Ai
1 Star 0 Fork 0

huwei/SPLERGE

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
train.py 3.38 KB
一键复制 编辑 原始数据 按行查看 历史
wuzhichao 提交于 2020-03-25 15:48 +08:00 . first commit
# -*- coding: utf-8 -*-
# cython: language_level=3
'''
@version : 0.1
@Author : Charles
@Time : 2020/3/12 下午1:55
@File : train.py.py
'''
import argparse
import torch
import torch.nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from config import params
from model.merge import Merge
from model.split import Split
from model.loss import loss
from data_generator.generator import TableDataset
writer = SummaryWriter('./scalar')
def init_args():
args = argparse.ArgumentParser()
args.add_argument('--images_dir', help='path to dataset', default='/home/charleswu/deeplearning/data/表格数据集/ICDAR2013_SPLERGE_train_data/table_img/images')
args.add_argument('--json_dir', help='path to dataset', default='/home/charleswu/deeplearning/data/表格数据集/ICDAR2013_SPLERGE_train_data/table_img/json')
args.add_argument('--cuda', action='store_true', help='enables cuda', default=True)
return args.parse_args()
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
def train(split, merge, train_loader, criterion, optimizer, iteration):
for p in split.parameters():
p.requires_grad = True
for p in merge.parameters():
p.requires_grad = True
split.train()
data_len = len(train_loader)
for i_batch, (image, label) in enumerate(train_loader):
if args.cuda:
image = image.cuda()
cost = loss(image, label, (None, None), split, merge, criterion)
split.zero_grad()
cost.backward()
optimizer.step()
writer.add_scalar('train', cost, iteration * data_len + i_batch)
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], iteration * data_len + i_batch)
if (i_batch + 1) % params.displayInterval == 0:
print("[{}/{}][{}/{}] Loss: {}".format(iteration, params.niter, i_batch, data_len, cost))
def val():
pass
def main(split, merge, train_loader, criterion, optimizer):
Iteration = 0
while Iteration < params.niter:
train(split, merge, train_loader, criterion, optimizer, Iteration)
adjust_learning_rate(optimizer, Iteration)
if Iteration % params.saveModel == 0:
torch.save(split.state_dict(), '{}/split_{}.pth'.format(params.experiment, Iteration))
Iteration += 1
def adjust_learning_rate(optimizer, epoch):
"""设置学习率衰减 """
lr = params.lr * (0.75 ** (epoch // 100))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
args = init_args()
image_dir = args.images_dir
json_dir = args.json_dir
dataset = TableDataset(image_dir, json_dir)
train_loader = DataLoader(dataset, batch_size=params.batchSize, shuffle=True, num_workers=params.workers)
criterion = torch.nn.BCELoss()
split = Split()
merge = Merge()
if args.cuda:
split = split.cuda()
merge = merge.cuda()
criterion = criterion.cuda()
split.apply(weights_init)
if params.trained_model:
print("loading pretrained model from {}".format(params.trained_model))
split.load_state_dict(torch.load(params.trained_model))
optimizer = optim.Adam(split.parameters(), lr=params.lr, betas=(params.beta1, 0.999))
main(split, merge, train_loader, criterion, optimizer)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/debug-huwei/SPLERGE.git
git@gitee.com:debug-huwei/SPLERGE.git
debug-huwei
SPLERGE
SPLERGE
master

搜索帮助