the-demo-installation-for-training-and-testing-models) to prepare VOC datasets. Actually, you can refer to any others. After downloading the data, create softlinks in the folder data/. please download the three base classes [splits](https://pan.baidu.com/s/11IxGujTTegLEXFsaiohV_Q)[[GoogleDrive](https://drive.google.com/drive/folders/14gtxnxWokk3eO6Oe5SrEG6_R9Dt6efT8?usp=sharing)] and put them into VOC2007 and VOC2012 ImageSets/Main dirs. ### Training We used [ResNet101](https://www.dropbox.com/s/iev3tkbz5wyyuz9/resnet101_caffe.pth?dl=0) pretrained model on ImageNet in our experiments. Download it and put it into the data/pretrained_model/. for example, if you want to train the first split of base and novel class with meta learning, just run: #### the first phase ```sh $>CUDA_VISIBLE_DEVICES=0 python train_metarcnn.py --dataset pascal_voc_0712 --epochs 21 --bs 4 --nw 8 --log_dir checkpoint --save_dir models/meta/first --meta_type 1 --meta_train True --meta_loss True ``` #### the second phase ```sh $>CUDA_VISIBLE_DEVICES=0 python train_metarcnn.py --dataset pascal_voc_0712 --epochs 30 --bs 4 --nw 8 --log_dir checkpoint --save_dir models/meta/first --r True --checksession 1 --checkepoch 20 --checkpoint 3081 --phase 2 --shots 10 --meta_train True --meta_loss True --meta_type 1 ``` ### Testing if you want to evaluate the performance of meta trained model, simply run: ```sh $>CUDA_VISIBLE_DEVICES=0 python test_metarcnn.py --dataset pascal_voc_0712 --net metarcnn --load_dir models/meta/first --checksession 10 --checkepoch 30 --checkpoint 111 --shots 10 --meta_type 1 --meta_test True --meta_loss True --phase 2 ``` we provide the part models with meta training and without meta training in the following: [Meta Models](https://pan.baidu.com/s/1N3PW9WTi82lbdURNAz7EFA)[[GoogleDrive](https://drive.google.com/file/d/19gapxklxKCwYIyGszOMhQKNDqYOLeubn/view?usp=sharing)] and [WoMeta Models](https://pan.baidu.com/s/1GkjUJmaOaEWzh3z2fs7ieA)[[GoogleDrive](https://drive.google.com/file/d/1G6xYH9M_bAAqUec1ARufv0ELi_pd7ERj/view?usp=sharing)] ### Citation ``` @inproceedings{yanICCV19metarcnn, Author = {Yan, Xiaopeng and Chen, Ziliang and Xu, Anni and Wang, Xiaoxi and Liang, Xiaodan and Lin, Liang}, Title = {Meta R-CNN : Towards General Solver for Instance-level Low-shot Learning.}, Booktitle = {Proc. of IEEE International Conference on Computer Vision ({ICCV})}, Year = {2019} } ``` ### Contact If you have any questions about this repo, please feel free to contact [yanxp3@mail3.sysu.edu.cn](mailto:yanxp3@mail3.sysu.edu.cn).