# EverMemOS **Repository Path**: daoos_admin/EverMemOS ## Basic Information - **Project Name**: EverMemOS - **Description**: No description available - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2026-01-22 - **Last Updated**: 2026-01-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

EverMemOS
EverMemOS

Let every interaction be driven by understanding ยท Enterprise-Grade Intelligent Memory System

arXiv Python License Docker Release Stars

--- [๐Ÿš€ Quick Start](#quick-start) โ€ข [๐Ÿ“– Documentation](docs/) โ€ข [๐ŸŽฏ Demos](docs/usage/DEMOS.md) โ€ข [๐Ÿค Contributing](#contributing) โ€ข [๐Ÿ’ฌ Discord](https://discord.gg/pfwwskxp) --- ## Introduction > ๐Ÿ’ฌ **More than memory โ€” it's foresight.** **EverMemOS** enables AI to not only remember what happened, but understand the meaning behind memories and use them to guide decisions. Achieving **93% reasoning accuracy** on the LoCoMo benchmark, EverMemOS provides long-term memory capabilities for conversational AI agents through structured extraction, intelligent retrieval, and progressive profile building.

EverMemOS Architecture Overview

**How it works:** EverMemOS extracts structured memories from conversations (Encoding), organizes them into episodes and profiles (Consolidation), and intelligently retrieves relevant context when needed (Retrieval). ๐Ÿ“„ [Paper](https://arxiv.org/abs/2601.02163) โ€ข ๐Ÿ“š [Vision & Overview](docs/OVERVIEW.md) โ€ข ๐Ÿ—๏ธ [Architecture](docs/ARCHITECTURE.md) โ€ข ๐Ÿ“– [Full Documentation](docs/) **Latest**: v1.2.0 with API enhancements + DB efficiency improvements ([Changelog](docs/CHANGELOG.md)) --- ## Why EverMemOS? - ๐ŸŽฏ **93% Accuracy** - Best-in-class performance on LoCoMo benchmark - ๐Ÿš€ **Production Ready** - Enterprise-grade with Milvus vector DB, Elasticsearch, MongoDB, and Redis - ๐Ÿ”ง **Easy Integration** - Simple REST API, works with any LLM - ๐Ÿ“Š **Multi-Modal Memory** - Episodes, facts, preferences, relations - ๐Ÿ” **Smart Retrieval** - BM25, embeddings, or agentic search

EverMemOS Benchmark Results
EverMemOS outperforms existing memory systems across all major benchmarks

--- ## Quick Start ### Prerequisites - Python 3.10+ โ€ข Docker 20.10+ โ€ข uv package manager โ€ข 4GB RAM **Verify Prerequisites:** ```bash # Verify you have the required versions python --version # Should be 3.10+ docker --version # Should be 20.10+ ``` ### Installation ```bash # 1. Clone and navigate git clone https://github.com/EverMind-AI/EverMemOS.git cd EverMemOS # 2. Start Docker services docker-compose up -d # 3. Install uv and dependencies curl -LsSf https://astral.sh/uv/install.sh | sh uv sync # 4. Configure API keys cp env.template .env # Edit .env and set: # - LLM_API_KEY (for memory extraction) # - VECTORIZE_API_KEY (for embedding/rerank) # 5. Start server uv run python src/run.py --port 8001 # 6. Verify installation curl http://localhost:8001/health # Expected response: {"status": "healthy", ...} ``` โœ… Server running at `http://localhost:8001` โ€ข [Full Setup Guide](docs/installation/SETUP.md) --- ## Basic Usage Store and retrieve memories with simple Python code: ```python import requests API_BASE = "http://localhost:8001/api/v1" # 1. Store a conversation memory requests.post(f"{API_BASE}/memories", json={ "message_id": "msg_001", "create_time": "2025-02-01T10:00:00+00:00", "sender": "user_001", "content": "I love playing soccer on weekends" }) # 2. Search for relevant memories response = requests.get(f"{API_BASE}/memories/search", json={ "query": "What sports does the user like?", "user_id": "user_001", "memory_types": ["episodic_memory"], "retrieve_method": "hybrid" }) result = response.json().get("result", {}) for memory_group in result.get("memories", []): print(f"Memory: {memory_group}") ``` **Try it now**: `uv run python src/bootstrap.py demo/simple_demo.py` ([Demo Guide](docs/usage/DEMOS.md)) ๐Ÿ“– [More Examples](docs/usage/USAGE_EXAMPLES.md) โ€ข ๐Ÿ“š [API Reference](docs/api_docs/memory_api.md) โ€ข ๐ŸŽฏ [Interactive Demos](docs/usage/DEMOS.md) --- ## Advanced Techniques - **[Group Chat Conversations](docs/advanced/GROUP_CHAT_GUIDE.md)** - Combine messages from multiple speakers - **[Conversation Metadata Control](docs/advanced/METADATA_CONTROL.md)** - Fine-grained control over conversation context - **[Memory Retrieval Strategies](docs/advanced/RETRIEVAL_STRATEGIES.md)** - Lightweight vs Agentic retrieval modes - **[Batch Operations](docs/usage/BATCH_OPERATIONS.md)** - Process multiple messages efficiently --- ## Evaluation & Benchmarking EverMemOS achieves **93% overall accuracy** on the LoCoMo benchmark, outperforming comparable memory systems. ### Benchmark Results

EverMemOS Benchmark Results

### Supported Benchmarks - **[LoCoMo](https://github.com/snap-research/locomo)** - Long-context memory benchmark with single/multi-hop reasoning - **[LongMemEval](https://huggingface.co/datasets/xiaowu0162/longmemeval-cleaned)** - Multi-session conversation evaluation - **[PersonaMem](https://huggingface.co/datasets/bowen-upenn/PersonaMem)** - Persona-based memory evaluation ### Quick Start ```bash # Install evaluation dependencies uv sync --group evaluation # Run smoke test (quick verification) uv run python -m evaluation.cli --dataset locomo --system evermemos --smoke # Run full evaluation uv run python -m evaluation.cli --dataset locomo --system evermemos # View results cat evaluation/results/locomo-evermemos/report.txt ``` ๐Ÿ“Š [Full Evaluation Guide](evaluation/README.md) โ€ข ๐Ÿ“ˆ [Complete Results](https://huggingface.co/datasets/EverMind-AI/EverMemOS_Eval_Results) --- ## Contributing We welcome contributions! Here's how you can help: - ๐Ÿ› **[Report Bugs](https://github.com/EverMind-AI/EverMemOS/issues/new?template=bug_report.md)** - Help us improve - โœจ **[Request Features](https://github.com/EverMind-AI/EverMemOS/issues/new?template=feature_request.md)** - Share your ideas - ๐Ÿ’ป **[Submit PRs](CONTRIBUTING.md)** - Read our contribution guide - ๐Ÿ’ฌ **[Join Discord](https://discord.gg/pfwwskxp)** - Connect with the community - ๐Ÿ“ง **[Email Us](mailto:evermind@shanda.com)** - General inquiries **Community**: [GitHub Discussions](https://github.com/EverMind-AI/EverMemOS/discussions) โ€ข [Reddit](https://www.reddit.com/r/EverMindAI/) โ€ข [X/Twitter](https://x.com/EverMindAI) ๐Ÿ“– Read our [Contribution Guidelines](CONTRIBUTING.md) for code standards and Git workflow. --- ## License & Citation Licensed under [Apache 2.0](LICENSE) โ€ข [Citation Info](docs/CITATION.md) โ€ข [Acknowledgments](docs/ACKNOWLEDGMENTS.md) ---
**If this project helps you, please give us a โญ** Made with โค๏ธ by the EverMemOS Team