# EverMemOS
**Repository Path**: daoos_admin/EverMemOS
## Basic Information
- **Project Name**: EverMemOS
- **Description**: No description available
- **Primary Language**: Python
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2026-01-22
- **Last Updated**: 2026-01-22
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
---
[๐ Quick Start](#quick-start) โข [๐ Documentation](docs/) โข [๐ฏ Demos](docs/usage/DEMOS.md) โข [๐ค Contributing](#contributing) โข [๐ฌ Discord](https://discord.gg/pfwwskxp)
---
## Introduction
> ๐ฌ **More than memory โ it's foresight.**
**EverMemOS** enables AI to not only remember what happened, but understand the meaning behind memories and use them to guide decisions. Achieving **93% reasoning accuracy** on the LoCoMo benchmark, EverMemOS provides long-term memory capabilities for conversational AI agents through structured extraction, intelligent retrieval, and progressive profile building.
**How it works:** EverMemOS extracts structured memories from conversations (Encoding), organizes them into episodes and profiles (Consolidation), and intelligently retrieves relevant context when needed (Retrieval).
๐ [Paper](https://arxiv.org/abs/2601.02163) โข ๐ [Vision & Overview](docs/OVERVIEW.md) โข ๐๏ธ [Architecture](docs/ARCHITECTURE.md) โข ๐ [Full Documentation](docs/)
**Latest**: v1.2.0 with API enhancements + DB efficiency improvements ([Changelog](docs/CHANGELOG.md))
---
## Why EverMemOS?
- ๐ฏ **93% Accuracy** - Best-in-class performance on LoCoMo benchmark
- ๐ **Production Ready** - Enterprise-grade with Milvus vector DB, Elasticsearch, MongoDB, and Redis
- ๐ง **Easy Integration** - Simple REST API, works with any LLM
- ๐ **Multi-Modal Memory** - Episodes, facts, preferences, relations
- ๐ **Smart Retrieval** - BM25, embeddings, or agentic search
EverMemOS outperforms existing memory systems across all major benchmarks
---
## Quick Start
### Prerequisites
- Python 3.10+ โข Docker 20.10+ โข uv package manager โข 4GB RAM
**Verify Prerequisites:**
```bash
# Verify you have the required versions
python --version # Should be 3.10+
docker --version # Should be 20.10+
```
### Installation
```bash
# 1. Clone and navigate
git clone https://github.com/EverMind-AI/EverMemOS.git
cd EverMemOS
# 2. Start Docker services
docker-compose up -d
# 3. Install uv and dependencies
curl -LsSf https://astral.sh/uv/install.sh | sh
uv sync
# 4. Configure API keys
cp env.template .env
# Edit .env and set:
# - LLM_API_KEY (for memory extraction)
# - VECTORIZE_API_KEY (for embedding/rerank)
# 5. Start server
uv run python src/run.py --port 8001
# 6. Verify installation
curl http://localhost:8001/health
# Expected response: {"status": "healthy", ...}
```
โ
Server running at `http://localhost:8001` โข [Full Setup Guide](docs/installation/SETUP.md)
---
## Basic Usage
Store and retrieve memories with simple Python code:
```python
import requests
API_BASE = "http://localhost:8001/api/v1"
# 1. Store a conversation memory
requests.post(f"{API_BASE}/memories", json={
"message_id": "msg_001",
"create_time": "2025-02-01T10:00:00+00:00",
"sender": "user_001",
"content": "I love playing soccer on weekends"
})
# 2. Search for relevant memories
response = requests.get(f"{API_BASE}/memories/search", json={
"query": "What sports does the user like?",
"user_id": "user_001",
"memory_types": ["episodic_memory"],
"retrieve_method": "hybrid"
})
result = response.json().get("result", {})
for memory_group in result.get("memories", []):
print(f"Memory: {memory_group}")
```
**Try it now**: `uv run python src/bootstrap.py demo/simple_demo.py` ([Demo Guide](docs/usage/DEMOS.md))
๐ [More Examples](docs/usage/USAGE_EXAMPLES.md) โข ๐ [API Reference](docs/api_docs/memory_api.md) โข ๐ฏ [Interactive Demos](docs/usage/DEMOS.md)
---
## Advanced Techniques
- **[Group Chat Conversations](docs/advanced/GROUP_CHAT_GUIDE.md)** - Combine messages from multiple speakers
- **[Conversation Metadata Control](docs/advanced/METADATA_CONTROL.md)** - Fine-grained control over conversation context
- **[Memory Retrieval Strategies](docs/advanced/RETRIEVAL_STRATEGIES.md)** - Lightweight vs Agentic retrieval modes
- **[Batch Operations](docs/usage/BATCH_OPERATIONS.md)** - Process multiple messages efficiently
---
## Evaluation & Benchmarking
EverMemOS achieves **93% overall accuracy** on the LoCoMo benchmark, outperforming comparable memory systems.
### Benchmark Results
### Supported Benchmarks
- **[LoCoMo](https://github.com/snap-research/locomo)** - Long-context memory benchmark with single/multi-hop reasoning
- **[LongMemEval](https://huggingface.co/datasets/xiaowu0162/longmemeval-cleaned)** - Multi-session conversation evaluation
- **[PersonaMem](https://huggingface.co/datasets/bowen-upenn/PersonaMem)** - Persona-based memory evaluation
### Quick Start
```bash
# Install evaluation dependencies
uv sync --group evaluation
# Run smoke test (quick verification)
uv run python -m evaluation.cli --dataset locomo --system evermemos --smoke
# Run full evaluation
uv run python -m evaluation.cli --dataset locomo --system evermemos
# View results
cat evaluation/results/locomo-evermemos/report.txt
```
๐ [Full Evaluation Guide](evaluation/README.md) โข ๐ [Complete Results](https://huggingface.co/datasets/EverMind-AI/EverMemOS_Eval_Results)
---
## Contributing
We welcome contributions! Here's how you can help:
- ๐ **[Report Bugs](https://github.com/EverMind-AI/EverMemOS/issues/new?template=bug_report.md)** - Help us improve
- โจ **[Request Features](https://github.com/EverMind-AI/EverMemOS/issues/new?template=feature_request.md)** - Share your ideas
- ๐ป **[Submit PRs](CONTRIBUTING.md)** - Read our contribution guide
- ๐ฌ **[Join Discord](https://discord.gg/pfwwskxp)** - Connect with the community
- ๐ง **[Email Us](mailto:evermind@shanda.com)** - General inquiries
**Community**: [GitHub Discussions](https://github.com/EverMind-AI/EverMemOS/discussions) โข [Reddit](https://www.reddit.com/r/EverMindAI/) โข [X/Twitter](https://x.com/EverMindAI)
๐ Read our [Contribution Guidelines](CONTRIBUTING.md) for code standards and Git workflow.
---
## License & Citation
Licensed under [Apache 2.0](LICENSE) โข [Citation Info](docs/CITATION.md) โข [Acknowledgments](docs/ACKNOWLEDGMENTS.md)
---
**If this project helps you, please give us a โญ**
Made with โค๏ธ by the EverMemOS Team