# tensorflow-yolov3 **Repository Path**: d813s909q/tensorflow-yolov3 ## Basic Information - **Project Name**: tensorflow-yolov3 - **Description**: 🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement" - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-07-28 - **Last Updated**: 2021-07-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## 🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? >If you hate the fucking tensorflow1.x very much, no worries! I have implemented **a new YOLOv3 repo with TF2.0**, and also made a chinese blog on how to implement YOLOv3 object detector from scratch.
[code](https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/master/4-Object_Detection/YOLOV3) | [blog](https://yunyang1994.gitee.io/2018/12/28/YOLOv3/) | [issue](https://github.com/YunYang1994/tensorflow-yolov3/issues/39) ## part 1. Quick start 1. Clone this file ```bashrc $ git clone https://github.com/YunYang1994/tensorflow-yolov3.git ``` 2. You are supposed to install some dependencies before getting out hands with these codes. ```bashrc $ cd tensorflow-yolov3 $ pip install -r ./docs/requirements.txt ``` 3. Exporting loaded COCO weights as TF checkpoint(`yolov3_coco.ckpt`)【[BaiduCloud](https://pan.baidu.com/s/11mwiUy8KotjUVQXqkGGPFQ&shfl=sharepset)】 ```bashrc $ cd checkpoint $ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz $ tar -xvf yolov3_coco.tar.gz $ cd .. $ python convert_weight.py $ python freeze_graph.py ``` 4. Then you will get some `.pb` files in the root path., and run the demo script ```bashrc $ python image_demo.py $ python video_demo.py # if use camera, set video_path = 0 ```

## part 2. Train your own dataset Two files are required as follows: - [`dataset.txt`](https://raw.githubusercontent.com/YunYang1994/tensorflow-yolov3/master/data/dataset/voc_train.txt): ``` xxx/xxx.jpg 18.19,6.32,424.13,421.83,20 323.86,2.65,640.0,421.94,20 xxx/xxx.jpg 48,240,195,371,11 8,12,352,498,14 # image_path x_min, y_min, x_max, y_max, class_id x_min, y_min ,..., class_id # make sure that x_max < width and y_max < height ``` - [`class.names`](https://github.com/YunYang1994/tensorflow-yolov3/blob/master/data/classes/coco.names): ``` person bicycle car ... toothbrush ``` ### 2.1 Train on VOC dataset Download VOC PASCAL trainval and test data ```bashrc $ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar $ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar $ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar ``` Extract all of these tars into one directory and rename them, which should have the following basic structure. ```bashrc VOC # path: /home/yang/dataset/VOC ├── test | └──VOCdevkit | └──VOC2007 (from VOCtest_06-Nov-2007.tar) └── train └──VOCdevkit └──VOC2007 (from VOCtrainval_06-Nov-2007.tar) └──VOC2012 (from VOCtrainval_11-May-2012.tar) $ python scripts/voc_annotation.py --data_path /home/yang/test/VOC ``` Then edit your `./core/config.py` to make some necessary configurations ```bashrc __C.YOLO.CLASSES = "./data/classes/voc.names" __C.TRAIN.ANNOT_PATH = "./data/dataset/voc_train.txt" __C.TEST.ANNOT_PATH = "./data/dataset/voc_test.txt" ``` Here are two kinds of training method: ##### (1) train from scratch: ```bashrc $ python train.py $ tensorboard --logdir ./data ``` ##### (2) train from COCO weights(recommend): ```bashrc $ cd checkpoint $ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz $ tar -xvf yolov3_coco.tar.gz $ cd .. $ python convert_weight.py --train_from_coco $ python train.py ``` ### 2.2 Evaluate on VOC dataset ``` $ python evaluate.py $ cd mAP $ python main.py -na ``` the mAP on the VOC2012 dataset:

## part 3. Stargazers over time [![Stargazers over time](https://starcharts.herokuapp.com/YunYang1994/tensorflow-yolov3.svg)](https://starcharts.herokuapp.com/YunYang1994/tensorflow-yolov3) ## part 4. Other Implementations [-**`YOLOv3目标检测有了TensorFlow实现,可用自己的数据来训练`**](https://mp.weixin.qq.com/s/cq7g1-4oFTftLbmKcpi_aQ)
[-**`Stronger-yolo`**](https://github.com/Stinky-Tofu/Stronger-yolo)
[- **`Implementing YOLO v3 in Tensorflow (TF-Slim)`**](https://itnext.io/implementing-yolo-v3-in-tensorflow-tf-slim-c3c55ff59dbe) [- **`YOLOv3_TensorFlow`**](https://github.com/wizyoung/YOLOv3_TensorFlow) [- **`Object Detection using YOLOv2 on Pascal VOC2012`**](https://fairyonice.github.io/Part_1_Object_Detection_with_Yolo_for_VOC_2014_data_anchor_box_clustering.html) [-**`Understanding YOLO`**](https://hackernoon.com/understanding-yolo-f5a74bbc7967)