代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
# cython: language_level=3
'''
@version : 0.1
@Author : Charles
@Time : 2020/3/12 下午1:55
@File : train.py.py
'''
import argparse
import torch
import torch.nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from config import params
from model.merge import Merge
from model.split import Split
from model.loss import loss
from data_generator.generator import TableDataset
writer = SummaryWriter('./scalar')
def init_args():
args = argparse.ArgumentParser()
args.add_argument('--images_dir', help='path to dataset', default='/home/charleswu/deeplearning/data/表格数据集/ICDAR2013_SPLERGE_train_data/table_img/images')
args.add_argument('--json_dir', help='path to dataset', default='/home/charleswu/deeplearning/data/表格数据集/ICDAR2013_SPLERGE_train_data/table_img/json')
args.add_argument('--cuda', action='store_true', help='enables cuda', default=True)
return args.parse_args()
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
def train(split, merge, train_loader, criterion, optimizer, iteration):
for p in split.parameters():
p.requires_grad = True
for p in merge.parameters():
p.requires_grad = True
split.train()
data_len = len(train_loader)
for i_batch, (image, label) in enumerate(train_loader):
if args.cuda:
image = image.cuda()
cost = loss(image, label, (None, None), split, merge, criterion)
split.zero_grad()
cost.backward()
optimizer.step()
writer.add_scalar('train', cost, iteration * data_len + i_batch)
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], iteration * data_len + i_batch)
if (i_batch + 1) % params.displayInterval == 0:
print("[{}/{}][{}/{}] Loss: {}".format(iteration, params.niter, i_batch, data_len, cost))
def val():
pass
def main(split, merge, train_loader, criterion, optimizer):
Iteration = 0
while Iteration < params.niter:
train(split, merge, train_loader, criterion, optimizer, Iteration)
adjust_learning_rate(optimizer, Iteration)
if Iteration % params.saveModel == 0:
torch.save(split.state_dict(), '{}/split_{}.pth'.format(params.experiment, Iteration))
Iteration += 1
def adjust_learning_rate(optimizer, epoch):
"""设置学习率衰减 """
lr = params.lr * (0.75 ** (epoch // 100))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
args = init_args()
image_dir = args.images_dir
json_dir = args.json_dir
dataset = TableDataset(image_dir, json_dir)
train_loader = DataLoader(dataset, batch_size=params.batchSize, shuffle=True, num_workers=params.workers)
criterion = torch.nn.BCELoss()
split = Split()
merge = Merge()
if args.cuda:
split = split.cuda()
merge = merge.cuda()
criterion = criterion.cuda()
split.apply(weights_init)
if params.trained_model:
print("loading pretrained model from {}".format(params.trained_model))
split.load_state_dict(torch.load(params.trained_model))
optimizer = optim.Adam(split.parameters(), lr=params.lr, betas=(params.beta1, 0.999))
main(split, merge, train_loader, criterion, optimizer)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。