# jdk8Collection **Repository Path**: dd-coding/jdk8-collection ## Basic Information - **Project Name**: jdk8Collection - **Description**: 关于JDK8中的集合学习 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-18 - **Last Updated**: 2020-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # jdk8Collection ### 介绍 关于JDK8中的集合学习 ### Vector 1. 线程安全的 使用`synchronized`修饰方法。 2. 初始容量是10,递增量是0(意味着每次扩容时都将扩增为原来的2倍) 3. 若没有设定容量,在**定义**Vector向量时,就将对象数组大小设为初始容量10 ##### add ```` /** * Appends the specified element to the end of this Vector. * * @param e element to be appended to this Vector * @return {@code true} (as specified by {@link Collection#add}) * @since 1.2 */ public synchronized boolean add(E e) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = e; return true; } /** * This implements the unsynchronized semantics of ensureCapacity. * Synchronized methods in this class can internally call this * method for ensuring capacity without incurring the cost of an * extra synchronization. * * @see #ensureCapacity(int) */ private void ensureCapacityHelper(int minCapacity) { // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } ```` 说明: 这里主要注意`ensureCapacityHelper`方法,当`minCapacity - elementData.length > 0`时,将调用`grow`方法扩容, 要明确的是`elementData.length`指的是数组的长度,`minCapacity`是指当前的元素个数再加一。一开始的时候,我把`elementData.length` 也当做元素的个数,这样的话`minCapacity - elementData.length > 0`就是必然成立的,那每一次add元素的时候,岂不都要进行扩容了。显然, 这样理解是不对的。几番琢磨之后才醒悟过来,`elementData.length`值的是内部分配的数组的长度,`elementData.size()`才是元素的个数。这样的话,当添加元素前检测到数组已满时, 就需要将数组扩容啦。数组扩容之后,再添加元素。 ##### grow ```` private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } ```` 参数`minCapacity`实际上指的就是数组的最小容量,如果该值小于0的话,将会出现`OutOfMemoryError`内存溢出的错误,具体见`hugeCapacity`方法。 关于参数`capacityIncrement`的定义如下: ```` /** * The amount by which the capacity of the vector is automatically * incremented when its size becomes greater than its capacity. If * the capacity increment is less than or equal to zero, the capacity * of the vector is doubled each time it needs to grow. * * @serial */ protected int capacityIncrement; ```` 注释上说,这个变量就是数组每次扩容时需要增加的量,假设当前数组长度是10,`capacityIncrement`等于5,那么,下次数组扩容后的大小就是15. 如果`capacityIncrement`小于或等于0的话,下次扩容时,数组长度将增加一倍。同样假设当前数组长度是10,`capacityIncrement`等于0,数组扩容后的大小是20,再扩容时, 数组长度就是40了。 再回到`grow`函数,实际分配的数组大小受数组最大长度限制的,数组的最大长度限制是` Integer.MAX_VALUE - 8`。 小插曲: 看源码的时候,我注意到grow方法是没有使用`synchronized`修饰的,在`Vector`类中,有两个对外方法可以触发`grow`,分别是 `ensureCapacity(int minCapacity)`和 `setSize(int newSize)`方法,然后我就想如果有多个线程分别执行这两个方法,触发`grow`函数的 执行,会不会像`HashMap`一样在扩容的时候出现问题呢?不过后来仔细分析后发现,这里并不会有什么问题,因为`HashMap`里面含有链表,而`Vector`是 纯数组操作,扩容的时候是根据索引将元素依次插入到扩容后的数组中,不依赖其他元素(链表依赖其前继节点)。 ### ArrayList 1. 非线程安全的 2. 初始容量是10,没有递增量,每次扩增为原来的2倍 3. 初始化时,若没有设定数组大小,则定义ArrayList时生成的是一个大小为0的数组,在add时才生成默认大小为10的数组 ##### ArrayList() ```` /** * Constructs an empty list with an initial capacity of ten. */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** * Shared empty array instance used for default sized empty instances. We * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when * first element is added. */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; ```` 为什么单把这个构造函数拿出来说呢,其实这里就对应我们上面提到的第3条。初始化时没有指定数组的大小,使用该构造函数时,返回的是一个大小为0的空数组`DEFAULTCAPACITY_EMPTY_ELEMENTDATA`。 ##### add ```` /** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return true (as specified by {@link Collection#add}) */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } private void ensureCapacityInternal(int minCapacity) { ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); } private static int calculateCapacity(Object[] elementData, int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { return Math.max(DEFAULT_CAPACITY, minCapacity); } return minCapacity; } private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } ```` ##### grow ```` /** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } ```` `grow`方法和`Vector`中的`grow`差不多,只是缺少了扩增增量的判断。 ### HashMap 特性介绍: 和`HashTable`很相似,只是`HashMap`不是同步的,且允许允许`key`和`value`为`null`。 `HashMap`不保证map中元素的顺序,也不保证这个顺序一直保持不变,如果`Hash`函数设置的合理,则`get`和`put`操作在一个常量时间内就可以完成。 初始容量和负载因子会影响`HashMap`的性能。默认负载因子0.75,是基于时间复杂度和空间复杂度的折中考虑。太高的话,虽然降低了空间开销,但是增加了查找成本。如果有很多数据放置在一个`HashMap`时,设置一个足够大的容量去存储比自动扩容要有效的多。如果说有很多`key`的`hashCode`相同时,将会降低`hash`表的性能。为了改善这种影响,如果`key`是可比较的话,此类可以使用键之间的比较顺序来帮助打破平局。 1. 默认初始容量16(必须为2的幂次方),最大容量2的30次方。 2. 默认负载因子0.75. 3. 树化阈值是8 4. 取消树化的阈值是6. 5. 最小树化的容量64.(当表格长度小于64时,选择扩容而不是树化) 利用反射验证一下扩容阈值(构造函数中传入初始容量和负载因子,扩容阈值计算跟负载因子无关???) ##### put ```` /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } /** * Implements Map.put and related methods. * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don't change existing value * @param evict if false, the table is in creation mode. * @return previous value, or null if none */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node[] tab; Node p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; } ```` `putVal`流程说明: 1. 表为空或长度为0,则进行扩容操作 2. ```` /** * Replaces all linked nodes in bin at index for given hash unless * table is too small, in which case resizes instead. */ final void treeifyBin(Node[] tab, int hash) { int n, index; Node e; if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) resize(); else if ((e = tab[index = (n - 1) & hash]) != null) { TreeNode hd = null, tl = null; do { TreeNode p = replacementTreeNode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if ((tab[index] = hd) != null) hd.treeify(tab); } } ```` ```` TreeNode replacementTreeNode(Node p, Node next) { LinkedHashMap.Entry q = (LinkedHashMap.Entry)p; TreeNode t = new TreeNode(q.hash, q.key, q.value, next); transferLinks(q, t); return t; } ```` ##### resize ```` /** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final Node[] resize() { Node[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node[] newTab = (Node[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode)e).split(this, newTab, j, oldCap); else { // preserve order Node loHead = null, loTail = null; Node hiHead = null, hiTail = null; Node next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } /** * Splits nodes in a tree bin into lower and upper tree bins, * or untreeifies if now too small. Called only from resize; * see above discussion about split bits and indices. * * @param map the map * @param tab the table for recording bin heads * @param index the index of the table being split * @param bit the bit of hash to split on */ final void split(HashMap map, Node[] tab, int index, int bit) { TreeNode b = this; // Relink into lo and hi lists, preserving order TreeNode loHead = null, loTail = null; TreeNode hiHead = null, hiTail = null; int lc = 0, hc = 0; for (TreeNode e = b, next; e != null; e = next) { next = (TreeNode)e.next; e.next = null; if ((e.hash & bit) == 0) { if ((e.prev = loTail) == null) loHead = e; else loTail.next = e; loTail = e; ++lc; } else { if ((e.prev = hiTail) == null) hiHead = e; else hiTail.next = e; hiTail = e; ++hc; } } if (loHead != null) { if (lc <= UNTREEIFY_THRESHOLD) tab[index] = loHead.untreeify(map); else { tab[index] = loHead; if (hiHead != null) // (else is already treeified) loHead.treeify(tab); } } if (hiHead != null) { if (hc <= UNTREEIFY_THRESHOLD) tab[index + bit] = hiHead.untreeify(map); else { tab[index + bit] = hiHead; if (loHead != null) hiHead.treeify(tab); } } } /** * Returns a list of non-TreeNodes replacing those linked from * this node. */ final Node untreeify(HashMap map) { Node hd = null, tl = null; for (Node q = this; q != null; q = q.next) { Node p = map.replacementNode(q, null); if (tl == null) hd = p; else tl.next = p; tl = p; } return hd; } /** * Forms tree of the nodes linked from this node. */ final void treeify(Node[] tab) { TreeNode root = null; for (TreeNode x = this, next; x != null; x = next) { next = (TreeNode)x.next; x.left = x.right = null; if (root == null) { x.parent = null; x.red = false; root = x; } else { K k = x.key; int h = x.hash; Class kc = null; for (TreeNode p = root;;) { int dir, ph; K pk = p.key; if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) dir = tieBreakOrder(k, pk); TreeNode xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; root = balanceInsertion(root, x); break; } } } } moveRootToFront(tab, root); } ```` `resize`流程说明: 1. 判断初始表格是否为空,如果为空,进入步骤2;不为空,进入步骤3; 2. 初始表为空,判断扩容阈值是否为空,若为空,新表的容量和扩容阈值均为默认值;若不为空,则新表的容量等于旧表的扩容阈值; 3. 若旧表的容量 >= 最大容量,则扩容阈值等于整型最大值;反之,若扩容2倍后的容量小于最大容量且旧表容量大于默认初始容量,则扩容阈值也扩大两倍。