# llm-graph-builder **Repository Path**: ddgit123/llm-graph-builder ## Basic Information - **Project Name**: llm-graph-builder - **Description**: 项目来自:https://github.com/BinNong/llm-graph-builder - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2024-07-10 - **Last Updated**: 2025-04-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## 项目本地启动(详细指导):smile_cat: #### 1. 安装neo4j :hamburger: - 安装neo4j 5.21.0 (⚠️version>=5.15) - Neo4j安装apoc插件 - [x] 下载[插件地址](https://github.com/neo4j/apoc/releases) - [x] 以5.21.0版本为例,将插件[apoc-5.21.0-core.jar](https://github.com/neo4j/apoc/releases/download/5.21.0/apoc-5.21.0-core.jar)拷贝至neo4j安装目录中的plugins文件夹下,如图所示 - [x] 启动neo4j (启动命令在neo4j安装目录的bin文件夹中,因此切换到bin目录中) ```bash ./neo4j start ``` 启动成功显示如下: ```html Starting Neo4j. Started neo4j (pid:17111). It is available at http://localhost:7474 There may be a short delay until the server is ready. ``` - [x] 验证apoc插件是否安装成功 - 浏览器访问http://localhost:7474,设定密码,进入neo4j可视化界面 - 输入cypher ```cypher return apoc.version() ``` - 安装成功显示如下: ------ #### 2. 准备前端环境 :walking_man: - 安装node.js (version >20) :package: - 安装yarn ⚠️ - 在**frontend**文件夹下创建配置文件**.env**,配置文件内容如下: ```yaml #后端开启的端口,默认是8000 BACKEND_API_URL="http://localhost:8000" BLOOM_URL="https://workspace-preview.neo4j.io/workspace/explore?connectURL={CONNECT_URL}&search=Show+me+a+graph&featureGenAISuggestions=true&featureGenAISuggestionsInternal=true" REACT_APP_SOURCES="local" LLM_MODELS="智谱,百川,月之暗面,通义千问,深度求索,零一万物,Diffbot,OpenAI GPT 3.5,OpenAI GPT 4o" ENV="DEV" TIME_PER_CHUNK=4 TIME_PER_PAGE=50 CHUNK_SIZE=5242880 GOOGLE_CLIENT_ID="" ``` :facepunch:可以根据自己的需求,自行修改,也可以使用默认配置 ------ #### 3. 启动前端 :leaves: ```bash cd frontend yarn yarn run dev ``` 运行成功显示如下: 使用浏览器访问 ```html http://localhost:5173/ ``` ------ #### 4. 后端配置 :dango: - 在**backend**文件夹下创建配置文件**.env**,配置内容如下: 只需填写API key :smiley: ```yaml OPENAI_API_KEY = "" #智普ai ZHIPUAI_API_KEY = "填写你的api key" ZHIPUAI_API_URL = "https://open.bigmodel.cn/api/paas/v4/" #通义千问 QWEN_API_KEY = "填写你的api key" QWEN_API_URL = "https://dashscope.aliyuncs.com/compatible-mode/v1" #百川 BAICHUAN_API_KEY = "填写你的api key" BAICHUAN_API_URL = "https://api.baichuan-ai.com/v1/" #月之暗面 MOONSHOT_API_KEY = "填写你的api key" MOONSHOT_API_URL = "https://api.moonshot.cn/v1" #deepseek DEEPSEEK_API_KEY = "填写你的api key" DEEPSEEK_API_URL = "https://api.deepseek.com" #零一万物 LINGYIWANWU_API_KEY = "填写你的api key" LINGYIWANWU_API_URL = "https://api.lingyiwanwu.com/v1" DIFFBOT_API_KEY = "" GROQ_API_KEY = "" #使用从modelscope社区提供的embedding模型 EMBEDDING_MODEL = "iic/nlp_gte_sentence-embedding_chinese-base" IS_EMBEDDING = "true" KNN_MIN_SCORE = "0.94" # Enable Gemini (default is False) | Can be False or True GEMINI_ENABLED = False # Enable Google Cloud logs (default is False) | Can be False or True GCP_LOG_METRICS_ENABLED = False NUMBER_OF_CHUNKS_TO_COMBINE = 6 UPDATE_GRAPH_CHUNKS_PROCESSED = 20 NEO4J_URI = "" NEO4J_USERNAME = "" NEO4J_PASSWORD = "" NEO4J_DATABASE = "" AWS_ACCESS_KEY_ID = "" AWS_SECRET_ACCESS_KEY = "" LANGCHAIN_API_KEY = "" LANGCHAIN_PROJECT = "" LANGCHAIN_TRACING_V2 = "" LANGCHAIN_ENDPOINT = "" GCS_FILE_CACHE = "" #save the file into GCS or local, SHould be True or False ``` ------ #### 5. 后端启动 :ear_of_rice: - 安装依赖: ```bash pip install -r requirements.txt ``` - 启动程序(两种方式), 后端程序在backend文件夹下 - [x] 命令行启动 ```bash uvicorn score:app --reload ``` - [x] 在pycharm或者vscode等ide中,运行score.py 成功运行如下: ------ #### 6. 回到前端即可使用本项目:earth_africa: 以上步骤顺利执行之后,即可回到前端进行操作