diff --git a/cv/3d_detection/yolov9/pytorch/LICENSE.md b/cv/3d_detection/yolov9/pytorch/LICENSE.md
new file mode 100644
index 0000000000000000000000000000000000000000..f288702d2fa16d3cdf0035b15a9fcbc552cd88e7
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/LICENSE.md
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
diff --git a/cv/3d_detection/yolov9/pytorch/README.md b/cv/3d_detection/yolov9/pytorch/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..edb2b65ab6e547a930967a15ee9c975601ffda42
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/README.md
@@ -0,0 +1,31 @@
+# YOLOv9
+
+## Model description
+YOLOv9 is a state-of-the-art object detection algorithm that belongs to the YOLO (You Only Look Once) family of models. It is an improved version of the original YOLO algorithm with better accuracy and performance.
+
+## Step 1: Installation
+```
+pip3 install -r requirements.txt
+```
+
+## Step 2: Preparing datasets
+```
+bash scripts/get_coco.sh
+```
+Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete train2017.cache and val2017.cache files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
+
+## Step 3: Training
+### Training on a Single GPU
+```
+python3 train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 1 --close-mosaic 15
+```
+
+### Multiple GPU training
+```
+python3 -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 1 --close-mosaic 15
+```
+
+## Results
+
+## Reference
+[YOLOv9](https://github.com/WongKinYiu/yolov9?tab=readme-ov-file)
diff --git a/cv/3d_detection/yolov9/pytorch/README_origin.md b/cv/3d_detection/yolov9/pytorch/README_origin.md
new file mode 100644
index 0000000000000000000000000000000000000000..478383b63425501b60730d1c92f9dffe5f352ddf
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/README_origin.md
@@ -0,0 +1,327 @@
+# YOLOv9
+
+Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
+
+[](https://arxiv.org/abs/2402.13616)
+[](https://huggingface.co/spaces/kadirnar/Yolov9)
+[](https://huggingface.co/merve/yolov9)
+[](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb)
+[](https://learnopencv.com/yolov9-advancing-the-yolo-legacy/)
+
+
+
+
+## Performance
+
+MS COCO
+
+| Model | Test Size | APval | AP50val | AP75val | Param. | FLOPs |
+| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
+| [**YOLOv9-T**]() | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** |
+| [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
+| [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
+| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
+| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
+
+
+
+
+## Useful Links
+
+ Expand
+
+Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297
+
+ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461
+
+ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150
+
+TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309
+
+QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073
+
+OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003
+
+C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619
+
+C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244
+
+OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672
+
+Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943
+
+CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18
+
+ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37
+
+YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644
+
+YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595
+
+YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107
+
+YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540
+
+YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340
+
+YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879
+
+YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319
+
+YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804
+
+YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766
+
+YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350
+
+Comet logging: https://github.com/WongKinYiu/yolov9/pull/110
+
+MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87
+
+AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662
+
+AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760
+
+Conda environment: https://github.com/WongKinYiu/yolov9/pull/93
+
+AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480
+
+
+
+
+## Installation
+
+Docker environment (recommended)
+ Expand
+
+``` shell
+# create the docker container, you can change the share memory size if you have more.
+nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3
+
+# apt install required packages
+apt update
+apt install -y zip htop screen libgl1-mesa-glx
+
+# pip install required packages
+pip install seaborn thop
+
+# go to code folder
+cd /yolov9
+```
+
+
+
+
+## Evaluation
+
+[`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt)
+
+``` shell
+# evaluate converted yolov9 models
+python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val
+
+# evaluate yolov9 models
+# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val
+
+# evaluate gelan models
+# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val
+```
+
+You will get the results:
+
+```
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.652
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.702
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
+```
+
+
+## Training
+
+Data preparation
+
+``` shell
+bash scripts/get_coco.sh
+```
+
+* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
+
+Single GPU training
+
+``` shell
+# train yolov9 models
+python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
+
+# train gelan models
+# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
+```
+
+Multiple GPU training
+
+``` shell
+# train yolov9 models
+python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
+
+# train gelan models
+# python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
+```
+
+
+## Re-parameterization
+
+See [reparameterization.ipynb](https://github.com/WongKinYiu/yolov9/blob/main/tools/reparameterization.ipynb).
+
+
+## Inference
+
+
+
+``` shell
+# inference converted yolov9 models
+python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c-converted.pt' --name yolov9_c_c_640_detect
+
+# inference yolov9 models
+# python detect_dual.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c.pt' --name yolov9_c_640_detect
+
+# inference gelan models
+# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './gelan-c.pt' --name gelan_c_c_640_detect
+```
+
+
+## Citation
+
+```
+@article{wang2024yolov9,
+ title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
+ author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},
+ booktitle={arXiv preprint arXiv:2402.13616},
+ year={2024}
+}
+```
+
+```
+@article{chang2023yolor,
+ title={{YOLOR}-Based Multi-Task Learning},
+ author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark},
+ journal={arXiv preprint arXiv:2309.16921},
+ year={2023}
+}
+```
+
+
+## Teaser
+
+Parts of code of [YOLOR-Based Multi-Task Learning](https://arxiv.org/abs/2309.16921) are released in the repository.
+
+
+
+#### Object Detection
+
+[`gelan-c-det.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt)
+
+`object detection`
+
+``` shell
+# coco/labels/{split}/*.txt
+# bbox or polygon (1 instance 1 line)
+python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c-det --hyp hyp.scratch-high.yaml --min-items 0 --epochs 300 --close-mosaic 10
+```
+
+| Model | Test Size | Param. | FLOPs | APbox |
+| :-- | :-: | :-: | :-: | :-: |
+| [**GELAN-C-DET**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt) | 640 | 25.3M | 102.1G |**52.3%** |
+| [**YOLOv9-C-DET**]() | 640 | 25.3M | 102.1G | **53.0%** |
+
+#### Instance Segmentation
+
+[`gelan-c-seg.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt)
+
+`object detection` `instance segmentation`
+
+``` shell
+# coco/labels/{split}/*.txt
+# polygon (1 instance 1 line)
+python segment/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/segment/gelan-c-seg.yaml --weights '' --name gelan-c-seg --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
+```
+
+| Model | Test Size | Param. | FLOPs | APbox | APmask |
+| :-- | :-: | :-: | :-: | :-: | :-: |
+| [**GELAN-C-SEG**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt) | 640 | 27.4M | 144.6G | **52.3%** | **42.4%** |
+| [**YOLOv9-C-SEG**]() | 640 | 27.4M | 145.5G | **53.3%** | **43.5%** |
+
+#### Panoptic Segmentation
+
+[`gelan-c-pan.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt)
+
+`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation`
+
+``` shell
+# coco/labels/{split}/*.txt
+# polygon (1 instance 1 line)
+# coco/stuff/{split}/*.txt
+# polygon (1 semantic 1 line)
+python panoptic/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/panoptic/gelan-c-pan.yaml --weights '' --name gelan-c-pan --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
+```
+
+| Model | Test Size | Param. | FLOPs | APbox | APmask | mIoU164k/10ksemantic | mIoUstuff | PQpanoptic |
+| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
+| [**GELAN-C-PAN**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt) | 640 | 27.6M | 146.7G | **52.6%** | **42.5%** | **39.0%/48.3%** | **52.7%** | **39.4%** |
+| [**YOLOv9-C-PAN**]() | 640 | 28.8M | 187.0G | **52.7%** | **43.0%** | **39.8%/-** | **52.2%** | **40.5%** |
+
+#### Image Captioning (not yet released)
+
+
+
+`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation` `image captioning`
+
+``` shell
+# coco/labels/{split}/*.txt
+# polygon (1 instance 1 line)
+# coco/stuff/{split}/*.txt
+# polygon (1 semantic 1 line)
+# coco/annotations/*.json
+# json (1 split 1 file)
+python caption/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/caption/gelan-c-cap.yaml --weights '' --name gelan-c-cap --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
+```
+
+| Model | Test Size | Param. | FLOPs | APbox | APmask | mIoU164k/10ksemantic | mIoUstuff | PQpanoptic | BLEU@4caption | CIDErcaption |
+| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
+| [**GELAN-C-CAP**]() | 640 | 47.5M | - | **51.9%** | **42.6%** | **42.5%/-** | **56.5%** | **41.7%** | **38.8** | **122.3** |
+
+
+
+
+## Acknowledgements
+
+ Expand
+
+* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
+* [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor)
+* [https://github.com/WongKinYiu/yolov7](https://github.com/WongKinYiu/yolov7)
+* [https://github.com/VDIGPKU/DynamicDet](https://github.com/VDIGPKU/DynamicDet)
+* [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG)
+* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
+* [https://github.com/meituan/YOLOv6](https://github.com/meituan/YOLOv6)
+
+
diff --git a/cv/3d_detection/yolov9/pytorch/benchmarks.py b/cv/3d_detection/yolov9/pytorch/benchmarks.py
new file mode 100644
index 0000000000000000000000000000000000000000..462636b25ef3b0ea6aa804abe751b0b1de765864
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/benchmarks.py
@@ -0,0 +1,142 @@
+import argparse
+import platform
+import sys
+import time
+from pathlib import Path
+
+import pandas as pd
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+# ROOT = ROOT.relative_to(Path.cwd()) # relative
+
+import export
+from models.experimental import attempt_load
+from models.yolo import SegmentationModel
+from segment.val import run as val_seg
+from utils import notebook_init
+from utils.general import LOGGER, check_yaml, file_size, print_args
+from utils.torch_utils import select_device
+from val import run as val_det
+
+
+def run(
+ weights=ROOT / 'yolo.pt', # weights path
+ imgsz=640, # inference size (pixels)
+ batch_size=1, # batch size
+ data=ROOT / 'data/coco.yaml', # dataset.yaml path
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ half=False, # use FP16 half-precision inference
+ test=False, # test exports only
+ pt_only=False, # test PyTorch only
+ hard_fail=False, # throw error on benchmark failure
+):
+ y, t = [], time.time()
+ device = select_device(device)
+ model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
+ for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
+ try:
+ assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
+ assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
+ if 'cpu' in device.type:
+ assert cpu, 'inference not supported on CPU'
+ if 'cuda' in device.type:
+ assert gpu, 'inference not supported on GPU'
+
+ # Export
+ if f == '-':
+ w = weights # PyTorch format
+ else:
+ w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
+ assert suffix in str(w), 'export failed'
+
+ # Validate
+ if model_type == SegmentationModel:
+ result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
+ metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
+ else: # DetectionModel:
+ result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
+ metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
+ speed = result[2][1] # times (preprocess, inference, postprocess)
+ y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
+ except Exception as e:
+ if hard_fail:
+ assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
+ LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
+ y.append([name, None, None, None]) # mAP, t_inference
+ if pt_only and i == 0:
+ break # break after PyTorch
+
+ # Print results
+ LOGGER.info('\n')
+ parse_opt()
+ notebook_init() # print system info
+ c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
+ py = pd.DataFrame(y, columns=c)
+ LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
+ LOGGER.info(str(py if map else py.iloc[:, :2]))
+ if hard_fail and isinstance(hard_fail, str):
+ metrics = py['mAP50-95'].array # values to compare to floor
+ floor = eval(hard_fail) # minimum metric floor to pass
+ assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
+ return py
+
+
+def test(
+ weights=ROOT / 'yolo.pt', # weights path
+ imgsz=640, # inference size (pixels)
+ batch_size=1, # batch size
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ half=False, # use FP16 half-precision inference
+ test=False, # test exports only
+ pt_only=False, # test PyTorch only
+ hard_fail=False, # throw error on benchmark failure
+):
+ y, t = [], time.time()
+ device = select_device(device)
+ for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
+ try:
+ w = weights if f == '-' else \
+ export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
+ assert suffix in str(w), 'export failed'
+ y.append([name, True])
+ except Exception:
+ y.append([name, False]) # mAP, t_inference
+
+ # Print results
+ LOGGER.info('\n')
+ parse_opt()
+ notebook_init() # print system info
+ py = pd.DataFrame(y, columns=['Format', 'Export'])
+ LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
+ LOGGER.info(str(py))
+ return py
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--test', action='store_true', help='test exports only')
+ parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
+ parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
+ opt = parser.parse_args()
+ opt.data = check_yaml(opt.data) # check YAML
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ test(**vars(opt)) if opt.test else run(**vars(opt))
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/classify/predict.py b/cv/3d_detection/yolov9/pytorch/classify/predict.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a6b0006293202dc2193edac6f809cfe8a132062
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/classify/predict.py
@@ -0,0 +1,224 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
+
+Usage - sources:
+ $ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
+ img.jpg # image
+ vid.mp4 # video
+ screen # screenshot
+ path/ # directory
+ 'path/*.jpg' # glob
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+ $ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
+ yolov5s-cls.torchscript # TorchScript
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
+ yolov5s-cls_openvino_model # OpenVINO
+ yolov5s-cls.engine # TensorRT
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
+ yolov5s-cls_saved_model # TensorFlow SavedModel
+ yolov5s-cls.pb # TensorFlow GraphDef
+ yolov5s-cls.tflite # TensorFlow Lite
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
+ yolov5s-cls_paddle_model # PaddlePaddle
+"""
+
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+import torch.nn.functional as F
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import DetectMultiBackend
+from utils.augmentations import classify_transforms
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+ increment_path, print_args, strip_optimizer)
+from utils.plots import Annotator
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+ weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
+ imgsz=(224, 224), # inference size (height, width)
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ view_img=False, # show results
+ save_txt=False, # save results to *.txt
+ nosave=False, # do not save images/videos
+ augment=False, # augmented inference
+ visualize=False, # visualize features
+ update=False, # update all models
+ project=ROOT / 'runs/predict-cls', # save results to project/name
+ name='exp', # save results to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ half=False, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ vid_stride=1, # video frame-rate stride
+):
+ source = str(source)
+ save_img = not nosave and not source.endswith('.txt') # save inference images
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+ webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
+ screenshot = source.lower().startswith('screen')
+ if is_url and is_file:
+ source = check_file(source) # download
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ device = select_device(device)
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, names, pt = model.stride, model.names, model.pt
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+
+ # Dataloader
+ bs = 1 # batch_size
+ if webcam:
+ view_img = check_imshow(warn=True)
+ dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
+ bs = len(dataset)
+ elif screenshot:
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+ else:
+ dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
+ vid_path, vid_writer = [None] * bs, [None] * bs
+
+ # Run inference
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
+ for path, im, im0s, vid_cap, s in dataset:
+ with dt[0]:
+ im = torch.Tensor(im).to(model.device)
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
+ if len(im.shape) == 3:
+ im = im[None] # expand for batch dim
+
+ # Inference
+ with dt[1]:
+ results = model(im)
+
+ # Post-process
+ with dt[2]:
+ pred = F.softmax(results, dim=1) # probabilities
+
+ # Process predictions
+ for i, prob in enumerate(pred): # per image
+ seen += 1
+ if webcam: # batch_size >= 1
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
+ s += f'{i}: '
+ else:
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+ p = Path(p) # to Path
+ save_path = str(save_dir / p.name) # im.jpg
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
+
+ s += '%gx%g ' % im.shape[2:] # print string
+ annotator = Annotator(im0, example=str(names), pil=True)
+
+ # Print results
+ top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
+ s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
+
+ # Write results
+ text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i)
+ if save_img or view_img: # Add bbox to image
+ annotator.text((32, 32), text, txt_color=(255, 255, 255))
+ if save_txt: # Write to file
+ with open(f'{txt_path}.txt', 'a') as f:
+ f.write(text + '\n')
+
+ # Stream results
+ im0 = annotator.result()
+ if view_img:
+ if platform.system() == 'Linux' and p not in windows:
+ windows.append(p)
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+ cv2.imshow(str(p), im0)
+ cv2.waitKey(1) # 1 millisecond
+
+ # Save results (image with detections)
+ if save_img:
+ if dataset.mode == 'image':
+ cv2.imwrite(save_path, im0)
+ else: # 'video' or 'stream'
+ if vid_path[i] != save_path: # new video
+ vid_path[i] = save_path
+ if isinstance(vid_writer[i], cv2.VideoWriter):
+ vid_writer[i].release() # release previous video writer
+ if vid_cap: # video
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ else: # stream
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+ vid_writer[i].write(im0)
+
+ # Print time (inference-only)
+ LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
+
+ # Print results
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+ if save_txt or save_img:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ if update:
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--view-img', action='store_true', help='show results')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
+ parser.add_argument('--update', action='store_true', help='update all models')
+ parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name')
+ parser.add_argument('--name', default='exp', help='save results to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+ opt = parser.parse_args()
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ check_requirements(exclude=('tensorboard', 'thop'))
+ run(**vars(opt))
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/classify/train.py b/cv/3d_detection/yolov9/pytorch/classify/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..a50845a4f781e5953567cd7e0304b81ca320c6d3
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/classify/train.py
@@ -0,0 +1,333 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Train a YOLOv5 classifier model on a classification dataset
+
+Usage - Single-GPU training:
+ $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
+
+Usage - Multi-GPU DDP training:
+ $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
+
+Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
+YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
+Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
+"""
+
+import argparse
+import os
+import subprocess
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import torch
+import torch.distributed as dist
+import torch.hub as hub
+import torch.optim.lr_scheduler as lr_scheduler
+import torchvision
+from torch.cuda import amp
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from classify import val as validate
+from models.experimental import attempt_load
+from models.yolo import ClassificationModel, DetectionModel
+from utils.dataloaders import create_classification_dataloader
+from utils.general import (DATASETS_DIR, LOGGER, TQDM_BAR_FORMAT, WorkingDirectory, check_git_info, check_git_status,
+ check_requirements, colorstr, download, increment_path, init_seeds, print_args, yaml_save)
+from utils.loggers import GenericLogger
+from utils.plots import imshow_cls
+from utils.torch_utils import (ModelEMA, model_info, reshape_classifier_output, select_device, smart_DDP,
+ smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = check_git_info()
+
+
+def train(opt, device):
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
+ save_dir, data, bs, epochs, nw, imgsz, pretrained = \
+ opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \
+ opt.imgsz, str(opt.pretrained).lower() == 'true'
+ cuda = device.type != 'cpu'
+
+ # Directories
+ wdir = save_dir / 'weights'
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
+ last, best = wdir / 'last.pt', wdir / 'best.pt'
+
+ # Save run settings
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+ # Logger
+ logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
+
+ # Download Dataset
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
+ data_dir = data if data.is_dir() else (DATASETS_DIR / data)
+ if not data_dir.is_dir():
+ LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
+ t = time.time()
+ if str(data) == 'imagenet':
+ subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
+ else:
+ url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip'
+ download(url, dir=data_dir.parent)
+ s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
+ LOGGER.info(s)
+
+ # Dataloaders
+ nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
+ trainloader = create_classification_dataloader(path=data_dir / 'train',
+ imgsz=imgsz,
+ batch_size=bs // WORLD_SIZE,
+ augment=True,
+ cache=opt.cache,
+ rank=LOCAL_RANK,
+ workers=nw)
+
+ test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
+ if RANK in {-1, 0}:
+ testloader = create_classification_dataloader(path=test_dir,
+ imgsz=imgsz,
+ batch_size=bs // WORLD_SIZE * 2,
+ augment=False,
+ cache=opt.cache,
+ rank=-1,
+ workers=nw)
+
+ # Model
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
+ if Path(opt.model).is_file() or opt.model.endswith('.pt'):
+ model = attempt_load(opt.model, device='cpu', fuse=False)
+ elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
+ model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None)
+ else:
+ m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models
+ raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m))
+ if isinstance(model, DetectionModel):
+ LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
+ model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
+ reshape_classifier_output(model, nc) # update class count
+ for m in model.modules():
+ if not pretrained and hasattr(m, 'reset_parameters'):
+ m.reset_parameters()
+ if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
+ m.p = opt.dropout # set dropout
+ for p in model.parameters():
+ p.requires_grad = True # for training
+ model = model.to(device)
+
+ # Info
+ if RANK in {-1, 0}:
+ model.names = trainloader.dataset.classes # attach class names
+ model.transforms = testloader.dataset.torch_transforms # attach inference transforms
+ model_info(model)
+ if opt.verbose:
+ LOGGER.info(model)
+ images, labels = next(iter(trainloader))
+ file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg')
+ logger.log_images(file, name='Train Examples')
+ logger.log_graph(model, imgsz) # log model
+
+ # Optimizer
+ optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
+
+ # Scheduler
+ lrf = 0.01 # final lr (fraction of lr0)
+ # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
+ lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
+ # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
+ # final_div_factor=1 / 25 / lrf)
+
+ # EMA
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+ # DDP mode
+ if cuda and RANK != -1:
+ model = smart_DDP(model)
+
+ # Train
+ t0 = time.time()
+ criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
+ best_fitness = 0.0
+ scaler = amp.GradScaler(enabled=cuda)
+ val = test_dir.stem # 'val' or 'test'
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n'
+ f'Using {nw * WORLD_SIZE} dataloader workers\n'
+ f"Logging results to {colorstr('bold', save_dir)}\n"
+ f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
+ f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}")
+ for epoch in range(epochs): # loop over the dataset multiple times
+ tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
+ model.train()
+ if RANK != -1:
+ trainloader.sampler.set_epoch(epoch)
+ pbar = enumerate(trainloader)
+ if RANK in {-1, 0}:
+ pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
+ for i, (images, labels) in pbar: # progress bar
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
+
+ # Forward
+ with amp.autocast(enabled=cuda): # stability issues when enabled
+ loss = criterion(model(images), labels)
+
+ # Backward
+ scaler.scale(loss).backward()
+
+ # Optimize
+ scaler.unscale_(optimizer) # unscale gradients
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
+ scaler.step(optimizer)
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+
+ if RANK in {-1, 0}:
+ # Print
+ tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
+ pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
+
+ # Test
+ if i == len(pbar) - 1: # last batch
+ top1, top5, vloss = validate.run(model=ema.ema,
+ dataloader=testloader,
+ criterion=criterion,
+ pbar=pbar) # test accuracy, loss
+ fitness = top1 # define fitness as top1 accuracy
+
+ # Scheduler
+ scheduler.step()
+
+ # Log metrics
+ if RANK in {-1, 0}:
+ # Best fitness
+ if fitness > best_fitness:
+ best_fitness = fitness
+
+ # Log
+ metrics = {
+ "train/loss": tloss,
+ f"{val}/loss": vloss,
+ "metrics/accuracy_top1": top1,
+ "metrics/accuracy_top5": top5,
+ "lr/0": optimizer.param_groups[0]['lr']} # learning rate
+ logger.log_metrics(metrics, epoch)
+
+ # Save model
+ final_epoch = epoch + 1 == epochs
+ if (not opt.nosave) or final_epoch:
+ ckpt = {
+ 'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
+ 'ema': None, # deepcopy(ema.ema).half(),
+ 'updates': ema.updates,
+ 'optimizer': None, # optimizer.state_dict(),
+ 'opt': vars(opt),
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
+ 'date': datetime.now().isoformat()}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fitness:
+ torch.save(ckpt, best)
+ del ckpt
+
+ # Train complete
+ if RANK in {-1, 0} and final_epoch:
+ LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
+ f"\nResults saved to {colorstr('bold', save_dir)}"
+ f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
+ f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
+ f"\nExport: python export.py --weights {best} --include onnx"
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
+ f"\nVisualize: https://netron.app\n")
+
+ # Plot examples
+ images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
+ pred = torch.max(ema.ema(images.to(device)), 1)[1]
+ file = imshow_cls(images, labels, pred, model.names, verbose=False, f=save_dir / 'test_images.jpg')
+
+ # Log results
+ meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
+ logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch)
+ logger.log_model(best, epochs, metadata=meta)
+
+
+def parse_opt(known=False):
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path')
+ parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...')
+ parser.add_argument('--epochs', type=int, default=10, help='total training epochs')
+ parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False')
+ parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer')
+ parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate')
+ parser.add_argument('--decay', type=float, default=5e-5, help='weight decay')
+ parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
+ parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head')
+ parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)')
+ parser.add_argument('--verbose', action='store_true', help='Verbose mode')
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+ return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt):
+ # Checks
+ if RANK in {-1, 0}:
+ print_args(vars(opt))
+ check_git_status()
+ check_requirements()
+
+ # DDP mode
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if LOCAL_RANK != -1:
+ assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size'
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+ torch.cuda.set_device(LOCAL_RANK)
+ device = torch.device('cuda', LOCAL_RANK)
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+ # Parameters
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
+
+ # Train
+ train(opt, device)
+
+
+def run(**kwargs):
+ # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
+ opt = parse_opt(True)
+ for k, v in kwargs.items():
+ setattr(opt, k, v)
+ main(opt)
+ return opt
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/classify/val.py b/cv/3d_detection/yolov9/pytorch/classify/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..8657036fb2a23d7388240c31d36b67b95877ec12
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/classify/val.py
@@ -0,0 +1,170 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Validate a trained YOLOv5 classification model on a classification dataset
+
+Usage:
+ $ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
+ $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
+
+Usage - formats:
+ $ python classify/val.py --weights yolov5s-cls.pt # PyTorch
+ yolov5s-cls.torchscript # TorchScript
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
+ yolov5s-cls_openvino_model # OpenVINO
+ yolov5s-cls.engine # TensorRT
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
+ yolov5s-cls_saved_model # TensorFlow SavedModel
+ yolov5s-cls.pb # TensorFlow GraphDef
+ yolov5s-cls.tflite # TensorFlow Lite
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
+ yolov5s-cls_paddle_model # PaddlePaddle
+"""
+
+import argparse
+import os
+import sys
+from pathlib import Path
+
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import create_classification_dataloader
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
+ increment_path, print_args)
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+ data=ROOT / '../datasets/mnist', # dataset dir
+ weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
+ batch_size=128, # batch size
+ imgsz=224, # inference size (pixels)
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ workers=8, # max dataloader workers (per RANK in DDP mode)
+ verbose=False, # verbose output
+ project=ROOT / 'runs/val-cls', # save to project/name
+ name='exp', # save to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ half=False, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ model=None,
+ dataloader=None,
+ criterion=None,
+ pbar=None,
+):
+ # Initialize/load model and set device
+ training = model is not None
+ if training: # called by train.py
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
+ half &= device.type != 'cpu' # half precision only supported on CUDA
+ model.half() if half else model.float()
+ else: # called directly
+ device = select_device(device, batch_size=batch_size)
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ save_dir.mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+ half = model.fp16 # FP16 supported on limited backends with CUDA
+ if engine:
+ batch_size = model.batch_size
+ else:
+ device = model.device
+ if not (pt or jit):
+ batch_size = 1 # export.py models default to batch-size 1
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+ # Dataloader
+ data = Path(data)
+ test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
+ dataloader = create_classification_dataloader(path=test_dir,
+ imgsz=imgsz,
+ batch_size=batch_size,
+ augment=False,
+ rank=-1,
+ workers=workers)
+
+ model.eval()
+ pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
+ n = len(dataloader) # number of batches
+ action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
+ desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
+ bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
+ with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
+ for images, labels in bar:
+ with dt[0]:
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
+
+ with dt[1]:
+ y = model(images)
+
+ with dt[2]:
+ pred.append(y.argsort(1, descending=True)[:, :5])
+ targets.append(labels)
+ if criterion:
+ loss += criterion(y, labels)
+
+ loss /= n
+ pred, targets = torch.cat(pred), torch.cat(targets)
+ correct = (targets[:, None] == pred).float()
+ acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
+ top1, top5 = acc.mean(0).tolist()
+
+ if pbar:
+ pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
+ if verbose: # all classes
+ LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
+ LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
+ for i, c in model.names.items():
+ aci = acc[targets == i]
+ top1i, top5i = aci.mean(0).tolist()
+ LOGGER.info(f"{c:>24}{aci.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
+
+ # Print results
+ t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
+ shape = (1, 3, imgsz, imgsz)
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
+
+ return top1, top5, loss
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
+ parser.add_argument('--batch-size', type=int, default=128, help='batch size')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
+ parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ opt = parser.parse_args()
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ check_requirements(exclude=('tensorboard', 'thop'))
+ run(**vars(opt))
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/data/coco.yaml b/cv/3d_detection/yolov9/pytorch/data/coco.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..721772552a29e5d1e8dab20a9a38c38a537cc83e
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/data/coco.yaml
@@ -0,0 +1,125 @@
+path: ./coco # dataset root dir
+train: train2017.txt # train images (relative to 'path') 118287 images
+val: val2017.txt # val images (relative to 'path') 5000 images
+test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
+
+# Classes
+names:
+ 0: person
+ 1: bicycle
+ 2: car
+ 3: motorcycle
+ 4: airplane
+ 5: bus
+ 6: train
+ 7: truck
+ 8: boat
+ 9: traffic light
+ 10: fire hydrant
+ 11: stop sign
+ 12: parking meter
+ 13: bench
+ 14: bird
+ 15: cat
+ 16: dog
+ 17: horse
+ 18: sheep
+ 19: cow
+ 20: elephant
+ 21: bear
+ 22: zebra
+ 23: giraffe
+ 24: backpack
+ 25: umbrella
+ 26: handbag
+ 27: tie
+ 28: suitcase
+ 29: frisbee
+ 30: skis
+ 31: snowboard
+ 32: sports ball
+ 33: kite
+ 34: baseball bat
+ 35: baseball glove
+ 36: skateboard
+ 37: surfboard
+ 38: tennis racket
+ 39: bottle
+ 40: wine glass
+ 41: cup
+ 42: fork
+ 43: knife
+ 44: spoon
+ 45: bowl
+ 46: banana
+ 47: apple
+ 48: sandwich
+ 49: orange
+ 50: broccoli
+ 51: carrot
+ 52: hot dog
+ 53: pizza
+ 54: donut
+ 55: cake
+ 56: chair
+ 57: couch
+ 58: potted plant
+ 59: bed
+ 60: dining table
+ 61: toilet
+ 62: tv
+ 63: laptop
+ 64: mouse
+ 65: remote
+ 66: keyboard
+ 67: cell phone
+ 68: microwave
+ 69: oven
+ 70: toaster
+ 71: sink
+ 72: refrigerator
+ 73: book
+ 74: clock
+ 75: vase
+ 76: scissors
+ 77: teddy bear
+ 78: hair drier
+ 79: toothbrush
+
+
+# stuff names
+stuff_names: [
+ 'banner', 'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', 'cage',
+ 'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile', 'cloth', 'clothes', 'clouds', 'counter', 'cupboard',
+ 'curtain', 'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble', 'floor-other', 'floor-stone', 'floor-tile',
+ 'floor-wood', 'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass', 'gravel', 'ground-other', 'hill',
+ 'house', 'leaves', 'light', 'mat', 'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', 'paper',
+ 'pavement', 'pillow', 'plant-other', 'plastic', 'platform', 'playingfield', 'railing', 'railroad', 'river', 'road',
+ 'rock', 'roof', 'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper', 'snow', 'solid-other', 'stairs',
+ 'stone', 'straw', 'structural-other', 'table', 'tent', 'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick',
+ 'wall-concrete', 'wall-other', 'wall-panel', 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops',
+ 'window-blind', 'window-other', 'wood',
+ # other
+ 'other',
+ # unlabeled
+ 'unlabeled'
+]
+
+
+# Download script/URL (optional)
+download: |
+ from utils.general import download, Path
+
+
+ # Download labels
+ #segments = True # segment or box labels
+ #dir = Path(yaml['path']) # dataset root dir
+ #url = 'https://github.com/WongKinYiu/yolov7/releases/download/v0.1/'
+ #urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
+ #download(urls, dir=dir.parent)
+
+ # Download data
+ #urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
+ # 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
+ # 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
+ #download(urls, dir=dir / 'images', threads=3)
diff --git a/cv/3d_detection/yolov9/pytorch/data/hyps/hyp.scratch-high.yaml b/cv/3d_detection/yolov9/pytorch/data/hyps/hyp.scratch-high.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fdb2c378800d57862827961494e019e44f63a59c
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/data/hyps/hyp.scratch-high.yaml
@@ -0,0 +1,30 @@
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 7.5 # box loss gain
+cls: 0.5 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 0.7 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+dfl: 1.5 # dfl loss gain
+iou_t: 0.20 # IoU training threshold
+anchor_t: 5.0 # anchor-multiple threshold
+# anchors: 3 # anchors per output layer (0 to ignore)
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.1 # image translation (+/- fraction)
+scale: 0.9 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.15 # image mixup (probability)
+copy_paste: 0.3 # segment copy-paste (probability)
diff --git a/cv/3d_detection/yolov9/pytorch/data/images/horses.jpg b/cv/3d_detection/yolov9/pytorch/data/images/horses.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3a761f46ba08ed459af026b59f6b91b6fa597dd1
Binary files /dev/null and b/cv/3d_detection/yolov9/pytorch/data/images/horses.jpg differ
diff --git a/cv/3d_detection/yolov9/pytorch/detect.py b/cv/3d_detection/yolov9/pytorch/detect.py
new file mode 100644
index 0000000000000000000000000000000000000000..6dbb6e7ef54e862023ec45cb2abb0333124358f7
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/detect.py
@@ -0,0 +1,231 @@
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+ increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
+from utils.plots import Annotator, colors, save_one_box
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+ weights=ROOT / 'yolo.pt', # model path or triton URL
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
+ data=ROOT / 'data/coco.yaml', # dataset.yaml path
+ imgsz=(640, 640), # inference size (height, width)
+ conf_thres=0.25, # confidence threshold
+ iou_thres=0.45, # NMS IOU threshold
+ max_det=1000, # maximum detections per image
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ view_img=False, # show results
+ save_txt=False, # save results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_crop=False, # save cropped prediction boxes
+ nosave=False, # do not save images/videos
+ classes=None, # filter by class: --class 0, or --class 0 2 3
+ agnostic_nms=False, # class-agnostic NMS
+ augment=False, # augmented inference
+ visualize=False, # visualize features
+ update=False, # update all models
+ project=ROOT / 'runs/detect', # save results to project/name
+ name='exp', # save results to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ line_thickness=3, # bounding box thickness (pixels)
+ hide_labels=False, # hide labels
+ hide_conf=False, # hide confidences
+ half=False, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ vid_stride=1, # video frame-rate stride
+):
+ source = str(source)
+ save_img = not nosave and not source.endswith('.txt') # save inference images
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+ webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
+ screenshot = source.lower().startswith('screen')
+ if is_url and is_file:
+ source = check_file(source) # download
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ device = select_device(device)
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, names, pt = model.stride, model.names, model.pt
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+
+ # Dataloader
+ bs = 1 # batch_size
+ if webcam:
+ view_img = check_imshow(warn=True)
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+ bs = len(dataset)
+ elif screenshot:
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+ else:
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+ vid_path, vid_writer = [None] * bs, [None] * bs
+
+ # Run inference
+ model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
+ for path, im, im0s, vid_cap, s in dataset:
+ with dt[0]:
+ im = torch.from_numpy(im).to(model.device)
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ if len(im.shape) == 3:
+ im = im[None] # expand for batch dim
+
+ # Inference
+ with dt[1]:
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+ pred = model(im, augment=augment, visualize=visualize)
+
+ # NMS
+ with dt[2]:
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
+
+ # Second-stage classifier (optional)
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+ # Process predictions
+ for i, det in enumerate(pred): # per image
+ seen += 1
+ if webcam: # batch_size >= 1
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
+ s += f'{i}: '
+ else:
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+ p = Path(p) # to Path
+ save_path = str(save_dir / p.name) # im.jpg
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
+ s += '%gx%g ' % im.shape[2:] # print string
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
+ imc = im0.copy() if save_crop else im0 # for save_crop
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+ if len(det):
+ # Rescale boxes from img_size to im0 size
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
+
+ # Print results
+ for c in det[:, 5].unique():
+ n = (det[:, 5] == c).sum() # detections per class
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
+
+ # Write results
+ for *xyxy, conf, cls in reversed(det):
+ if save_txt: # Write to file
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(f'{txt_path}.txt', 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+ if save_img or save_crop or view_img: # Add bbox to image
+ c = int(cls) # integer class
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
+ annotator.box_label(xyxy, label, color=colors(c, True))
+ if save_crop:
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
+
+ # Stream results
+ im0 = annotator.result()
+ if view_img:
+ if platform.system() == 'Linux' and p not in windows:
+ windows.append(p)
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+ cv2.imshow(str(p), im0)
+ cv2.waitKey(1) # 1 millisecond
+
+ # Save results (image with detections)
+ if save_img:
+ if dataset.mode == 'image':
+ cv2.imwrite(save_path, im0)
+ else: # 'video' or 'stream'
+ if vid_path[i] != save_path: # new video
+ vid_path[i] = save_path
+ if isinstance(vid_writer[i], cv2.VideoWriter):
+ vid_writer[i].release() # release previous video writer
+ if vid_cap: # video
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ else: # stream
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+ vid_writer[i].write(im0)
+
+ # Print time (inference-only)
+ LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
+
+ # Print results
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+ if save_txt or save_img:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ if update:
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL')
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--view-img', action='store_true', help='show results')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
+ parser.add_argument('--update', action='store_true', help='update all models')
+ parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
+ parser.add_argument('--name', default='exp', help='save results to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+ opt = parser.parse_args()
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ # check_requirements(exclude=('tensorboard', 'thop'))
+ run(**vars(opt))
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/detect_dual.py b/cv/3d_detection/yolov9/pytorch/detect_dual.py
new file mode 100644
index 0000000000000000000000000000000000000000..a6c6eec6d8f790d3828061fd8f248915b90bc7b1
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/detect_dual.py
@@ -0,0 +1,232 @@
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+ increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
+from utils.plots import Annotator, colors, save_one_box
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+ weights=ROOT / 'yolo.pt', # model path or triton URL
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
+ data=ROOT / 'data/coco.yaml', # dataset.yaml path
+ imgsz=(640, 640), # inference size (height, width)
+ conf_thres=0.25, # confidence threshold
+ iou_thres=0.45, # NMS IOU threshold
+ max_det=1000, # maximum detections per image
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ view_img=False, # show results
+ save_txt=False, # save results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_crop=False, # save cropped prediction boxes
+ nosave=False, # do not save images/videos
+ classes=None, # filter by class: --class 0, or --class 0 2 3
+ agnostic_nms=False, # class-agnostic NMS
+ augment=False, # augmented inference
+ visualize=False, # visualize features
+ update=False, # update all models
+ project=ROOT / 'runs/detect', # save results to project/name
+ name='exp', # save results to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ line_thickness=3, # bounding box thickness (pixels)
+ hide_labels=False, # hide labels
+ hide_conf=False, # hide confidences
+ half=False, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ vid_stride=1, # video frame-rate stride
+):
+ source = str(source)
+ save_img = not nosave and not source.endswith('.txt') # save inference images
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+ webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
+ screenshot = source.lower().startswith('screen')
+ if is_url and is_file:
+ source = check_file(source) # download
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ device = select_device(device)
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, names, pt = model.stride, model.names, model.pt
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+
+ # Dataloader
+ bs = 1 # batch_size
+ if webcam:
+ view_img = check_imshow(warn=True)
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+ bs = len(dataset)
+ elif screenshot:
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+ else:
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+ vid_path, vid_writer = [None] * bs, [None] * bs
+
+ # Run inference
+ model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
+ for path, im, im0s, vid_cap, s in dataset:
+ with dt[0]:
+ im = torch.from_numpy(im).to(model.device)
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ if len(im.shape) == 3:
+ im = im[None] # expand for batch dim
+
+ # Inference
+ with dt[1]:
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+ pred = model(im, augment=augment, visualize=visualize)
+ pred = pred[0][1]
+
+ # NMS
+ with dt[2]:
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
+
+ # Second-stage classifier (optional)
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+ # Process predictions
+ for i, det in enumerate(pred): # per image
+ seen += 1
+ if webcam: # batch_size >= 1
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
+ s += f'{i}: '
+ else:
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+ p = Path(p) # to Path
+ save_path = str(save_dir / p.name) # im.jpg
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
+ s += '%gx%g ' % im.shape[2:] # print string
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
+ imc = im0.copy() if save_crop else im0 # for save_crop
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+ if len(det):
+ # Rescale boxes from img_size to im0 size
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
+
+ # Print results
+ for c in det[:, 5].unique():
+ n = (det[:, 5] == c).sum() # detections per class
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
+
+ # Write results
+ for *xyxy, conf, cls in reversed(det):
+ if save_txt: # Write to file
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(f'{txt_path}.txt', 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+ if save_img or save_crop or view_img: # Add bbox to image
+ c = int(cls) # integer class
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
+ annotator.box_label(xyxy, label, color=colors(c, True))
+ if save_crop:
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
+
+ # Stream results
+ im0 = annotator.result()
+ if view_img:
+ if platform.system() == 'Linux' and p not in windows:
+ windows.append(p)
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+ cv2.imshow(str(p), im0)
+ cv2.waitKey(1) # 1 millisecond
+
+ # Save results (image with detections)
+ if save_img:
+ if dataset.mode == 'image':
+ cv2.imwrite(save_path, im0)
+ else: # 'video' or 'stream'
+ if vid_path[i] != save_path: # new video
+ vid_path[i] = save_path
+ if isinstance(vid_writer[i], cv2.VideoWriter):
+ vid_writer[i].release() # release previous video writer
+ if vid_cap: # video
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ else: # stream
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+ vid_writer[i].write(im0)
+
+ # Print time (inference-only)
+ LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
+
+ # Print results
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+ if save_txt or save_img:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ if update:
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL')
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--view-img', action='store_true', help='show results')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
+ parser.add_argument('--update', action='store_true', help='update all models')
+ parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
+ parser.add_argument('--name', default='exp', help='save results to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+ opt = parser.parse_args()
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ # check_requirements(exclude=('tensorboard', 'thop'))
+ run(**vars(opt))
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/export.py b/cv/3d_detection/yolov9/pytorch/export.py
new file mode 100644
index 0000000000000000000000000000000000000000..2ef415c1a79934d1d7101faff4106072a96d65cc
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/export.py
@@ -0,0 +1,686 @@
+import argparse
+import contextlib
+import json
+import os
+import platform
+import re
+import subprocess
+import sys
+import time
+import warnings
+from pathlib import Path
+
+import pandas as pd
+import torch
+from torch.utils.mobile_optimizer import optimize_for_mobile
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+if platform.system() != 'Windows':
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.experimental import attempt_load, End2End
+from models.yolo import ClassificationModel, Detect, DDetect, DualDetect, DualDDetect, DetectionModel, SegmentationModel
+from utils.dataloaders import LoadImages
+from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
+ check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
+from utils.torch_utils import select_device, smart_inference_mode
+
+MACOS = platform.system() == 'Darwin' # macOS environment
+
+
+def export_formats():
+ # YOLO export formats
+ x = [
+ ['PyTorch', '-', '.pt', True, True],
+ ['TorchScript', 'torchscript', '.torchscript', True, True],
+ ['ONNX', 'onnx', '.onnx', True, True],
+ ['ONNX END2END', 'onnx_end2end', '_end2end.onnx', True, True],
+ ['OpenVINO', 'openvino', '_openvino_model', True, False],
+ ['TensorRT', 'engine', '.engine', False, True],
+ ['CoreML', 'coreml', '.mlmodel', True, False],
+ ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
+ ['TensorFlow GraphDef', 'pb', '.pb', True, True],
+ ['TensorFlow Lite', 'tflite', '.tflite', True, False],
+ ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
+ ['TensorFlow.js', 'tfjs', '_web_model', False, False],
+ ['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
+ return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
+
+
+def try_export(inner_func):
+ # YOLO export decorator, i..e @try_export
+ inner_args = get_default_args(inner_func)
+
+ def outer_func(*args, **kwargs):
+ prefix = inner_args['prefix']
+ try:
+ with Profile() as dt:
+ f, model = inner_func(*args, **kwargs)
+ LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
+ return f, model
+ except Exception as e:
+ LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
+ return None, None
+
+ return outer_func
+
+
+@try_export
+def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
+ # YOLO TorchScript model export
+ LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
+ f = file.with_suffix('.torchscript')
+
+ ts = torch.jit.trace(model, im, strict=False)
+ d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
+ extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
+ if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
+ optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
+ else:
+ ts.save(str(f), _extra_files=extra_files)
+ return f, None
+
+
+@try_export
+def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
+ # YOLO ONNX export
+ check_requirements('onnx')
+ import onnx
+
+ LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
+ f = file.with_suffix('.onnx')
+
+ output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
+ if dynamic:
+ dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
+ if isinstance(model, SegmentationModel):
+ dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
+ dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
+ elif isinstance(model, DetectionModel):
+ dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
+
+ torch.onnx.export(
+ model.cpu() if dynamic else model, # --dynamic only compatible with cpu
+ im.cpu() if dynamic else im,
+ f,
+ verbose=False,
+ opset_version=opset,
+ do_constant_folding=True,
+ input_names=['images'],
+ output_names=output_names,
+ dynamic_axes=dynamic or None)
+
+ # Checks
+ model_onnx = onnx.load(f) # load onnx model
+ onnx.checker.check_model(model_onnx) # check onnx model
+
+ # Metadata
+ d = {'stride': int(max(model.stride)), 'names': model.names}
+ for k, v in d.items():
+ meta = model_onnx.metadata_props.add()
+ meta.key, meta.value = k, str(v)
+ onnx.save(model_onnx, f)
+
+ # Simplify
+ if simplify:
+ try:
+ cuda = torch.cuda.is_available()
+ check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
+ import onnxsim
+
+ LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
+ model_onnx, check = onnxsim.simplify(model_onnx)
+ assert check, 'assert check failed'
+ onnx.save(model_onnx, f)
+ except Exception as e:
+ LOGGER.info(f'{prefix} simplifier failure: {e}')
+ return f, model_onnx
+
+
+@try_export
+def export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, labels, prefix=colorstr('ONNX END2END:')):
+ # YOLO ONNX export
+ check_requirements('onnx')
+ import onnx
+ LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
+ f = os.path.splitext(file)[0] + "-end2end.onnx"
+ batch_size = 'batch'
+
+ dynamic_axes = {'images': {0 : 'batch', 2: 'height', 3:'width'}, } # variable length axes
+
+ output_axes = {
+ 'num_dets': {0: 'batch'},
+ 'det_boxes': {0: 'batch'},
+ 'det_scores': {0: 'batch'},
+ 'det_classes': {0: 'batch'},
+ }
+ dynamic_axes.update(output_axes)
+ model = End2End(model, topk_all, iou_thres, conf_thres, None ,device, labels)
+
+ output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
+ shapes = [ batch_size, 1, batch_size, topk_all, 4,
+ batch_size, topk_all, batch_size, topk_all]
+
+ torch.onnx.export(model,
+ im,
+ f,
+ verbose=False,
+ export_params=True, # store the trained parameter weights inside the model file
+ opset_version=12,
+ do_constant_folding=True, # whether to execute constant folding for optimization
+ input_names=['images'],
+ output_names=output_names,
+ dynamic_axes=dynamic_axes)
+
+ # Checks
+ model_onnx = onnx.load(f) # load onnx model
+ onnx.checker.check_model(model_onnx) # check onnx model
+ for i in model_onnx.graph.output:
+ for j in i.type.tensor_type.shape.dim:
+ j.dim_param = str(shapes.pop(0))
+
+ if simplify:
+ try:
+ import onnxsim
+
+ print('\nStarting to simplify ONNX...')
+ model_onnx, check = onnxsim.simplify(model_onnx)
+ assert check, 'assert check failed'
+ except Exception as e:
+ print(f'Simplifier failure: {e}')
+
+ # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
+ onnx.save(model_onnx,f)
+ print('ONNX export success, saved as %s' % f)
+ return f, model_onnx
+
+
+@try_export
+def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
+ # YOLO OpenVINO export
+ check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
+ import openvino.inference_engine as ie
+
+ LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
+ f = str(file).replace('.pt', f'_openvino_model{os.sep}')
+
+ #cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
+ #cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {"--compress_to_fp16" if half else ""}"
+ half_arg = "--compress_to_fp16" if half else ""
+ cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {half_arg}"
+ subprocess.run(cmd.split(), check=True, env=os.environ) # export
+ yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
+ return f, None
+
+
+@try_export
+def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
+ # YOLO Paddle export
+ check_requirements(('paddlepaddle', 'x2paddle'))
+ import x2paddle
+ from x2paddle.convert import pytorch2paddle
+
+ LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
+ f = str(file).replace('.pt', f'_paddle_model{os.sep}')
+
+ pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
+ yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
+ return f, None
+
+
+@try_export
+def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
+ # YOLO CoreML export
+ check_requirements('coremltools')
+ import coremltools as ct
+
+ LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
+ f = file.with_suffix('.mlmodel')
+
+ ts = torch.jit.trace(model, im, strict=False) # TorchScript model
+ ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
+ bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
+ if bits < 32:
+ if MACOS: # quantization only supported on macOS
+ with warnings.catch_warnings():
+ warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
+ ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
+ else:
+ print(f'{prefix} quantization only supported on macOS, skipping...')
+ ct_model.save(f)
+ return f, ct_model
+
+
+@try_export
+def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
+ # YOLO TensorRT export https://developer.nvidia.com/tensorrt
+ assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
+ try:
+ import tensorrt as trt
+ except Exception:
+ if platform.system() == 'Linux':
+ check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
+ import tensorrt as trt
+
+ if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
+ grid = model.model[-1].anchor_grid
+ model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
+ model.model[-1].anchor_grid = grid
+ else: # TensorRT >= 8
+ check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
+ onnx = file.with_suffix('.onnx')
+
+ LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
+ assert onnx.exists(), f'failed to export ONNX file: {onnx}'
+ f = file.with_suffix('.engine') # TensorRT engine file
+ logger = trt.Logger(trt.Logger.INFO)
+ if verbose:
+ logger.min_severity = trt.Logger.Severity.VERBOSE
+
+ builder = trt.Builder(logger)
+ config = builder.create_builder_config()
+ config.max_workspace_size = workspace * 1 << 30
+ # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
+
+ flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
+ network = builder.create_network(flag)
+ parser = trt.OnnxParser(network, logger)
+ if not parser.parse_from_file(str(onnx)):
+ raise RuntimeError(f'failed to load ONNX file: {onnx}')
+
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
+ for inp in inputs:
+ LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
+ for out in outputs:
+ LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
+
+ if dynamic:
+ if im.shape[0] <= 1:
+ LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
+ profile = builder.create_optimization_profile()
+ for inp in inputs:
+ profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
+ config.add_optimization_profile(profile)
+
+ LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
+ if builder.platform_has_fast_fp16 and half:
+ config.set_flag(trt.BuilderFlag.FP16)
+ with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
+ t.write(engine.serialize())
+ return f, None
+
+
+@try_export
+def export_saved_model(model,
+ im,
+ file,
+ dynamic,
+ tf_nms=False,
+ agnostic_nms=False,
+ topk_per_class=100,
+ topk_all=100,
+ iou_thres=0.45,
+ conf_thres=0.25,
+ keras=False,
+ prefix=colorstr('TensorFlow SavedModel:')):
+ # YOLO TensorFlow SavedModel export
+ try:
+ import tensorflow as tf
+ except Exception:
+ check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
+ import tensorflow as tf
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+ from models.tf import TFModel
+
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+ f = str(file).replace('.pt', '_saved_model')
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
+
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
+ im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
+ _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+ inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
+ outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+ keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
+ keras_model.trainable = False
+ keras_model.summary()
+ if keras:
+ keras_model.save(f, save_format='tf')
+ else:
+ spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
+ m = tf.function(lambda x: keras_model(x)) # full model
+ m = m.get_concrete_function(spec)
+ frozen_func = convert_variables_to_constants_v2(m)
+ tfm = tf.Module()
+ tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
+ tfm.__call__(im)
+ tf.saved_model.save(tfm,
+ f,
+ options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
+ tf.__version__, '2.6') else tf.saved_model.SaveOptions())
+ return f, keras_model
+
+
+@try_export
+def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
+ # YOLO TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
+ import tensorflow as tf
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+ f = file.with_suffix('.pb')
+
+ m = tf.function(lambda x: keras_model(x)) # full model
+ m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
+ frozen_func = convert_variables_to_constants_v2(m)
+ frozen_func.graph.as_graph_def()
+ tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
+ return f, None
+
+
+@try_export
+def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
+ # YOLOv5 TensorFlow Lite export
+ import tensorflow as tf
+
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
+ f = str(file).replace('.pt', '-fp16.tflite')
+
+ converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
+ converter.target_spec.supported_types = [tf.float16]
+ converter.optimizations = [tf.lite.Optimize.DEFAULT]
+ if int8:
+ from models.tf import representative_dataset_gen
+ dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
+ converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
+ converter.target_spec.supported_types = []
+ converter.inference_input_type = tf.uint8 # or tf.int8
+ converter.inference_output_type = tf.uint8 # or tf.int8
+ converter.experimental_new_quantizer = True
+ f = str(file).replace('.pt', '-int8.tflite')
+ if nms or agnostic_nms:
+ converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
+
+ tflite_model = converter.convert()
+ open(f, "wb").write(tflite_model)
+ return f, None
+
+
+@try_export
+def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
+ # YOLO Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
+ cmd = 'edgetpu_compiler --version'
+ help_url = 'https://coral.ai/docs/edgetpu/compiler/'
+ assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
+ if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
+ LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
+ sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
+ for c in (
+ 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
+ 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
+ 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
+ subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
+ ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
+
+ LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
+ f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
+ f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
+
+ cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
+ subprocess.run(cmd.split(), check=True)
+ return f, None
+
+
+@try_export
+def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
+ # YOLO TensorFlow.js export
+ check_requirements('tensorflowjs')
+ import tensorflowjs as tfjs
+
+ LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
+ f = str(file).replace('.pt', '_web_model') # js dir
+ f_pb = file.with_suffix('.pb') # *.pb path
+ f_json = f'{f}/model.json' # *.json path
+
+ cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
+ f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
+ subprocess.run(cmd.split())
+
+ json = Path(f_json).read_text()
+ with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
+ subst = re.sub(
+ r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
+ r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
+ r'"Identity_1": {"name": "Identity_1"}, '
+ r'"Identity_2": {"name": "Identity_2"}, '
+ r'"Identity_3": {"name": "Identity_3"}}}', json)
+ j.write(subst)
+ return f, None
+
+
+def add_tflite_metadata(file, metadata, num_outputs):
+ # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
+ with contextlib.suppress(ImportError):
+ # check_requirements('tflite_support')
+ from tflite_support import flatbuffers
+ from tflite_support import metadata as _metadata
+ from tflite_support import metadata_schema_py_generated as _metadata_fb
+
+ tmp_file = Path('/tmp/meta.txt')
+ with open(tmp_file, 'w') as meta_f:
+ meta_f.write(str(metadata))
+
+ model_meta = _metadata_fb.ModelMetadataT()
+ label_file = _metadata_fb.AssociatedFileT()
+ label_file.name = tmp_file.name
+ model_meta.associatedFiles = [label_file]
+
+ subgraph = _metadata_fb.SubGraphMetadataT()
+ subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
+ subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
+ model_meta.subgraphMetadata = [subgraph]
+
+ b = flatbuffers.Builder(0)
+ b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
+ metadata_buf = b.Output()
+
+ populator = _metadata.MetadataPopulator.with_model_file(file)
+ populator.load_metadata_buffer(metadata_buf)
+ populator.load_associated_files([str(tmp_file)])
+ populator.populate()
+ tmp_file.unlink()
+
+
+@smart_inference_mode()
+def run(
+ data=ROOT / 'data/coco.yaml', # 'dataset.yaml path'
+ weights=ROOT / 'yolo.pt', # weights path
+ imgsz=(640, 640), # image (height, width)
+ batch_size=1, # batch size
+ device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ include=('torchscript', 'onnx'), # include formats
+ half=False, # FP16 half-precision export
+ inplace=False, # set YOLO Detect() inplace=True
+ keras=False, # use Keras
+ optimize=False, # TorchScript: optimize for mobile
+ int8=False, # CoreML/TF INT8 quantization
+ dynamic=False, # ONNX/TF/TensorRT: dynamic axes
+ simplify=False, # ONNX: simplify model
+ opset=12, # ONNX: opset version
+ verbose=False, # TensorRT: verbose log
+ workspace=4, # TensorRT: workspace size (GB)
+ nms=False, # TF: add NMS to model
+ agnostic_nms=False, # TF: add agnostic NMS to model
+ topk_per_class=100, # TF.js NMS: topk per class to keep
+ topk_all=100, # TF.js NMS: topk for all classes to keep
+ iou_thres=0.45, # TF.js NMS: IoU threshold
+ conf_thres=0.25, # TF.js NMS: confidence threshold
+):
+ t = time.time()
+ include = [x.lower() for x in include] # to lowercase
+ fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
+ flags = [x in include for x in fmts]
+ assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
+ jit, onnx, onnx_end2end, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
+ file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
+
+ # Load PyTorch model
+ device = select_device(device)
+ if half:
+ assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
+ assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
+ model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
+
+ # Checks
+ imgsz *= 2 if len(imgsz) == 1 else 1 # expand
+ if optimize:
+ assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
+
+ # Input
+ gs = int(max(model.stride)) # grid size (max stride)
+ imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
+ im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
+
+ # Update model
+ model.eval()
+ for k, m in model.named_modules():
+ if isinstance(m, (Detect, DDetect, DualDetect, DualDDetect)):
+ m.inplace = inplace
+ m.dynamic = dynamic
+ m.export = True
+
+ for _ in range(2):
+ y = model(im) # dry runs
+ if half and not coreml:
+ im, model = im.half(), model.half() # to FP16
+ shape = tuple((y[0] if isinstance(y, (tuple, list)) else y).shape) # model output shape
+ metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
+ LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
+
+ # Exports
+ f = [''] * len(fmts) # exported filenames
+ warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
+ if jit: # TorchScript
+ f[0], _ = export_torchscript(model, im, file, optimize)
+ if engine: # TensorRT required before ONNX
+ f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
+ if onnx or xml: # OpenVINO requires ONNX
+ f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
+ if onnx_end2end:
+ if isinstance(model, DetectionModel):
+ labels = model.names
+ f[2], _ = export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, len(labels))
+ else:
+ raise RuntimeError("The model is not a DetectionModel.")
+ if xml: # OpenVINO
+ f[3], _ = export_openvino(file, metadata, half)
+ if coreml: # CoreML
+ f[4], _ = export_coreml(model, im, file, int8, half)
+ if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
+ assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
+ assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
+ f[5], s_model = export_saved_model(model.cpu(),
+ im,
+ file,
+ dynamic,
+ tf_nms=nms or agnostic_nms or tfjs,
+ agnostic_nms=agnostic_nms or tfjs,
+ topk_per_class=topk_per_class,
+ topk_all=topk_all,
+ iou_thres=iou_thres,
+ conf_thres=conf_thres,
+ keras=keras)
+ if pb or tfjs: # pb prerequisite to tfjs
+ f[6], _ = export_pb(s_model, file)
+ if tflite or edgetpu:
+ f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
+ if edgetpu:
+ f[8], _ = export_edgetpu(file)
+ add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
+ if tfjs:
+ f[9], _ = export_tfjs(file)
+ if paddle: # PaddlePaddle
+ f[10], _ = export_paddle(model, im, file, metadata)
+
+ # Finish
+ f = [str(x) for x in f if x] # filter out '' and None
+ if any(f):
+ cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
+ dir = Path('segment' if seg else 'classify' if cls else '')
+ h = '--half' if half else '' # --half FP16 inference arg
+ s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \
+ "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else ''
+ if onnx_end2end:
+ LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
+ f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
+ f"\nVisualize: https://netron.app")
+ else:
+ LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
+ f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
+ f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
+ f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
+ f"\nVisualize: https://netron.app")
+ return f # return list of exported files/dirs
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model.pt path(s)')
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
+ parser.add_argument('--inplace', action='store_true', help='set YOLO Detect() inplace=True')
+ parser.add_argument('--keras', action='store_true', help='TF: use Keras')
+ parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
+ parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
+ parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
+ parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
+ parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
+ parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
+ parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
+ parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
+ parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
+ parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
+ parser.add_argument('--topk-all', type=int, default=100, help='ONNX END2END/TF.js NMS: topk for all classes to keep')
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='ONNX END2END/TF.js NMS: IoU threshold')
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='ONNX END2END/TF.js NMS: confidence threshold')
+ parser.add_argument(
+ '--include',
+ nargs='+',
+ default=['torchscript'],
+ help='torchscript, onnx, onnx_end2end, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
+ opt = parser.parse_args()
+
+ if 'onnx_end2end' in opt.include:
+ opt.simplify = True
+ opt.dynamic = True
+ opt.inplace = True
+ opt.half = False
+
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
+ run(**vars(opt))
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/figure/horses_prediction.jpg b/cv/3d_detection/yolov9/pytorch/figure/horses_prediction.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0fbfc83f8ef44a6e6ef170d70a73980de078e5db
Binary files /dev/null and b/cv/3d_detection/yolov9/pytorch/figure/horses_prediction.jpg differ
diff --git a/cv/3d_detection/yolov9/pytorch/figure/multitask.png b/cv/3d_detection/yolov9/pytorch/figure/multitask.png
new file mode 100644
index 0000000000000000000000000000000000000000..5bf893cb8e3e5bd288ef035fd67b22474b908039
Binary files /dev/null and b/cv/3d_detection/yolov9/pytorch/figure/multitask.png differ
diff --git a/cv/3d_detection/yolov9/pytorch/figure/performance.png b/cv/3d_detection/yolov9/pytorch/figure/performance.png
new file mode 100644
index 0000000000000000000000000000000000000000..572f3e02d474a72e1344d38e186da558cb3eb212
Binary files /dev/null and b/cv/3d_detection/yolov9/pytorch/figure/performance.png differ
diff --git a/cv/3d_detection/yolov9/pytorch/hubconf.py b/cv/3d_detection/yolov9/pytorch/hubconf.py
new file mode 100644
index 0000000000000000000000000000000000000000..b4d6b6e4180b6e71bf24908528558e5e266b378e
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/hubconf.py
@@ -0,0 +1,107 @@
+import torch
+
+
+def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+ """Creates or loads a YOLO model
+
+ Arguments:
+ name (str): model name 'yolov3' or path 'path/to/best.pt'
+ pretrained (bool): load pretrained weights into the model
+ channels (int): number of input channels
+ classes (int): number of model classes
+ autoshape (bool): apply YOLO .autoshape() wrapper to model
+ verbose (bool): print all information to screen
+ device (str, torch.device, None): device to use for model parameters
+
+ Returns:
+ YOLO model
+ """
+ from pathlib import Path
+
+ from models.common import AutoShape, DetectMultiBackend
+ from models.experimental import attempt_load
+ from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
+ from utils.downloads import attempt_download
+ from utils.general import LOGGER, check_requirements, intersect_dicts, logging
+ from utils.torch_utils import select_device
+
+ if not verbose:
+ LOGGER.setLevel(logging.WARNING)
+ check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
+ name = Path(name)
+ path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
+ try:
+ device = select_device(device)
+ if pretrained and channels == 3 and classes == 80:
+ try:
+ model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
+ if autoshape:
+ if model.pt and isinstance(model.model, ClassificationModel):
+ LOGGER.warning('WARNING ⚠️ YOLO ClassificationModel is not yet AutoShape compatible. '
+ 'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
+ elif model.pt and isinstance(model.model, SegmentationModel):
+ LOGGER.warning('WARNING ⚠️ YOLO SegmentationModel is not yet AutoShape compatible. '
+ 'You will not be able to run inference with this model.')
+ else:
+ model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
+ except Exception:
+ model = attempt_load(path, device=device, fuse=False) # arbitrary model
+ else:
+ cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
+ model = DetectionModel(cfg, channels, classes) # create model
+ if pretrained:
+ ckpt = torch.load(attempt_download(path), map_location=device) # load
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
+ csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
+ model.load_state_dict(csd, strict=False) # load
+ if len(ckpt['model'].names) == classes:
+ model.names = ckpt['model'].names # set class names attribute
+ if not verbose:
+ LOGGER.setLevel(logging.INFO) # reset to default
+ return model.to(device)
+
+ except Exception as e:
+ help_url = 'https://github.com/ultralytics/yolov5/issues/36'
+ s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
+ raise Exception(s) from e
+
+
+def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
+ # YOLO custom or local model
+ return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
+
+
+if __name__ == '__main__':
+ import argparse
+ from pathlib import Path
+
+ import numpy as np
+ from PIL import Image
+
+ from utils.general import cv2, print_args
+
+ # Argparser
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--model', type=str, default='yolo', help='model name')
+ opt = parser.parse_args()
+ print_args(vars(opt))
+
+ # Model
+ model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
+ # model = custom(path='path/to/model.pt') # custom
+
+ # Images
+ imgs = [
+ 'data/images/zidane.jpg', # filename
+ Path('data/images/zidane.jpg'), # Path
+ 'https://ultralytics.com/images/zidane.jpg', # URI
+ cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
+ Image.open('data/images/bus.jpg'), # PIL
+ np.zeros((320, 640, 3))] # numpy
+
+ # Inference
+ results = model(imgs, size=320) # batched inference
+
+ # Results
+ results.print()
+ results.save()
diff --git a/cv/3d_detection/yolov9/pytorch/models/__init__.py b/cv/3d_detection/yolov9/pytorch/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/models/common.py b/cv/3d_detection/yolov9/pytorch/models/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..c7fbbe32265ff8cfca21b028a93487b4b4d8fa44
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/common.py
@@ -0,0 +1,1212 @@
+import ast
+import contextlib
+import json
+import math
+import platform
+import warnings
+import zipfile
+from collections import OrderedDict, namedtuple
+from copy import copy
+from pathlib import Path
+from urllib.parse import urlparse
+
+from typing import Optional
+
+import cv2
+import numpy as np
+import pandas as pd
+import requests
+import torch
+import torch.nn as nn
+from IPython.display import display
+from PIL import Image
+from torch.cuda import amp
+
+from utils import TryExcept
+from utils.dataloaders import exif_transpose, letterbox
+from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
+ increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes,
+ xywh2xyxy, xyxy2xywh, yaml_load)
+from utils.plots import Annotator, colors, save_one_box
+from utils.torch_utils import copy_attr, smart_inference_mode
+
+
+def autopad(k, p=None, d=1): # kernel, padding, dilation
+ # Pad to 'same' shape outputs
+ if d > 1:
+ k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
+ if p is None:
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
+ return p
+
+
+class Conv(nn.Module):
+ # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
+ default_act = nn.SiLU() # default activation
+
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
+ super().__init__()
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
+ self.bn = nn.BatchNorm2d(c2)
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
+
+ def forward(self, x):
+ return self.act(self.bn(self.conv(x)))
+
+ def forward_fuse(self, x):
+ return self.act(self.conv(x))
+
+
+class AConv(nn.Module):
+ def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand
+ super().__init__()
+ self.cv1 = Conv(c1, c2, 3, 2, 1)
+
+ def forward(self, x):
+ x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
+ return self.cv1(x)
+
+
+class ADown(nn.Module):
+ def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand
+ super().__init__()
+ self.c = c2 // 2
+ self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
+ self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
+
+ def forward(self, x):
+ x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
+ x1,x2 = x.chunk(2, 1)
+ x1 = self.cv1(x1)
+ x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
+ x2 = self.cv2(x2)
+ return torch.cat((x1, x2), 1)
+
+
+class RepConvN(nn.Module):
+ """RepConv is a basic rep-style block, including training and deploy status
+ This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
+ """
+ default_act = nn.SiLU() # default activation
+
+ def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
+ super().__init__()
+ assert k == 3 and p == 1
+ self.g = g
+ self.c1 = c1
+ self.c2 = c2
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
+
+ self.bn = None
+ self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
+ self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
+
+ def forward_fuse(self, x):
+ """Forward process"""
+ return self.act(self.conv(x))
+
+ def forward(self, x):
+ """Forward process"""
+ id_out = 0 if self.bn is None else self.bn(x)
+ return self.act(self.conv1(x) + self.conv2(x) + id_out)
+
+ def get_equivalent_kernel_bias(self):
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
+ kernelid, biasid = self._fuse_bn_tensor(self.bn)
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
+
+ def _avg_to_3x3_tensor(self, avgp):
+ channels = self.c1
+ groups = self.g
+ kernel_size = avgp.kernel_size
+ input_dim = channels // groups
+ k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
+ k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
+ return k
+
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
+ if kernel1x1 is None:
+ return 0
+ else:
+ return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
+
+ def _fuse_bn_tensor(self, branch):
+ if branch is None:
+ return 0, 0
+ if isinstance(branch, Conv):
+ kernel = branch.conv.weight
+ running_mean = branch.bn.running_mean
+ running_var = branch.bn.running_var
+ gamma = branch.bn.weight
+ beta = branch.bn.bias
+ eps = branch.bn.eps
+ elif isinstance(branch, nn.BatchNorm2d):
+ if not hasattr(self, 'id_tensor'):
+ input_dim = self.c1 // self.g
+ kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
+ for i in range(self.c1):
+ kernel_value[i, i % input_dim, 1, 1] = 1
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
+ kernel = self.id_tensor
+ running_mean = branch.running_mean
+ running_var = branch.running_var
+ gamma = branch.weight
+ beta = branch.bias
+ eps = branch.eps
+ std = (running_var + eps).sqrt()
+ t = (gamma / std).reshape(-1, 1, 1, 1)
+ return kernel * t, beta - running_mean * gamma / std
+
+ def fuse_convs(self):
+ if hasattr(self, 'conv'):
+ return
+ kernel, bias = self.get_equivalent_kernel_bias()
+ self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels,
+ out_channels=self.conv1.conv.out_channels,
+ kernel_size=self.conv1.conv.kernel_size,
+ stride=self.conv1.conv.stride,
+ padding=self.conv1.conv.padding,
+ dilation=self.conv1.conv.dilation,
+ groups=self.conv1.conv.groups,
+ bias=True).requires_grad_(False)
+ self.conv.weight.data = kernel
+ self.conv.bias.data = bias
+ for para in self.parameters():
+ para.detach_()
+ self.__delattr__('conv1')
+ self.__delattr__('conv2')
+ if hasattr(self, 'nm'):
+ self.__delattr__('nm')
+ if hasattr(self, 'bn'):
+ self.__delattr__('bn')
+ if hasattr(self, 'id_tensor'):
+ self.__delattr__('id_tensor')
+
+
+class SP(nn.Module):
+ def __init__(self, k=3, s=1):
+ super(SP, self).__init__()
+ self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
+
+ def forward(self, x):
+ return self.m(x)
+
+
+class MP(nn.Module):
+ # Max pooling
+ def __init__(self, k=2):
+ super(MP, self).__init__()
+ self.m = nn.MaxPool2d(kernel_size=k, stride=k)
+
+ def forward(self, x):
+ return self.m(x)
+
+
+class ConvTranspose(nn.Module):
+ # Convolution transpose 2d layer
+ default_act = nn.SiLU() # default activation
+
+ def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
+ super().__init__()
+ self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
+ self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
+
+ def forward(self, x):
+ return self.act(self.bn(self.conv_transpose(x)))
+
+
+class DWConv(Conv):
+ # Depth-wise convolution
+ def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
+ super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
+
+
+class DWConvTranspose2d(nn.ConvTranspose2d):
+ # Depth-wise transpose convolution
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
+ super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
+
+
+class DFL(nn.Module):
+ # DFL module
+ def __init__(self, c1=17):
+ super().__init__()
+ self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
+ self.conv.weight.data[:] = nn.Parameter(torch.arange(c1, dtype=torch.float).view(1, c1, 1, 1)) # / 120.0
+ self.c1 = c1
+ # self.bn = nn.BatchNorm2d(4)
+
+ def forward(self, x):
+ b, c, a = x.shape # batch, channels, anchors
+ return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
+ # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
+
+
+class BottleneckBase(nn.Module):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(1, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, k[0], 1)
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class RBottleneckBase(nn.Module):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 1), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, k[0], 1)
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class RepNRBottleneckBase(nn.Module):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 1), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = RepConvN(c1, c_, k[0], 1)
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class Bottleneck(nn.Module):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, k[0], 1)
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class RepNBottleneck(nn.Module):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = RepConvN(c1, c_, k[0], 1)
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class Res(nn.Module):
+ # ResNet bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super(Res, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_, c_, 3, 1, g=g)
+ self.cv3 = Conv(c_, c2, 1, 1)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
+
+
+class RepNRes(nn.Module):
+ # ResNet bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super(RepNRes, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = RepConvN(c_, c_, 3, 1, g=g)
+ self.cv3 = Conv(c_, c2, 1, 1)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
+
+
+class BottleneckCSP(nn.Module):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
+ self.act = nn.SiLU()
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+ def forward(self, x):
+ y1 = self.cv3(self.m(self.cv1(x)))
+ y2 = self.cv2(x)
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
+
+
+class CSP(nn.Module):
+ # CSP Bottleneck with 3 convolutions
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+ def forward(self, x):
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
+
+
+class RepNCSP(nn.Module):
+ # CSP Bottleneck with 3 convolutions
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
+ self.m = nn.Sequential(*(RepNBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+ def forward(self, x):
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
+
+
+class CSPBase(nn.Module):
+ # CSP Bottleneck with 3 convolutions
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
+ self.m = nn.Sequential(*(BottleneckBase(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+ def forward(self, x):
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
+
+
+class SPP(nn.Module):
+ # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
+ def __init__(self, c1, c2, k=(5, 9, 13)):
+ super().__init__()
+ c_ = c1 // 2 # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
+
+ def forward(self, x):
+ x = self.cv1(x)
+ with warnings.catch_warnings():
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
+
+
+class ASPP(torch.nn.Module):
+
+ def __init__(self, in_channels, out_channels):
+ super().__init__()
+ kernel_sizes = [1, 3, 3, 1]
+ dilations = [1, 3, 6, 1]
+ paddings = [0, 3, 6, 0]
+ self.aspp = torch.nn.ModuleList()
+ for aspp_idx in range(len(kernel_sizes)):
+ conv = torch.nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=kernel_sizes[aspp_idx],
+ stride=1,
+ dilation=dilations[aspp_idx],
+ padding=paddings[aspp_idx],
+ bias=True)
+ self.aspp.append(conv)
+ self.gap = torch.nn.AdaptiveAvgPool2d(1)
+ self.aspp_num = len(kernel_sizes)
+ for m in self.modules():
+ if isinstance(m, torch.nn.Conv2d):
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+ m.weight.data.normal_(0, math.sqrt(2. / n))
+ m.bias.data.fill_(0)
+
+ def forward(self, x):
+ avg_x = self.gap(x)
+ out = []
+ for aspp_idx in range(self.aspp_num):
+ inp = avg_x if (aspp_idx == self.aspp_num - 1) else x
+ out.append(F.relu_(self.aspp[aspp_idx](inp)))
+ out[-1] = out[-1].expand_as(out[-2])
+ out = torch.cat(out, dim=1)
+ return out
+
+
+class SPPCSPC(nn.Module):
+ # CSP SPP https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
+ super(SPPCSPC, self).__init__()
+ c_ = int(2 * c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(c_, c_, 3, 1)
+ self.cv4 = Conv(c_, c_, 1, 1)
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
+ self.cv5 = Conv(4 * c_, c_, 1, 1)
+ self.cv6 = Conv(c_, c_, 3, 1)
+ self.cv7 = Conv(2 * c_, c2, 1, 1)
+
+ def forward(self, x):
+ x1 = self.cv4(self.cv3(self.cv1(x)))
+ y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
+ y2 = self.cv2(x)
+ return self.cv7(torch.cat((y1, y2), dim=1))
+
+
+class SPPF(nn.Module):
+ # Spatial Pyramid Pooling - Fast (SPPF) layer by Glenn Jocher
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
+ super().__init__()
+ c_ = c1 // 2 # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
+ # self.m = SoftPool2d(kernel_size=k, stride=1, padding=k // 2)
+
+ def forward(self, x):
+ x = self.cv1(x)
+ with warnings.catch_warnings():
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
+ y1 = self.m(x)
+ y2 = self.m(y1)
+ return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
+
+
+import torch.nn.functional as F
+from torch.nn.modules.utils import _pair
+
+
+class ReOrg(nn.Module):
+ # yolo
+ def __init__(self):
+ super(ReOrg, self).__init__()
+
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
+ return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
+
+
+class Contract(nn.Module):
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
+ def __init__(self, gain=2):
+ super().__init__()
+ self.gain = gain
+
+ def forward(self, x):
+ b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
+ s = self.gain
+ x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
+ return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
+
+
+class Expand(nn.Module):
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
+ def __init__(self, gain=2):
+ super().__init__()
+ self.gain = gain
+
+ def forward(self, x):
+ b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
+ s = self.gain
+ x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
+ return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
+
+
+class Concat(nn.Module):
+ # Concatenate a list of tensors along dimension
+ def __init__(self, dimension=1):
+ super().__init__()
+ self.d = dimension
+
+ def forward(self, x):
+ return torch.cat(x, self.d)
+
+
+class Shortcut(nn.Module):
+ def __init__(self, dimension=0):
+ super(Shortcut, self).__init__()
+ self.d = dimension
+
+ def forward(self, x):
+ return x[0]+x[1]
+
+
+class Silence(nn.Module):
+ def __init__(self):
+ super(Silence, self).__init__()
+ def forward(self, x):
+ return x
+
+
+##### GELAN #####
+
+class SPPELAN(nn.Module):
+ # spp-elan
+ def __init__(self, c1, c2, c3): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ self.c = c3
+ self.cv1 = Conv(c1, c3, 1, 1)
+ self.cv2 = SP(5)
+ self.cv3 = SP(5)
+ self.cv4 = SP(5)
+ self.cv5 = Conv(4*c3, c2, 1, 1)
+
+ def forward(self, x):
+ y = [self.cv1(x)]
+ y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
+ return self.cv5(torch.cat(y, 1))
+
+
+class RepNCSPELAN4(nn.Module):
+ # csp-elan
+ def __init__(self, c1, c2, c3, c4, c5=1): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ self.c = c3//2
+ self.cv1 = Conv(c1, c3, 1, 1)
+ self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), Conv(c4, c4, 3, 1))
+ self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), Conv(c4, c4, 3, 1))
+ self.cv4 = Conv(c3+(2*c4), c2, 1, 1)
+
+ def forward(self, x):
+ y = list(self.cv1(x).chunk(2, 1))
+ y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
+ return self.cv4(torch.cat(y, 1))
+
+ def forward_split(self, x):
+ y = list(self.cv1(x).split((self.c, self.c), 1))
+ y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
+ return self.cv4(torch.cat(y, 1))
+
+#################
+
+
+##### YOLOR #####
+
+class ImplicitA(nn.Module):
+ def __init__(self, channel):
+ super(ImplicitA, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, std=.02)
+
+ def forward(self, x):
+ return self.implicit + x
+
+
+class ImplicitM(nn.Module):
+ def __init__(self, channel):
+ super(ImplicitM, self).__init__()
+ self.channel = channel
+ self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
+ nn.init.normal_(self.implicit, mean=1., std=.02)
+
+ def forward(self, x):
+ return self.implicit * x
+
+#################
+
+
+##### CBNet #####
+
+class CBLinear(nn.Module):
+ def __init__(self, c1, c2s, k=1, s=1, p=None, g=1): # ch_in, ch_outs, kernel, stride, padding, groups
+ super(CBLinear, self).__init__()
+ self.c2s = c2s
+ self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
+
+ def forward(self, x):
+ outs = self.conv(x).split(self.c2s, dim=1)
+ return outs
+
+class CBFuse(nn.Module):
+ def __init__(self, idx):
+ super(CBFuse, self).__init__()
+ self.idx = idx
+
+ def forward(self, xs):
+ target_size = xs[-1].shape[2:]
+ res = [F.interpolate(x[self.idx[i]], size=target_size, mode='nearest') for i, x in enumerate(xs[:-1])]
+ out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
+ return out
+
+#################
+
+
+class DetectMultiBackend(nn.Module):
+ # YOLO MultiBackend class for python inference on various backends
+ def __init__(self, weights='yolo.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
+ # Usage:
+ # PyTorch: weights = *.pt
+ # TorchScript: *.torchscript
+ # ONNX Runtime: *.onnx
+ # ONNX OpenCV DNN: *.onnx --dnn
+ # OpenVINO: *_openvino_model
+ # CoreML: *.mlmodel
+ # TensorRT: *.engine
+ # TensorFlow SavedModel: *_saved_model
+ # TensorFlow GraphDef: *.pb
+ # TensorFlow Lite: *.tflite
+ # TensorFlow Edge TPU: *_edgetpu.tflite
+ # PaddlePaddle: *_paddle_model
+ from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
+
+ super().__init__()
+ w = str(weights[0] if isinstance(weights, list) else weights)
+ pt, jit, onnx, onnx_end2end, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
+ fp16 &= pt or jit or onnx or engine # FP16
+ nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
+ stride = 32 # default stride
+ cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
+ if not (pt or triton):
+ w = attempt_download(w) # download if not local
+
+ if pt: # PyTorch
+ model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
+ stride = max(int(model.stride.max()), 32) # model stride
+ names = model.module.names if hasattr(model, 'module') else model.names # get class names
+ model.half() if fp16 else model.float()
+ self.model = model # explicitly assign for to(), cpu(), cuda(), half()
+ elif jit: # TorchScript
+ LOGGER.info(f'Loading {w} for TorchScript inference...')
+ extra_files = {'config.txt': ''} # model metadata
+ model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
+ model.half() if fp16 else model.float()
+ if extra_files['config.txt']: # load metadata dict
+ d = json.loads(extra_files['config.txt'],
+ object_hook=lambda d: {int(k) if k.isdigit() else k: v
+ for k, v in d.items()})
+ stride, names = int(d['stride']), d['names']
+ elif dnn: # ONNX OpenCV DNN
+ LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
+ check_requirements('opencv-python>=4.5.4')
+ net = cv2.dnn.readNetFromONNX(w)
+ elif onnx: # ONNX Runtime
+ LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
+ check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
+ import onnxruntime
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
+ session = onnxruntime.InferenceSession(w, providers=providers)
+ output_names = [x.name for x in session.get_outputs()]
+ meta = session.get_modelmeta().custom_metadata_map # metadata
+ if 'stride' in meta:
+ stride, names = int(meta['stride']), eval(meta['names'])
+ elif xml: # OpenVINO
+ LOGGER.info(f'Loading {w} for OpenVINO inference...')
+ check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
+ from openvino.runtime import Core, Layout, get_batch
+ ie = Core()
+ if not Path(w).is_file(): # if not *.xml
+ w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
+ network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
+ if network.get_parameters()[0].get_layout().empty:
+ network.get_parameters()[0].set_layout(Layout("NCHW"))
+ batch_dim = get_batch(network)
+ if batch_dim.is_static:
+ batch_size = batch_dim.get_length()
+ executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
+ stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
+ elif engine: # TensorRT
+ LOGGER.info(f'Loading {w} for TensorRT inference...')
+ import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
+ check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
+ if device.type == 'cpu':
+ device = torch.device('cuda:0')
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
+ logger = trt.Logger(trt.Logger.INFO)
+ with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
+ model = runtime.deserialize_cuda_engine(f.read())
+ context = model.create_execution_context()
+ bindings = OrderedDict()
+ output_names = []
+ fp16 = False # default updated below
+ dynamic = False
+ for i in range(model.num_bindings):
+ name = model.get_binding_name(i)
+ dtype = trt.nptype(model.get_binding_dtype(i))
+ if model.binding_is_input(i):
+ if -1 in tuple(model.get_binding_shape(i)): # dynamic
+ dynamic = True
+ context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
+ if dtype == np.float16:
+ fp16 = True
+ else: # output
+ output_names.append(name)
+ shape = tuple(context.get_binding_shape(i))
+ im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
+ bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
+ binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
+ batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
+ elif coreml: # CoreML
+ LOGGER.info(f'Loading {w} for CoreML inference...')
+ import coremltools as ct
+ model = ct.models.MLModel(w)
+ elif saved_model: # TF SavedModel
+ LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
+ import tensorflow as tf
+ keras = False # assume TF1 saved_model
+ model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
+ elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
+ LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
+ import tensorflow as tf
+
+ def wrap_frozen_graph(gd, inputs, outputs):
+ x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
+ ge = x.graph.as_graph_element
+ return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
+
+ def gd_outputs(gd):
+ name_list, input_list = [], []
+ for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
+ name_list.append(node.name)
+ input_list.extend(node.input)
+ return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
+
+ gd = tf.Graph().as_graph_def() # TF GraphDef
+ with open(w, 'rb') as f:
+ gd.ParseFromString(f.read())
+ frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
+ elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
+ try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
+ from tflite_runtime.interpreter import Interpreter, load_delegate
+ except ImportError:
+ import tensorflow as tf
+ Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
+ if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
+ LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
+ delegate = {
+ 'Linux': 'libedgetpu.so.1',
+ 'Darwin': 'libedgetpu.1.dylib',
+ 'Windows': 'edgetpu.dll'}[platform.system()]
+ interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
+ else: # TFLite
+ LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
+ interpreter = Interpreter(model_path=w) # load TFLite model
+ interpreter.allocate_tensors() # allocate
+ input_details = interpreter.get_input_details() # inputs
+ output_details = interpreter.get_output_details() # outputs
+ # load metadata
+ with contextlib.suppress(zipfile.BadZipFile):
+ with zipfile.ZipFile(w, "r") as model:
+ meta_file = model.namelist()[0]
+ meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
+ stride, names = int(meta['stride']), meta['names']
+ elif tfjs: # TF.js
+ raise NotImplementedError('ERROR: YOLO TF.js inference is not supported')
+ elif paddle: # PaddlePaddle
+ LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
+ check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
+ import paddle.inference as pdi
+ if not Path(w).is_file(): # if not *.pdmodel
+ w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
+ weights = Path(w).with_suffix('.pdiparams')
+ config = pdi.Config(str(w), str(weights))
+ if cuda:
+ config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
+ predictor = pdi.create_predictor(config)
+ input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
+ output_names = predictor.get_output_names()
+ elif triton: # NVIDIA Triton Inference Server
+ LOGGER.info(f'Using {w} as Triton Inference Server...')
+ check_requirements('tritonclient[all]')
+ from utils.triton import TritonRemoteModel
+ model = TritonRemoteModel(url=w)
+ nhwc = model.runtime.startswith("tensorflow")
+ else:
+ raise NotImplementedError(f'ERROR: {w} is not a supported format')
+
+ # class names
+ if 'names' not in locals():
+ names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
+ if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
+ names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
+
+ self.__dict__.update(locals()) # assign all variables to self
+
+ def forward(self, im, augment=False, visualize=False):
+ # YOLO MultiBackend inference
+ b, ch, h, w = im.shape # batch, channel, height, width
+ if self.fp16 and im.dtype != torch.float16:
+ im = im.half() # to FP16
+ if self.nhwc:
+ im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
+
+ if self.pt: # PyTorch
+ y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
+ elif self.jit: # TorchScript
+ y = self.model(im)
+ elif self.dnn: # ONNX OpenCV DNN
+ im = im.cpu().numpy() # torch to numpy
+ self.net.setInput(im)
+ y = self.net.forward()
+ elif self.onnx: # ONNX Runtime
+ im = im.cpu().numpy() # torch to numpy
+ y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
+ elif self.xml: # OpenVINO
+ im = im.cpu().numpy() # FP32
+ y = list(self.executable_network([im]).values())
+ elif self.engine: # TensorRT
+ if self.dynamic and im.shape != self.bindings['images'].shape:
+ i = self.model.get_binding_index('images')
+ self.context.set_binding_shape(i, im.shape) # reshape if dynamic
+ self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
+ for name in self.output_names:
+ i = self.model.get_binding_index(name)
+ self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
+ s = self.bindings['images'].shape
+ assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
+ self.binding_addrs['images'] = int(im.data_ptr())
+ self.context.execute_v2(list(self.binding_addrs.values()))
+ y = [self.bindings[x].data for x in sorted(self.output_names)]
+ elif self.coreml: # CoreML
+ im = im.cpu().numpy()
+ im = Image.fromarray((im[0] * 255).astype('uint8'))
+ # im = im.resize((192, 320), Image.ANTIALIAS)
+ y = self.model.predict({'image': im}) # coordinates are xywh normalized
+ if 'confidence' in y:
+ box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
+ conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
+ y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
+ else:
+ y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
+ elif self.paddle: # PaddlePaddle
+ im = im.cpu().numpy().astype(np.float32)
+ self.input_handle.copy_from_cpu(im)
+ self.predictor.run()
+ y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
+ elif self.triton: # NVIDIA Triton Inference Server
+ y = self.model(im)
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
+ im = im.cpu().numpy()
+ if self.saved_model: # SavedModel
+ y = self.model(im, training=False) if self.keras else self.model(im)
+ elif self.pb: # GraphDef
+ y = self.frozen_func(x=self.tf.constant(im))
+ else: # Lite or Edge TPU
+ input = self.input_details[0]
+ int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
+ if int8:
+ scale, zero_point = input['quantization']
+ im = (im / scale + zero_point).astype(np.uint8) # de-scale
+ self.interpreter.set_tensor(input['index'], im)
+ self.interpreter.invoke()
+ y = []
+ for output in self.output_details:
+ x = self.interpreter.get_tensor(output['index'])
+ if int8:
+ scale, zero_point = output['quantization']
+ x = (x.astype(np.float32) - zero_point) * scale # re-scale
+ y.append(x)
+ y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
+ y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
+
+ if isinstance(y, (list, tuple)):
+ return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
+ else:
+ return self.from_numpy(y)
+
+ def from_numpy(self, x):
+ return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
+
+ def warmup(self, imgsz=(1, 3, 640, 640)):
+ # Warmup model by running inference once
+ warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
+ if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
+ im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
+ for _ in range(2 if self.jit else 1): #
+ self.forward(im) # warmup
+
+ @staticmethod
+ def _model_type(p='path/to/model.pt'):
+ # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
+ # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
+ from export import export_formats
+ from utils.downloads import is_url
+ sf = list(export_formats().Suffix) # export suffixes
+ if not is_url(p, check=False):
+ check_suffix(p, sf) # checks
+ url = urlparse(p) # if url may be Triton inference server
+ types = [s in Path(p).name for s in sf]
+ types[8] &= not types[9] # tflite &= not edgetpu
+ triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
+ return types + [triton]
+
+ @staticmethod
+ def _load_metadata(f=Path('path/to/meta.yaml')):
+ # Load metadata from meta.yaml if it exists
+ if f.exists():
+ d = yaml_load(f)
+ return d['stride'], d['names'] # assign stride, names
+ return None, None
+
+
+class AutoShape(nn.Module):
+ # YOLO input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
+ conf = 0.25 # NMS confidence threshold
+ iou = 0.45 # NMS IoU threshold
+ agnostic = False # NMS class-agnostic
+ multi_label = False # NMS multiple labels per box
+ classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
+ max_det = 1000 # maximum number of detections per image
+ amp = False # Automatic Mixed Precision (AMP) inference
+
+ def __init__(self, model, verbose=True):
+ super().__init__()
+ if verbose:
+ LOGGER.info('Adding AutoShape... ')
+ copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
+ self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
+ self.pt = not self.dmb or model.pt # PyTorch model
+ self.model = model.eval()
+ if self.pt:
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
+ m.inplace = False # Detect.inplace=False for safe multithread inference
+ m.export = True # do not output loss values
+
+ def _apply(self, fn):
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
+ self = super()._apply(fn)
+ from models.yolo import Detect, Segment
+ if self.pt:
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
+ if isinstance(m, (Detect, Segment)):
+ for k in 'stride', 'anchor_grid', 'stride_grid', 'grid':
+ x = getattr(m, k)
+ setattr(m, k, list(map(fn, x))) if isinstance(x, (list, tuple)) else setattr(m, k, fn(x))
+ return self
+
+ @smart_inference_mode()
+ def forward(self, ims, size=640, augment=False, profile=False):
+ # Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
+ # file: ims = 'data/images/zidane.jpg' # str or PosixPath
+ # URI: = 'https://ultralytics.com/images/zidane.jpg'
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
+ # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
+ # numpy: = np.zeros((640,1280,3)) # HWC
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
+
+ dt = (Profile(), Profile(), Profile())
+ with dt[0]:
+ if isinstance(size, int): # expand
+ size = (size, size)
+ p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
+ autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
+ if isinstance(ims, torch.Tensor): # torch
+ with amp.autocast(autocast):
+ return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
+
+ # Pre-process
+ n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
+ for i, im in enumerate(ims):
+ f = f'image{i}' # filename
+ if isinstance(im, (str, Path)): # filename or uri
+ im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
+ im = np.asarray(exif_transpose(im))
+ elif isinstance(im, Image.Image): # PIL Image
+ im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
+ files.append(Path(f).with_suffix('.jpg').name)
+ if im.shape[0] < 5: # image in CHW
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
+ im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
+ s = im.shape[:2] # HWC
+ shape0.append(s) # image shape
+ g = max(size) / max(s) # gain
+ shape1.append([int(y * g) for y in s])
+ ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
+ shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
+ x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
+ x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
+
+ with amp.autocast(autocast):
+ # Inference
+ with dt[1]:
+ y = self.model(x, augment=augment) # forward
+
+ # Post-process
+ with dt[2]:
+ y = non_max_suppression(y if self.dmb else y[0],
+ self.conf,
+ self.iou,
+ self.classes,
+ self.agnostic,
+ self.multi_label,
+ max_det=self.max_det) # NMS
+ for i in range(n):
+ scale_boxes(shape1, y[i][:, :4], shape0[i])
+
+ return Detections(ims, y, files, dt, self.names, x.shape)
+
+
+class Detections:
+ # YOLO detections class for inference results
+ def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
+ super().__init__()
+ d = pred[0].device # device
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
+ self.ims = ims # list of images as numpy arrays
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
+ self.names = names # class names
+ self.files = files # image filenames
+ self.times = times # profiling times
+ self.xyxy = pred # xyxy pixels
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
+ self.n = len(self.pred) # number of images (batch size)
+ self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
+ self.s = tuple(shape) # inference BCHW shape
+
+ def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
+ s, crops = '', []
+ for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
+ s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
+ if pred.shape[0]:
+ for c in pred[:, -1].unique():
+ n = (pred[:, -1] == c).sum() # detections per class
+ s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
+ s = s.rstrip(', ')
+ if show or save or render or crop:
+ annotator = Annotator(im, example=str(self.names))
+ for *box, conf, cls in reversed(pred): # xyxy, confidence, class
+ label = f'{self.names[int(cls)]} {conf:.2f}'
+ if crop:
+ file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
+ crops.append({
+ 'box': box,
+ 'conf': conf,
+ 'cls': cls,
+ 'label': label,
+ 'im': save_one_box(box, im, file=file, save=save)})
+ else: # all others
+ annotator.box_label(box, label if labels else '', color=colors(cls))
+ im = annotator.im
+ else:
+ s += '(no detections)'
+
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
+ if show:
+ display(im) if is_notebook() else im.show(self.files[i])
+ if save:
+ f = self.files[i]
+ im.save(save_dir / f) # save
+ if i == self.n - 1:
+ LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
+ if render:
+ self.ims[i] = np.asarray(im)
+ if pprint:
+ s = s.lstrip('\n')
+ return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
+ if crop:
+ if save:
+ LOGGER.info(f'Saved results to {save_dir}\n')
+ return crops
+
+ @TryExcept('Showing images is not supported in this environment')
+ def show(self, labels=True):
+ self._run(show=True, labels=labels) # show results
+
+ def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
+ self._run(save=True, labels=labels, save_dir=save_dir) # save results
+
+ def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
+ return self._run(crop=True, save=save, save_dir=save_dir) # crop results
+
+ def render(self, labels=True):
+ self._run(render=True, labels=labels) # render results
+ return self.ims
+
+ def pandas(self):
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
+ new = copy(self) # return copy
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
+ return new
+
+ def tolist(self):
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
+ r = range(self.n) # iterable
+ x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
+ # for d in x:
+ # for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
+ # setattr(d, k, getattr(d, k)[0]) # pop out of list
+ return x
+
+ def print(self):
+ LOGGER.info(self.__str__())
+
+ def __len__(self): # override len(results)
+ return self.n
+
+ def __str__(self): # override print(results)
+ return self._run(pprint=True) # print results
+
+ def __repr__(self):
+ return f'YOLO {self.__class__} instance\n' + self.__str__()
+
+
+class Proto(nn.Module):
+ # YOLO mask Proto module for segmentation models
+ def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
+ super().__init__()
+ self.cv1 = Conv(c1, c_, k=3)
+ self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
+ self.cv2 = Conv(c_, c_, k=3)
+ self.cv3 = Conv(c_, c2)
+
+ def forward(self, x):
+ return self.cv3(self.cv2(self.upsample(self.cv1(x))))
+
+
+class UConv(nn.Module):
+ def __init__(self, c1, c_=256, c2=256): # ch_in, number of protos, number of masks
+ super().__init__()
+
+ self.cv1 = Conv(c1, c_, k=3)
+ self.cv2 = nn.Conv2d(c_, c2, 1, 1)
+ self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
+
+ def forward(self, x):
+ return self.up(self.cv2(self.cv1(x)))
+
+
+class Classify(nn.Module):
+ # YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2)
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
+ super().__init__()
+ c_ = 1280 # efficientnet_b0 size
+ self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
+ self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
+ self.drop = nn.Dropout(p=0.0, inplace=True)
+ self.linear = nn.Linear(c_, c2) # to x(b,c2)
+
+ def forward(self, x):
+ if isinstance(x, list):
+ x = torch.cat(x, 1)
+ return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
diff --git a/cv/3d_detection/yolov9/pytorch/models/detect/gelan-c.yaml b/cv/3d_detection/yolov9/pytorch/models/detect/gelan-c.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..78b41bc39389f633176eccb1f36b685e37ff4347
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/detect/gelan-c.yaml
@@ -0,0 +1,80 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+#activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# gelan backbone
+backbone:
+ [
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 0-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 2
+
+ # avg-conv down
+ [-1, 1, ADown, [256]], # 3-P3/8
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 4
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 5-P4/16
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 6
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 7-P5/32
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 8
+ ]
+
+# gelan head
+head:
+ [
+ # elan-spp block
+ [-1, 1, SPPELAN, [512, 256]], # 9
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 12
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 15 (P3/8-small)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [256]],
+ [[-1, 12], 1, Concat, [1]], # cat head P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 18 (P4/16-medium)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [512]],
+ [[-1, 9], 1, Concat, [1]], # cat head P5
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 21 (P5/32-large)
+
+ # detect
+ [[15, 18, 21], 1, DDetect, [nc]], # DDetect(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/detect/gelan-e.yaml b/cv/3d_detection/yolov9/pytorch/models/detect/gelan-e.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a0409bab70a6c697b0037212b44b0f25de7c1525
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/detect/gelan-e.yaml
@@ -0,0 +1,121 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+#activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# gelan backbone
+backbone:
+ [
+ [-1, 1, Silence, []],
+
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]], # 3
+
+ # avg-conv down
+ [-1, 1, ADown, [256]], # 4-P3/8
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]], # 5
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 6-P4/16
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 7
+
+ # avg-conv down
+ [-1, 1, ADown, [1024]], # 8-P5/32
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 9
+
+ # routing
+ [1, 1, CBLinear, [[64]]], # 10
+ [3, 1, CBLinear, [[64, 128]]], # 11
+ [5, 1, CBLinear, [[64, 128, 256]]], # 12
+ [7, 1, CBLinear, [[64, 128, 256, 512]]], # 13
+ [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]], # 14
+
+ # conv down fuse
+ [0, 1, Conv, [64, 3, 2]], # 15-P1/2
+ [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]], # 16
+
+ # conv down fuse
+ [-1, 1, Conv, [128, 3, 2]], # 17-P2/4
+ [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]], # 18
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]], # 19
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [256]], # 20-P3/8
+ [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]], # 21
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]], # 22
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [512]], # 23-P4/16
+ [[13, 14, -1], 1, CBFuse, [[3, 3]]], # 24
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 25
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [1024]], # 26-P5/32
+ [[14, -1], 1, CBFuse, [[4]]], # 27
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 28
+ ]
+
+# gelan head
+head:
+ [
+ # elan-spp block
+ [28, 1, SPPELAN, [512, 256]], # 29
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 25], 1, Concat, [1]], # cat backbone P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 32
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 22], 1, Concat, [1]], # cat backbone P3
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]], # 35 (P3/8-small)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [256]],
+ [[-1, 32], 1, Concat, [1]], # cat head P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 38 (P4/16-medium)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [512]],
+ [[-1, 29], 1, Concat, [1]], # cat head P5
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]], # 41 (P5/32-large)
+
+ # detect
+ [[35, 38, 41], 1, DDetect, [nc]], # Detect(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/detect/gelan.yaml b/cv/3d_detection/yolov9/pytorch/models/detect/gelan.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ecd54d47d0f73701699d8fdf554488564b640ff7
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/detect/gelan.yaml
@@ -0,0 +1,80 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+#activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# gelan backbone
+backbone:
+ [
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 0-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 2
+
+ # avg-conv down
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 4
+
+ # avg-conv down
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 6
+
+ # avg-conv down
+ [-1, 1, Conv, [512, 3, 2]], # 7-P5/32
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 8
+ ]
+
+# gelan head
+head:
+ [
+ # elan-spp block
+ [-1, 1, SPPELAN, [512, 256]], # 9
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 12
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 15 (P3/8-small)
+
+ # avg-conv-down merge
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 12], 1, Concat, [1]], # cat head P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 18 (P4/16-medium)
+
+ # avg-conv-down merge
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 9], 1, Concat, [1]], # cat head P5
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 21 (P5/32-large)
+
+ # detect
+ [[15, 18, 21], 1, DDetect, [nc]], # Detect(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/detect/yolov7-af.yaml b/cv/3d_detection/yolov9/pytorch/models/detect/yolov7-af.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f739df15e6a19d4d4c6b5ed7e912fa6ef3064e59
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/detect/yolov7-af.yaml
@@ -0,0 +1,137 @@
+# YOLOv7
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1. # model depth multiple
+width_multiple: 1. # layer channel multiple
+anchors: 3
+
+# YOLOv7 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Conv, [64, 3, 1]],
+
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 11
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 24
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 37
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-3, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 50
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 51
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 63
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 75
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3, 63], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 88
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3, 51], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 101
+
+ [75, 1, Conv, [256, 3, 1]],
+ [88, 1, Conv, [512, 3, 1]],
+ [101, 1, Conv, [1024, 3, 1]],
+
+ [[102, 103, 104], 1, Detect, [nc]], # Detect(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/detect/yolov9-c.yaml b/cv/3d_detection/yolov9/pytorch/models/detect/yolov9-c.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..df8d31d2f1d37c97759caea5da4ab6a86d6d1a17
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/detect/yolov9-c.yaml
@@ -0,0 +1,124 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+#activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# YOLOv9 backbone
+backbone:
+ [
+ [-1, 1, Silence, []],
+
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3
+
+ # avg-conv down
+ [-1, 1, ADown, [256]], # 4-P3/8
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 6-P4/16
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 8-P5/32
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
+ ]
+
+# YOLOv9 head
+head:
+ [
+ # elan-spp block
+ [-1, 1, SPPELAN, [512, 256]], # 10
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 7], 1, Concat, [1]], # cat backbone P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 5], 1, Concat, [1]], # cat backbone P3
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [256]],
+ [[-1, 13], 1, Concat, [1]], # cat head P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [512]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
+
+
+ # multi-level reversible auxiliary branch
+
+ # routing
+ [5, 1, CBLinear, [[256]]], # 23
+ [7, 1, CBLinear, [[256, 512]]], # 24
+ [9, 1, CBLinear, [[256, 512, 512]]], # 25
+
+ # conv down
+ [0, 1, Conv, [64, 3, 2]], # 26-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 27-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [256]], # 29-P3/8
+ [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [512]], # 32-P4/16
+ [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [512]], # 35-P5/32
+ [[25, -1], 1, CBFuse, [[2]]], # 36
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
+
+
+
+ # detection head
+
+ # detect
+ [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/detect/yolov9-e.yaml b/cv/3d_detection/yolov9/pytorch/models/detect/yolov9-e.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..dcb122b61cf02eb3f599414f3b7431ddf7b9b898
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/detect/yolov9-e.yaml
@@ -0,0 +1,144 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+#activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# YOLOv9 backbone
+backbone:
+ [
+ [-1, 1, Silence, []],
+
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]], # 3
+
+ # avg-conv down
+ [-1, 1, ADown, [256]], # 4-P3/8
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]], # 5
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 6-P4/16
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 7
+
+ # avg-conv down
+ [-1, 1, ADown, [1024]], # 8-P5/32
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 9
+
+ # routing
+ [1, 1, CBLinear, [[64]]], # 10
+ [3, 1, CBLinear, [[64, 128]]], # 11
+ [5, 1, CBLinear, [[64, 128, 256]]], # 12
+ [7, 1, CBLinear, [[64, 128, 256, 512]]], # 13
+ [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]], # 14
+
+ # conv down
+ [0, 1, Conv, [64, 3, 2]], # 15-P1/2
+ [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]], # 16
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 17-P2/4
+ [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]], # 18
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]], # 19
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [256]], # 20-P3/8
+ [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]], # 21
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]], # 22
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [512]], # 23-P4/16
+ [[13, 14, -1], 1, CBFuse, [[3, 3]]], # 24
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 25
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [1024]], # 26-P5/32
+ [[14, -1], 1, CBFuse, [[4]]], # 27
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]], # 28
+ ]
+
+# YOLOv9 head
+head:
+ [
+ # multi-level auxiliary branch
+
+ # elan-spp block
+ [9, 1, SPPELAN, [512, 256]], # 29
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 7], 1, Concat, [1]], # cat backbone P4
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 32
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 5], 1, Concat, [1]], # cat backbone P3
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]], # 35
+
+
+
+ # main branch
+
+ # elan-spp block
+ [28, 1, SPPELAN, [512, 256]], # 36
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 25], 1, Concat, [1]], # cat backbone P4
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 39
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 22], 1, Concat, [1]], # cat backbone P3
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]], # 42 (P3/8-small)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [256]],
+ [[-1, 39], 1, Concat, [1]], # cat head P4
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]], # 45 (P4/16-medium)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [512]],
+ [[-1, 36], 1, Concat, [1]], # cat head P5
+
+ # csp-elan block
+ [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]], # 48 (P5/32-large)
+
+ # detect
+ [[35, 32, 29, 42, 45, 48], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/detect/yolov9.yaml b/cv/3d_detection/yolov9/pytorch/models/detect/yolov9.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..98ecd14f64d4758a0ac02f2a6b2fab6a18869bdb
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/detect/yolov9.yaml
@@ -0,0 +1,117 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# YOLOv9 backbone
+backbone:
+ [
+ [-1, 1, Silence, []],
+
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3
+
+ # conv down
+ [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
+
+ # conv down
+ [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
+
+ # conv down
+ [-1, 1, Conv, [512, 3, 2]], # 8-P5/32
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
+ ]
+
+# YOLOv9 head
+head:
+ [
+ # elan-spp block
+ [-1, 1, SPPELAN, [512, 256]], # 10
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 7], 1, Concat, [1]], # cat backbone P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 5], 1, Concat, [1]], # cat backbone P3
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
+
+ # conv-down merge
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 13], 1, Concat, [1]], # cat head P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
+
+ # conv-down merge
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
+
+ # routing
+ [5, 1, CBLinear, [[256]]], # 23
+ [7, 1, CBLinear, [[256, 512]]], # 24
+ [9, 1, CBLinear, [[256, 512, 512]]], # 25
+
+ # conv down
+ [0, 1, Conv, [64, 3, 2]], # 26-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 27-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
+
+ # conv down fuse
+ [-1, 1, Conv, [256, 3, 2]], # 29-P3/8
+ [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
+
+ # conv down fuse
+ [-1, 1, Conv, [512, 3, 2]], # 32-P4/16
+ [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
+
+ # conv down fuse
+ [-1, 1, Conv, [512, 3, 2]], # 35-P5/32
+ [[25, -1], 1, CBFuse, [[2]]], # 36
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
+
+ # detect
+ [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/experimental.py b/cv/3d_detection/yolov9/pytorch/models/experimental.py
new file mode 100644
index 0000000000000000000000000000000000000000..b1a466a6ce67cd7751a8c2799a708539f98dfc28
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/experimental.py
@@ -0,0 +1,275 @@
+import math
+
+import numpy as np
+import torch
+import torch.nn as nn
+
+from utils.downloads import attempt_download
+
+
+class Sum(nn.Module):
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, n, weight=False): # n: number of inputs
+ super().__init__()
+ self.weight = weight # apply weights boolean
+ self.iter = range(n - 1) # iter object
+ if weight:
+ self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
+
+ def forward(self, x):
+ y = x[0] # no weight
+ if self.weight:
+ w = torch.sigmoid(self.w) * 2
+ for i in self.iter:
+ y = y + x[i + 1] * w[i]
+ else:
+ for i in self.iter:
+ y = y + x[i + 1]
+ return y
+
+
+class MixConv2d(nn.Module):
+ # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
+ super().__init__()
+ n = len(k) # number of convolutions
+ if equal_ch: # equal c_ per group
+ i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
+ c_ = [(i == g).sum() for g in range(n)] # intermediate channels
+ else: # equal weight.numel() per group
+ b = [c2] + [0] * n
+ a = np.eye(n + 1, n, k=-1)
+ a -= np.roll(a, 1, axis=1)
+ a *= np.array(k) ** 2
+ a[0] = 1
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
+
+ self.m = nn.ModuleList([
+ nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
+ self.bn = nn.BatchNorm2d(c2)
+ self.act = nn.SiLU()
+
+ def forward(self, x):
+ return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
+
+
+class Ensemble(nn.ModuleList):
+ # Ensemble of models
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, x, augment=False, profile=False, visualize=False):
+ y = [module(x, augment, profile, visualize)[0] for module in self]
+ # y = torch.stack(y).max(0)[0] # max ensemble
+ # y = torch.stack(y).mean(0) # mean ensemble
+ y = torch.cat(y, 1) # nms ensemble
+ return y, None # inference, train output
+
+
+class ORT_NMS(torch.autograd.Function):
+ '''ONNX-Runtime NMS operation'''
+ @staticmethod
+ def forward(ctx,
+ boxes,
+ scores,
+ max_output_boxes_per_class=torch.tensor([100]),
+ iou_threshold=torch.tensor([0.45]),
+ score_threshold=torch.tensor([0.25])):
+ device = boxes.device
+ batch = scores.shape[0]
+ num_det = random.randint(0, 100)
+ batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
+ idxs = torch.arange(100, 100 + num_det).to(device)
+ zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
+ selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
+ selected_indices = selected_indices.to(torch.int64)
+ return selected_indices
+
+ @staticmethod
+ def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
+ return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
+
+
+class TRT_NMS(torch.autograd.Function):
+ '''TensorRT NMS operation'''
+ @staticmethod
+ def forward(
+ ctx,
+ boxes,
+ scores,
+ background_class=-1,
+ box_coding=1,
+ iou_threshold=0.45,
+ max_output_boxes=100,
+ plugin_version="1",
+ score_activation=0,
+ score_threshold=0.25,
+ ):
+
+ batch_size, num_boxes, num_classes = scores.shape
+ num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
+ det_boxes = torch.randn(batch_size, max_output_boxes, 4)
+ det_scores = torch.randn(batch_size, max_output_boxes)
+ det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
+ return num_det, det_boxes, det_scores, det_classes
+
+ @staticmethod
+ def symbolic(g,
+ boxes,
+ scores,
+ background_class=-1,
+ box_coding=1,
+ iou_threshold=0.45,
+ max_output_boxes=100,
+ plugin_version="1",
+ score_activation=0,
+ score_threshold=0.25):
+ out = g.op("TRT::EfficientNMS_TRT",
+ boxes,
+ scores,
+ background_class_i=background_class,
+ box_coding_i=box_coding,
+ iou_threshold_f=iou_threshold,
+ max_output_boxes_i=max_output_boxes,
+ plugin_version_s=plugin_version,
+ score_activation_i=score_activation,
+ score_threshold_f=score_threshold,
+ outputs=4)
+ nums, boxes, scores, classes = out
+ return nums, boxes, scores, classes
+
+
+class ONNX_ORT(nn.Module):
+ '''onnx module with ONNX-Runtime NMS operation.'''
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
+ super().__init__()
+ self.device = device if device else torch.device("cpu")
+ self.max_obj = torch.tensor([max_obj]).to(device)
+ self.iou_threshold = torch.tensor([iou_thres]).to(device)
+ self.score_threshold = torch.tensor([score_thres]).to(device)
+ self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
+ self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
+ dtype=torch.float32,
+ device=self.device)
+ self.n_classes=n_classes
+
+ def forward(self, x):
+ ## https://github.com/thaitc-hust/yolov9-tensorrt/blob/main/torch2onnx.py
+ ## thanks https://github.com/thaitc-hust
+ if isinstance(x, list): ## yolov9-c.pt and yolov9-e.pt return list
+ x = x[1]
+ x = x.permute(0, 2, 1)
+ bboxes_x = x[..., 0:1]
+ bboxes_y = x[..., 1:2]
+ bboxes_w = x[..., 2:3]
+ bboxes_h = x[..., 3:4]
+ bboxes = torch.cat([bboxes_x, bboxes_y, bboxes_w, bboxes_h], dim = -1)
+ bboxes = bboxes.unsqueeze(2) # [n_batch, n_bboxes, 4] -> [n_batch, n_bboxes, 1, 4]
+ obj_conf = x[..., 4:]
+ scores = obj_conf
+ bboxes @= self.convert_matrix
+ max_score, category_id = scores.max(2, keepdim=True)
+ dis = category_id.float() * self.max_wh
+ nmsbox = bboxes + dis
+ max_score_tp = max_score.transpose(1, 2).contiguous()
+ selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
+ X, Y = selected_indices[:, 0], selected_indices[:, 2]
+ selected_boxes = bboxes[X, Y, :]
+ selected_categories = category_id[X, Y, :].float()
+ selected_scores = max_score[X, Y, :]
+ X = X.unsqueeze(1).float()
+ return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
+
+
+class ONNX_TRT(nn.Module):
+ '''onnx module with TensorRT NMS operation.'''
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
+ super().__init__()
+ assert max_wh is None
+ self.device = device if device else torch.device('cpu')
+ self.background_class = -1,
+ self.box_coding = 1,
+ self.iou_threshold = iou_thres
+ self.max_obj = max_obj
+ self.plugin_version = '1'
+ self.score_activation = 0
+ self.score_threshold = score_thres
+ self.n_classes=n_classes
+
+ def forward(self, x):
+ ## https://github.com/thaitc-hust/yolov9-tensorrt/blob/main/torch2onnx.py
+ ## thanks https://github.com/thaitc-hust
+ if isinstance(x, list): ## yolov9-c.pt and yolov9-e.pt return list
+ x = x[1]
+ x = x.permute(0, 2, 1)
+ bboxes_x = x[..., 0:1]
+ bboxes_y = x[..., 1:2]
+ bboxes_w = x[..., 2:3]
+ bboxes_h = x[..., 3:4]
+ bboxes = torch.cat([bboxes_x, bboxes_y, bboxes_w, bboxes_h], dim = -1)
+ bboxes = bboxes.unsqueeze(2) # [n_batch, n_bboxes, 4] -> [n_batch, n_bboxes, 1, 4]
+ obj_conf = x[..., 4:]
+ scores = obj_conf
+ num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(bboxes, scores, self.background_class, self.box_coding,
+ self.iou_threshold, self.max_obj,
+ self.plugin_version, self.score_activation,
+ self.score_threshold)
+ return num_det, det_boxes, det_scores, det_classes
+
+class End2End(nn.Module):
+ '''export onnx or tensorrt model with NMS operation.'''
+ def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
+ super().__init__()
+ device = device if device else torch.device('cpu')
+ assert isinstance(max_wh,(int)) or max_wh is None
+ self.model = model.to(device)
+ self.model.model[-1].end2end = True
+ self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
+ self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
+ self.end2end.eval()
+
+ def forward(self, x):
+ x = self.model(x)
+ x = self.end2end(x)
+ return x
+
+
+def attempt_load(weights, device=None, inplace=True, fuse=True):
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
+ from models.yolo import Detect, Model
+
+ model = Ensemble()
+ for w in weights if isinstance(weights, list) else [weights]:
+ ckpt = torch.load(attempt_download(w), map_location='cpu') # load
+ ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
+
+ # Model compatibility updates
+ if not hasattr(ckpt, 'stride'):
+ ckpt.stride = torch.tensor([32.])
+ if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
+ ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
+
+ model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
+
+ # Module compatibility updates
+ for m in model.modules():
+ t = type(m)
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
+ m.inplace = inplace # torch 1.7.0 compatibility
+ # if t is Detect and not isinstance(m.anchor_grid, list):
+ # delattr(m, 'anchor_grid')
+ # setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
+
+ # Return model
+ if len(model) == 1:
+ return model[-1]
+
+ # Return detection ensemble
+ print(f'Ensemble created with {weights}\n')
+ for k in 'names', 'nc', 'yaml':
+ setattr(model, k, getattr(model[0], k))
+ model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
+ assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
+ return model
diff --git a/cv/3d_detection/yolov9/pytorch/models/hub/anchors.yaml b/cv/3d_detection/yolov9/pytorch/models/hub/anchors.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..65e85cf4764a30aa98abcc7f9daefdebbe94b29e
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/hub/anchors.yaml
@@ -0,0 +1,59 @@
+# YOLOv3 & YOLOv5
+# Default anchors for COCO data
+
+
+# P5 -------------------------------------------------------------------------------------------------------------------
+# P5-640:
+anchors_p5_640:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+
+# P6 -------------------------------------------------------------------------------------------------------------------
+# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
+anchors_p6_640:
+ - [9,11, 21,19, 17,41] # P3/8
+ - [43,32, 39,70, 86,64] # P4/16
+ - [65,131, 134,130, 120,265] # P5/32
+ - [282,180, 247,354, 512,387] # P6/64
+
+# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+anchors_p6_1280:
+ - [19,27, 44,40, 38,94] # P3/8
+ - [96,68, 86,152, 180,137] # P4/16
+ - [140,301, 303,264, 238,542] # P5/32
+ - [436,615, 739,380, 925,792] # P6/64
+
+# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
+anchors_p6_1920:
+ - [28,41, 67,59, 57,141] # P3/8
+ - [144,103, 129,227, 270,205] # P4/16
+ - [209,452, 455,396, 358,812] # P5/32
+ - [653,922, 1109,570, 1387,1187] # P6/64
+
+
+# P7 -------------------------------------------------------------------------------------------------------------------
+# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
+anchors_p7_640:
+ - [11,11, 13,30, 29,20] # P3/8
+ - [30,46, 61,38, 39,92] # P4/16
+ - [78,80, 146,66, 79,163] # P5/32
+ - [149,150, 321,143, 157,303] # P6/64
+ - [257,402, 359,290, 524,372] # P7/128
+
+# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
+anchors_p7_1280:
+ - [19,22, 54,36, 32,77] # P3/8
+ - [70,83, 138,71, 75,173] # P4/16
+ - [165,159, 148,334, 375,151] # P5/32
+ - [334,317, 251,626, 499,474] # P6/64
+ - [750,326, 534,814, 1079,818] # P7/128
+
+# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
+anchors_p7_1920:
+ - [29,34, 81,55, 47,115] # P3/8
+ - [105,124, 207,107, 113,259] # P4/16
+ - [247,238, 222,500, 563,227] # P5/32
+ - [501,476, 376,939, 749,711] # P6/64
+ - [1126,489, 801,1222, 1618,1227] # P7/128
diff --git a/cv/3d_detection/yolov9/pytorch/models/hub/yolov3-spp.yaml b/cv/3d_detection/yolov9/pytorch/models/hub/yolov3-spp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6fb1c0b72a99d7ef26211060045d378e814fac50
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/hub/yolov3-spp.yaml
@@ -0,0 +1,51 @@
+# YOLOv3
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# darknet53 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, Bottleneck, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, Bottleneck, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, Bottleneck, [1024]], # 10
+ ]
+
+# YOLOv3-SPP head
+head:
+ [[-1, 1, Bottleneck, [1024, False]],
+ [-1, 1, SPP, [512, [5, 9, 13]]],
+ [-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
+
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
+
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Bottleneck, [256, False]],
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
+
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/hub/yolov3-tiny.yaml b/cv/3d_detection/yolov9/pytorch/models/hub/yolov3-tiny.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..47372e09ae99ed6f0d494cc7811568c109b3f721
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/hub/yolov3-tiny.yaml
@@ -0,0 +1,41 @@
+# YOLOv3
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+ - [10,14, 23,27, 37,58] # P4/16
+ - [81,82, 135,169, 344,319] # P5/32
+
+# YOLOv3-tiny backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [16, 3, 1]], # 0
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
+ [-1, 1, Conv, [32, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
+ [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
+ ]
+
+# YOLOv3-tiny head
+head:
+ [[-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
+
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
+
+ [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/hub/yolov3.yaml b/cv/3d_detection/yolov9/pytorch/models/hub/yolov3.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3ebd78f5eb66243ca6f0235904d4df9ef05d5f36
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/hub/yolov3.yaml
@@ -0,0 +1,51 @@
+# YOLOv3
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# darknet53 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, Bottleneck, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, Bottleneck, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, Bottleneck, [1024]], # 10
+ ]
+
+# YOLOv3 head
+head:
+ [[-1, 1, Bottleneck, [1024, False]],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
+
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
+
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Bottleneck, [256, False]],
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
+
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/panoptic/gelan-c-pan.yaml b/cv/3d_detection/yolov9/pytorch/models/panoptic/gelan-c-pan.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..acc41c4e0230b2deecfbab9f8e83fe1b00a1e4a7
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/panoptic/gelan-c-pan.yaml
@@ -0,0 +1,80 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+#activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# gelan backbone
+backbone:
+ [
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 0-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 2
+
+ # avg-conv down
+ [-1, 1, ADown, [256]], # 3-P3/8
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 4
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 5-P4/16
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 6
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 7-P5/32
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 8
+ ]
+
+# gelan head
+head:
+ [
+ # elan-spp block
+ [-1, 1, SPPELAN, [512, 256]], # 9
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 12
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 15 (P3/8-small)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [256]],
+ [[-1, 12], 1, Concat, [1]], # cat head P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 18 (P4/16-medium)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [512]],
+ [[-1, 9], 1, Concat, [1]], # cat head P5
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 21 (P5/32-large)
+
+ # panoptic
+ [[15, 18, 21], 1, Panoptic, [nc, 93, 32, 256]], # Panoptic(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/panoptic/yolov7-af-pan.yaml b/cv/3d_detection/yolov9/pytorch/models/panoptic/yolov7-af-pan.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a9bed1d1dda4bfd0415731a999b99c946e35e056
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/panoptic/yolov7-af-pan.yaml
@@ -0,0 +1,137 @@
+# YOLOv7
+
+# Parameters
+nc: 80 # number of classes
+sem_nc: 93 # number of stuff classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors: 3
+
+# YOLOv7 backbone
+backbone:
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Conv, [64, 3, 1]],
+
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 11
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 24
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 37
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-3, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 50
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 51
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 63
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 75
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3, 63], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 88
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3, 51], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 101
+
+ [75, 1, Conv, [256, 3, 1]],
+ [88, 1, Conv, [512, 3, 1]],
+ [101, 1, Conv, [1024, 3, 1]],
+
+ [[102, 103, 104], 1, Panoptic, [nc, 93, 32, 256]], # Panoptic(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/segment/gelan-c-dseg.yaml b/cv/3d_detection/yolov9/pytorch/models/segment/gelan-c-dseg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8e4a8e839958859ec11414926e58913737a50d15
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/segment/gelan-c-dseg.yaml
@@ -0,0 +1,84 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+#activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# gelan backbone
+backbone:
+ [
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 0-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 2
+
+ # avg-conv down
+ [-1, 1, ADown, [256]], # 3-P3/8
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 4
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 5-P4/16
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 6
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 7-P5/32
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 8
+ ]
+
+# gelan head
+head:
+ [
+ # elan-spp block
+ [-1, 1, SPPELAN, [512, 256]], # 9
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 12
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 15 (P3/8-small)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [256]],
+ [[-1, 12], 1, Concat, [1]], # cat head P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 18 (P4/16-medium)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [512]],
+ [[-1, 9], 1, Concat, [1]], # cat head P5
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 21 (P5/32-large)
+
+ [15, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 22
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-1, 1, Conv, [256, 3, 1]], # 24
+
+ # segment
+ [[15, 18, 21, 24], 1, DSegment, [nc, 32, 256]], # Segment(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/segment/gelan-c-seg.yaml b/cv/3d_detection/yolov9/pytorch/models/segment/gelan-c-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d7815bb3db89c5b2a4fdf1e2bef44ff9b23fc923
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/segment/gelan-c-seg.yaml
@@ -0,0 +1,80 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+#activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# gelan backbone
+backbone:
+ [
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 0-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 2
+
+ # avg-conv down
+ [-1, 1, ADown, [256]], # 3-P3/8
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 4
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 5-P4/16
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 6
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 7-P5/32
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 8
+ ]
+
+# gelan head
+head:
+ [
+ # elan-spp block
+ [-1, 1, SPPELAN, [512, 256]], # 9
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 12
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 15 (P3/8-small)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [256]],
+ [[-1, 12], 1, Concat, [1]], # cat head P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 18 (P4/16-medium)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [512]],
+ [[-1, 9], 1, Concat, [1]], # cat head P5
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 21 (P5/32-large)
+
+ # segment
+ [[15, 18, 21], 1, Segment, [nc, 32, 256]], # Segment(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/segment/yolov7-af-seg.yaml b/cv/3d_detection/yolov9/pytorch/models/segment/yolov7-af-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0e4b61f7b65377ea9ec40595c9034454be431341
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/segment/yolov7-af-seg.yaml
@@ -0,0 +1,136 @@
+# YOLOv7
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors: 3
+
+# YOLOv7 backbone
+backbone:
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Conv, [64, 3, 1]],
+
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 1, Conv, [64, 1, 1]],
+ [-2, 1, Conv, [64, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 11
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 24
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 37
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-3, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -3, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [1024, 1, 1]], # 50
+ ]
+
+# yolov7 head
+head:
+ [[-1, 1, SPPCSPC, [512]], # 51
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 63
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
+ [[-1, -2], 1, Concat, [1]],
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, Conv, [64, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [128, 1, 1]], # 75
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [128, 1, 1]],
+ [-3, 1, Conv, [128, 1, 1]],
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, -3, 63], 1, Concat, [1]],
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, Conv, [128, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [256, 1, 1]], # 88
+
+ [-1, 1, MP, []],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-3, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, -3, 51], 1, Concat, [1]],
+
+ [-1, 1, Conv, [512, 1, 1]],
+ [-2, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, Conv, [256, 3, 1]],
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
+ [-1, 1, Conv, [512, 1, 1]], # 101
+
+ [75, 1, Conv, [256, 3, 1]],
+ [88, 1, Conv, [512, 3, 1]],
+ [101, 1, Conv, [1024, 3, 1]],
+
+ [[102, 103, 104], 1, Segment, [nc, 32, 256]], # Segment(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/segment/yolov9-c-dseg.yaml b/cv/3d_detection/yolov9/pytorch/models/segment/yolov9-c-dseg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..44544511cb085d457e9b7909984d016473d2d687
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/segment/yolov9-c-dseg.yaml
@@ -0,0 +1,130 @@
+# YOLOv9
+
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+#activation: nn.LeakyReLU(0.1)
+#activation: nn.ReLU()
+
+# anchors
+anchors: 3
+
+# gelan backbone
+backbone:
+ [
+ [-1, 1, Silence, []],
+
+ # conv down
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3
+
+ # avg-conv down
+ [-1, 1, ADown, [256]], # 4-P3/8
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 6-P4/16
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
+
+ # avg-conv down
+ [-1, 1, ADown, [512]], # 8-P5/32
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
+ ]
+
+# YOLOv9 head
+head:
+ [
+ # elan-spp block
+ [-1, 1, SPPELAN, [512, 256]], # 10
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 7], 1, Concat, [1]], # cat backbone P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
+
+ # up-concat merge
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 5], 1, Concat, [1]], # cat backbone P3
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [256]],
+ [[-1, 13], 1, Concat, [1]], # cat head P4
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
+
+ # avg-conv-down merge
+ [-1, 1, ADown, [512]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
+
+
+ # multi-level reversible auxiliary branch
+
+ # routing
+ [5, 1, CBLinear, [[256]]], # 23
+ [7, 1, CBLinear, [[256, 512]]], # 24
+ [9, 1, CBLinear, [[256, 512, 512]]], # 25
+
+ # conv down
+ [0, 1, Conv, [64, 3, 2]], # 26-P1/2
+
+ # conv down
+ [-1, 1, Conv, [128, 3, 2]], # 27-P2/4
+
+ # elan-1 block
+ [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [256]], # 29-P3/8
+ [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [512]], # 32-P4/16
+ [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
+
+ # avg-conv down fuse
+ [-1, 1, ADown, [512]], # 35-P5/32
+ [[25, -1], 1, CBFuse, [[2]]], # 36
+
+ # elan-2 block
+ [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
+
+ [31, 1, RepNCSPELAN4, [512, 256, 128, 2]], # 38
+
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-1, 1, Conv, [256, 3, 1]], # 40
+
+ [16, 1, RepNCSPELAN4, [256, 256, 128, 2]], # 41
+
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [-1, 1, Conv, [256, 3, 1]], # 43
+
+ # segment
+ [[31, 34, 37, 16, 19, 22, 40, 43], 1, DualDSegment, [nc, 32, 256]], # Segment(P3, P4, P5)
+ ]
diff --git a/cv/3d_detection/yolov9/pytorch/models/tf.py b/cv/3d_detection/yolov9/pytorch/models/tf.py
new file mode 100644
index 0000000000000000000000000000000000000000..897efafefebb6e176afd1f001ea14d9b922727e9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/tf.py
@@ -0,0 +1,596 @@
+import argparse
+import sys
+from copy import deepcopy
+from pathlib import Path
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+# ROOT = ROOT.relative_to(Path.cwd()) # relative
+
+import numpy as np
+import tensorflow as tf
+import torch
+import torch.nn as nn
+from tensorflow import keras
+
+from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
+ DWConvTranspose2d, Focus, autopad)
+from models.experimental import MixConv2d, attempt_load
+from models.yolo import Detect, Segment
+from utils.activations import SiLU
+from utils.general import LOGGER, make_divisible, print_args
+
+
+class TFBN(keras.layers.Layer):
+ # TensorFlow BatchNormalization wrapper
+ def __init__(self, w=None):
+ super().__init__()
+ self.bn = keras.layers.BatchNormalization(
+ beta_initializer=keras.initializers.Constant(w.bias.numpy()),
+ gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
+ moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
+ moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
+ epsilon=w.eps)
+
+ def call(self, inputs):
+ return self.bn(inputs)
+
+
+class TFPad(keras.layers.Layer):
+ # Pad inputs in spatial dimensions 1 and 2
+ def __init__(self, pad):
+ super().__init__()
+ if isinstance(pad, int):
+ self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
+ else: # tuple/list
+ self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
+
+ def call(self, inputs):
+ return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
+
+
+class TFConv(keras.layers.Layer):
+ # Standard convolution
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
+ super().__init__()
+ assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
+ # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
+ # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
+ conv = keras.layers.Conv2D(
+ filters=c2,
+ kernel_size=k,
+ strides=s,
+ padding='SAME' if s == 1 else 'VALID',
+ use_bias=not hasattr(w, 'bn'),
+ kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
+ bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
+ self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
+ self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
+ self.act = activations(w.act) if act else tf.identity
+
+ def call(self, inputs):
+ return self.act(self.bn(self.conv(inputs)))
+
+
+class TFDWConv(keras.layers.Layer):
+ # Depthwise convolution
+ def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
+ super().__init__()
+ assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
+ conv = keras.layers.DepthwiseConv2D(
+ kernel_size=k,
+ depth_multiplier=c2 // c1,
+ strides=s,
+ padding='SAME' if s == 1 else 'VALID',
+ use_bias=not hasattr(w, 'bn'),
+ depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
+ bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
+ self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
+ self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
+ self.act = activations(w.act) if act else tf.identity
+
+ def call(self, inputs):
+ return self.act(self.bn(self.conv(inputs)))
+
+
+class TFDWConvTranspose2d(keras.layers.Layer):
+ # Depthwise ConvTranspose2d
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
+ super().__init__()
+ assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
+ assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
+ weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
+ self.c1 = c1
+ self.conv = [
+ keras.layers.Conv2DTranspose(filters=1,
+ kernel_size=k,
+ strides=s,
+ padding='VALID',
+ output_padding=p2,
+ use_bias=True,
+ kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
+ bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
+
+ def call(self, inputs):
+ return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
+
+
+class TFFocus(keras.layers.Layer):
+ # Focus wh information into c-space
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
+ # ch_in, ch_out, kernel, stride, padding, groups
+ super().__init__()
+ self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
+
+ def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
+ # inputs = inputs / 255 # normalize 0-255 to 0-1
+ inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
+ return self.conv(tf.concat(inputs, 3))
+
+
+class TFBottleneck(keras.layers.Layer):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+ self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
+ self.add = shortcut and c1 == c2
+
+ def call(self, inputs):
+ return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
+
+
+class TFCrossConv(keras.layers.Layer):
+ # Cross Convolution
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
+ self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
+ self.add = shortcut and c1 == c2
+
+ def call(self, inputs):
+ return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
+
+
+class TFConv2d(keras.layers.Layer):
+ # Substitution for PyTorch nn.Conv2D
+ def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
+ super().__init__()
+ assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
+ self.conv = keras.layers.Conv2D(filters=c2,
+ kernel_size=k,
+ strides=s,
+ padding='VALID',
+ use_bias=bias,
+ kernel_initializer=keras.initializers.Constant(
+ w.weight.permute(2, 3, 1, 0).numpy()),
+ bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
+
+ def call(self, inputs):
+ return self.conv(inputs)
+
+
+class TFBottleneckCSP(keras.layers.Layer):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+ # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+ self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
+ self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
+ self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
+ self.bn = TFBN(w.bn)
+ self.act = lambda x: keras.activations.swish(x)
+ self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
+
+ def call(self, inputs):
+ y1 = self.cv3(self.m(self.cv1(inputs)))
+ y2 = self.cv2(inputs)
+ return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
+
+
+class TFC3(keras.layers.Layer):
+ # CSP Bottleneck with 3 convolutions
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+ # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+ self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
+ self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
+ self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
+
+ def call(self, inputs):
+ return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
+
+
+class TFC3x(keras.layers.Layer):
+ # 3 module with cross-convolutions
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+ # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+ self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
+ self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
+ self.m = keras.Sequential([
+ TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
+
+ def call(self, inputs):
+ return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
+
+
+class TFSPP(keras.layers.Layer):
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
+ def __init__(self, c1, c2, k=(5, 9, 13), w=None):
+ super().__init__()
+ c_ = c1 // 2 # hidden channels
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+ self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
+ self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
+
+ def call(self, inputs):
+ x = self.cv1(inputs)
+ return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
+
+
+class TFSPPF(keras.layers.Layer):
+ # Spatial pyramid pooling-Fast layer
+ def __init__(self, c1, c2, k=5, w=None):
+ super().__init__()
+ c_ = c1 // 2 # hidden channels
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+ self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
+ self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
+
+ def call(self, inputs):
+ x = self.cv1(inputs)
+ y1 = self.m(x)
+ y2 = self.m(y1)
+ return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
+
+
+class TFDetect(keras.layers.Layer):
+ # TF YOLO Detect layer
+ def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
+ super().__init__()
+ self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
+ self.nc = nc # number of classes
+ self.no = nc + 5 # number of outputs per anchor
+ self.nl = len(anchors) # number of detection layers
+ self.na = len(anchors[0]) // 2 # number of anchors
+ self.grid = [tf.zeros(1)] * self.nl # init grid
+ self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
+ self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
+ self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
+ self.training = False # set to False after building model
+ self.imgsz = imgsz
+ for i in range(self.nl):
+ ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
+ self.grid[i] = self._make_grid(nx, ny)
+
+ def call(self, inputs):
+ z = [] # inference output
+ x = []
+ for i in range(self.nl):
+ x.append(self.m[i](inputs[i]))
+ # x(bs,20,20,255) to x(bs,3,20,20,85)
+ ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
+ x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
+
+ if not self.training: # inference
+ y = x[i]
+ grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
+ anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
+ xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy
+ wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
+ # Normalize xywh to 0-1 to reduce calibration error
+ xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
+ wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
+ y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1)
+ z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
+
+ return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
+
+ @staticmethod
+ def _make_grid(nx=20, ny=20):
+ # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+ # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+ xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
+ return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
+
+
+class TFSegment(TFDetect):
+ # YOLO Segment head for segmentation models
+ def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
+ super().__init__(nc, anchors, ch, imgsz, w)
+ self.nm = nm # number of masks
+ self.npr = npr # number of protos
+ self.no = 5 + nc + self.nm # number of outputs per anchor
+ self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv
+ self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos
+ self.detect = TFDetect.call
+
+ def call(self, x):
+ p = self.proto(x[0])
+ # p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos
+ p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160)
+ x = self.detect(self, x)
+ return (x, p) if self.training else (x[0], p)
+
+
+class TFProto(keras.layers.Layer):
+
+ def __init__(self, c1, c_=256, c2=32, w=None):
+ super().__init__()
+ self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
+ self.upsample = TFUpsample(None, scale_factor=2, mode='nearest')
+ self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
+ self.cv3 = TFConv(c_, c2, w=w.cv3)
+
+ def call(self, inputs):
+ return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
+
+
+class TFUpsample(keras.layers.Layer):
+ # TF version of torch.nn.Upsample()
+ def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
+ super().__init__()
+ assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
+ self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
+ # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
+ # with default arguments: align_corners=False, half_pixel_centers=False
+ # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
+ # size=(x.shape[1] * 2, x.shape[2] * 2))
+
+ def call(self, inputs):
+ return self.upsample(inputs)
+
+
+class TFConcat(keras.layers.Layer):
+ # TF version of torch.concat()
+ def __init__(self, dimension=1, w=None):
+ super().__init__()
+ assert dimension == 1, "convert only NCHW to NHWC concat"
+ self.d = 3
+
+ def call(self, inputs):
+ return tf.concat(inputs, self.d)
+
+
+def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
+ LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
+
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
+ m_str = m
+ m = eval(m) if isinstance(m, str) else m # eval strings
+ for j, a in enumerate(args):
+ try:
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
+ except NameError:
+ pass
+
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
+ if m in [
+ nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
+ BottleneckCSP, C3, C3x]:
+ c1, c2 = ch[f], args[0]
+ c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
+
+ args = [c1, c2, *args[1:]]
+ if m in [BottleneckCSP, C3, C3x]:
+ args.insert(2, n)
+ n = 1
+ elif m is nn.BatchNorm2d:
+ args = [ch[f]]
+ elif m is Concat:
+ c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
+ elif m in [Detect, Segment]:
+ args.append([ch[x + 1] for x in f])
+ if isinstance(args[1], int): # number of anchors
+ args[1] = [list(range(args[1] * 2))] * len(f)
+ if m is Segment:
+ args[3] = make_divisible(args[3] * gw, 8)
+ args.append(imgsz)
+ else:
+ c2 = ch[f]
+
+ tf_m = eval('TF' + m_str.replace('nn.', ''))
+ m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
+ else tf_m(*args, w=model.model[i]) # module
+
+ torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
+ t = str(m)[8:-2].replace('__main__.', '') # module type
+ np = sum(x.numel() for x in torch_m_.parameters()) # number params
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
+ LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
+ layers.append(m_)
+ ch.append(c2)
+ return keras.Sequential(layers), sorted(save)
+
+
+class TFModel:
+ # TF YOLO model
+ def __init__(self, cfg='yolo.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
+ super().__init__()
+ if isinstance(cfg, dict):
+ self.yaml = cfg # model dict
+ else: # is *.yaml
+ import yaml # for torch hub
+ self.yaml_file = Path(cfg).name
+ with open(cfg) as f:
+ self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
+
+ # Define model
+ if nc and nc != self.yaml['nc']:
+ LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
+ self.yaml['nc'] = nc # override yaml value
+ self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
+
+ def predict(self,
+ inputs,
+ tf_nms=False,
+ agnostic_nms=False,
+ topk_per_class=100,
+ topk_all=100,
+ iou_thres=0.45,
+ conf_thres=0.25):
+ y = [] # outputs
+ x = inputs
+ for m in self.model.layers:
+ if m.f != -1: # if not from previous layer
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
+
+ x = m(x) # run
+ y.append(x if m.i in self.savelist else None) # save output
+
+ # Add TensorFlow NMS
+ if tf_nms:
+ boxes = self._xywh2xyxy(x[0][..., :4])
+ probs = x[0][:, :, 4:5]
+ classes = x[0][:, :, 5:]
+ scores = probs * classes
+ if agnostic_nms:
+ nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
+ else:
+ boxes = tf.expand_dims(boxes, 2)
+ nms = tf.image.combined_non_max_suppression(boxes,
+ scores,
+ topk_per_class,
+ topk_all,
+ iou_thres,
+ conf_thres,
+ clip_boxes=False)
+ return (nms,)
+ return x # output [1,6300,85] = [xywh, conf, class0, class1, ...]
+ # x = x[0] # [x(1,6300,85), ...] to x(6300,85)
+ # xywh = x[..., :4] # x(6300,4) boxes
+ # conf = x[..., 4:5] # x(6300,1) confidences
+ # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
+ # return tf.concat([conf, cls, xywh], 1)
+
+ @staticmethod
+ def _xywh2xyxy(xywh):
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
+ return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
+
+
+class AgnosticNMS(keras.layers.Layer):
+ # TF Agnostic NMS
+ def call(self, input, topk_all, iou_thres, conf_thres):
+ # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
+ return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
+ input,
+ fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
+ name='agnostic_nms')
+
+ @staticmethod
+ def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
+ boxes, classes, scores = x
+ class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
+ scores_inp = tf.reduce_max(scores, -1)
+ selected_inds = tf.image.non_max_suppression(boxes,
+ scores_inp,
+ max_output_size=topk_all,
+ iou_threshold=iou_thres,
+ score_threshold=conf_thres)
+ selected_boxes = tf.gather(boxes, selected_inds)
+ padded_boxes = tf.pad(selected_boxes,
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
+ mode="CONSTANT",
+ constant_values=0.0)
+ selected_scores = tf.gather(scores_inp, selected_inds)
+ padded_scores = tf.pad(selected_scores,
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
+ mode="CONSTANT",
+ constant_values=-1.0)
+ selected_classes = tf.gather(class_inds, selected_inds)
+ padded_classes = tf.pad(selected_classes,
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
+ mode="CONSTANT",
+ constant_values=-1.0)
+ valid_detections = tf.shape(selected_inds)[0]
+ return padded_boxes, padded_scores, padded_classes, valid_detections
+
+
+def activations(act=nn.SiLU):
+ # Returns TF activation from input PyTorch activation
+ if isinstance(act, nn.LeakyReLU):
+ return lambda x: keras.activations.relu(x, alpha=0.1)
+ elif isinstance(act, nn.Hardswish):
+ return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
+ elif isinstance(act, (nn.SiLU, SiLU)):
+ return lambda x: keras.activations.swish(x)
+ else:
+ raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
+
+
+def representative_dataset_gen(dataset, ncalib=100):
+ # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
+ for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
+ im = np.transpose(img, [1, 2, 0])
+ im = np.expand_dims(im, axis=0).astype(np.float32)
+ im /= 255
+ yield [im]
+ if n >= ncalib:
+ break
+
+
+def run(
+ weights=ROOT / 'yolo.pt', # weights path
+ imgsz=(640, 640), # inference size h,w
+ batch_size=1, # batch size
+ dynamic=False, # dynamic batch size
+):
+ # PyTorch model
+ im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
+ model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
+ _ = model(im) # inference
+ model.info()
+
+ # TensorFlow model
+ im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
+ _ = tf_model.predict(im) # inference
+
+ # Keras model
+ im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
+ keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
+ keras_model.summary()
+
+ LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path')
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+ parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
+ opt = parser.parse_args()
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ run(**vars(opt))
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/models/yolo.py b/cv/3d_detection/yolov9/pytorch/models/yolo.py
new file mode 100644
index 0000000000000000000000000000000000000000..332ec11f32d2c099acbd71adf20b5697b802ea9e
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/models/yolo.py
@@ -0,0 +1,818 @@
+import argparse
+import os
+import platform
+import sys
+from copy import deepcopy
+from pathlib import Path
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+if platform.system() != 'Windows':
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import *
+from models.experimental import *
+from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
+from utils.plots import feature_visualization
+from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
+ time_sync)
+from utils.tal.anchor_generator import make_anchors, dist2bbox
+
+try:
+ import thop # for FLOPs computation
+except ImportError:
+ thop = None
+
+
+class Detect(nn.Module):
+ # YOLO Detect head for detection models
+ dynamic = False # force grid reconstruction
+ export = False # export mode
+ shape = None
+ anchors = torch.empty(0) # init
+ strides = torch.empty(0) # init
+
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
+ super().__init__()
+ self.nc = nc # number of classes
+ self.nl = len(ch) # number of detection layers
+ self.reg_max = 16
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
+ self.stride = torch.zeros(self.nl) # strides computed during build
+
+ c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
+ self.cv2 = nn.ModuleList(
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
+ self.cv3 = nn.ModuleList(
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
+ self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
+
+ def forward(self, x):
+ shape = x[0].shape # BCHW
+ for i in range(self.nl):
+ x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
+ if self.training:
+ return x
+ elif self.dynamic or self.shape != shape:
+ self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
+ self.shape = shape
+
+ box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ y = torch.cat((dbox, cls.sigmoid()), 1)
+ return y if self.export else (y, x)
+
+ def bias_init(self):
+ # Initialize Detect() biases, WARNING: requires stride availability
+ m = self # self.model[-1] # Detect() module
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+
+
+class DDetect(nn.Module):
+ # YOLO Detect head for detection models
+ dynamic = False # force grid reconstruction
+ export = False # export mode
+ shape = None
+ anchors = torch.empty(0) # init
+ strides = torch.empty(0) # init
+
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
+ super().__init__()
+ self.nc = nc # number of classes
+ self.nl = len(ch) # number of detection layers
+ self.reg_max = 16
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
+ self.stride = torch.zeros(self.nl) # strides computed during build
+
+ c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
+ self.cv2 = nn.ModuleList(
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch)
+ self.cv3 = nn.ModuleList(
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
+ self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
+
+ def forward(self, x):
+ shape = x[0].shape # BCHW
+ for i in range(self.nl):
+ x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
+ if self.training:
+ return x
+ elif self.dynamic or self.shape != shape:
+ self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
+ self.shape = shape
+
+ box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ y = torch.cat((dbox, cls.sigmoid()), 1)
+ return y if self.export else (y, x)
+
+ def bias_init(self):
+ # Initialize Detect() biases, WARNING: requires stride availability
+ m = self # self.model[-1] # Detect() module
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+
+
+class DualDetect(nn.Module):
+ # YOLO Detect head for detection models
+ dynamic = False # force grid reconstruction
+ export = False # export mode
+ shape = None
+ anchors = torch.empty(0) # init
+ strides = torch.empty(0) # init
+
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
+ super().__init__()
+ self.nc = nc # number of classes
+ self.nl = len(ch) // 2 # number of detection layers
+ self.reg_max = 16
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
+ self.stride = torch.zeros(self.nl) # strides computed during build
+
+ c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
+ c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
+ self.cv2 = nn.ModuleList(
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
+ self.cv3 = nn.ModuleList(
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
+ self.cv4 = nn.ModuleList(
+ nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:])
+ self.cv5 = nn.ModuleList(
+ nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
+ self.dfl = DFL(self.reg_max)
+ self.dfl2 = DFL(self.reg_max)
+
+ def forward(self, x):
+ shape = x[0].shape # BCHW
+ d1 = []
+ d2 = []
+ for i in range(self.nl):
+ d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
+ d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
+ if self.training:
+ return [d1, d2]
+ elif self.dynamic or self.shape != shape:
+ self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
+ self.shape = shape
+
+ box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
+ return y if self.export else (y, [d1, d2])
+
+ def bias_init(self):
+ # Initialize Detect() biases, WARNING: requires stride availability
+ m = self # self.model[-1] # Detect() module
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+ for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+
+
+class DualDDetect(nn.Module):
+ # YOLO Detect head for detection models
+ dynamic = False # force grid reconstruction
+ export = False # export mode
+ shape = None
+ anchors = torch.empty(0) # init
+ strides = torch.empty(0) # init
+
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
+ super().__init__()
+ self.nc = nc # number of classes
+ self.nl = len(ch) // 2 # number of detection layers
+ self.reg_max = 16
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
+ self.stride = torch.zeros(self.nl) # strides computed during build
+
+ c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
+ c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
+ self.cv2 = nn.ModuleList(
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
+ self.cv3 = nn.ModuleList(
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
+ self.cv4 = nn.ModuleList(
+ nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:])
+ self.cv5 = nn.ModuleList(
+ nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
+ self.dfl = DFL(self.reg_max)
+ self.dfl2 = DFL(self.reg_max)
+
+ def forward(self, x):
+ shape = x[0].shape # BCHW
+ d1 = []
+ d2 = []
+ for i in range(self.nl):
+ d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
+ d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
+ if self.training:
+ return [d1, d2]
+ elif self.dynamic or self.shape != shape:
+ self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
+ self.shape = shape
+
+ box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
+ return y if self.export else (y, [d1, d2])
+ #y = torch.cat((dbox2, cls2.sigmoid()), 1)
+ #return y if self.export else (y, d2)
+ #y1 = torch.cat((dbox, cls.sigmoid()), 1)
+ #y2 = torch.cat((dbox2, cls2.sigmoid()), 1)
+ #return [y1, y2] if self.export else [(y1, d1), (y2, d2)]
+ #return [y1, y2] if self.export else [(y1, y2), (d1, d2)]
+
+ def bias_init(self):
+ # Initialize Detect() biases, WARNING: requires stride availability
+ m = self # self.model[-1] # Detect() module
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+ for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+
+
+class TripleDetect(nn.Module):
+ # YOLO Detect head for detection models
+ dynamic = False # force grid reconstruction
+ export = False # export mode
+ shape = None
+ anchors = torch.empty(0) # init
+ strides = torch.empty(0) # init
+
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
+ super().__init__()
+ self.nc = nc # number of classes
+ self.nl = len(ch) // 3 # number of detection layers
+ self.reg_max = 16
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
+ self.stride = torch.zeros(self.nl) # strides computed during build
+
+ c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
+ c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
+ c6, c7 = max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
+ self.cv2 = nn.ModuleList(
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
+ self.cv3 = nn.ModuleList(
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
+ self.cv4 = nn.ModuleList(
+ nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:self.nl*2])
+ self.cv5 = nn.ModuleList(
+ nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
+ self.cv6 = nn.ModuleList(
+ nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, 4 * self.reg_max, 1)) for x in ch[self.nl*2:self.nl*3])
+ self.cv7 = nn.ModuleList(
+ nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
+ self.dfl = DFL(self.reg_max)
+ self.dfl2 = DFL(self.reg_max)
+ self.dfl3 = DFL(self.reg_max)
+
+ def forward(self, x):
+ shape = x[0].shape # BCHW
+ d1 = []
+ d2 = []
+ d3 = []
+ for i in range(self.nl):
+ d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
+ d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
+ d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
+ if self.training:
+ return [d1, d2, d3]
+ elif self.dynamic or self.shape != shape:
+ self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
+ self.shape = shape
+
+ box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
+ return y if self.export else (y, [d1, d2, d3])
+
+ def bias_init(self):
+ # Initialize Detect() biases, WARNING: requires stride availability
+ m = self # self.model[-1] # Detect() module
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+ for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+ for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+
+
+class TripleDDetect(nn.Module):
+ # YOLO Detect head for detection models
+ dynamic = False # force grid reconstruction
+ export = False # export mode
+ shape = None
+ anchors = torch.empty(0) # init
+ strides = torch.empty(0) # init
+
+ def __init__(self, nc=80, ch=(), inplace=True): # detection layer
+ super().__init__()
+ self.nc = nc # number of classes
+ self.nl = len(ch) // 3 # number of detection layers
+ self.reg_max = 16
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
+ self.stride = torch.zeros(self.nl) # strides computed during build
+
+ c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), \
+ max((ch[0], min((self.nc * 2, 128)))) # channels
+ c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), \
+ max((ch[self.nl], min((self.nc * 2, 128)))) # channels
+ c6, c7 = make_divisible(max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), 4), \
+ max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
+ self.cv2 = nn.ModuleList(
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4),
+ nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
+ self.cv3 = nn.ModuleList(
+ nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
+ self.cv4 = nn.ModuleList(
+ nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4),
+ nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:self.nl*2])
+ self.cv5 = nn.ModuleList(
+ nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
+ self.cv6 = nn.ModuleList(
+ nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3, g=4),
+ nn.Conv2d(c6, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl*2:self.nl*3])
+ self.cv7 = nn.ModuleList(
+ nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
+ self.dfl = DFL(self.reg_max)
+ self.dfl2 = DFL(self.reg_max)
+ self.dfl3 = DFL(self.reg_max)
+
+ def forward(self, x):
+ shape = x[0].shape # BCHW
+ d1 = []
+ d2 = []
+ d3 = []
+ for i in range(self.nl):
+ d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
+ d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
+ d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
+ if self.training:
+ return [d1, d2, d3]
+ elif self.dynamic or self.shape != shape:
+ self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
+ self.shape = shape
+
+ box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
+ dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
+ #y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
+ #return y if self.export else (y, [d1, d2, d3])
+ y = torch.cat((dbox3, cls3.sigmoid()), 1)
+ return y if self.export else (y, d3)
+
+ def bias_init(self):
+ # Initialize Detect() biases, WARNING: requires stride availability
+ m = self # self.model[-1] # Detect() module
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+ for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+ for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
+ a[-1].bias.data[:] = 1.0 # box
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
+
+
+class Segment(Detect):
+ # YOLO Segment head for segmentation models
+ def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
+ super().__init__(nc, ch, inplace)
+ self.nm = nm # number of masks
+ self.npr = npr # number of protos
+ self.proto = Proto(ch[0], self.npr, self.nm) # protos
+ self.detect = Detect.forward
+
+ c4 = max(ch[0] // 4, self.nm)
+ self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
+
+ def forward(self, x):
+ p = self.proto(x[0])
+ bs = p.shape[0]
+
+ mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
+ x = self.detect(self, x)
+ if self.training:
+ return x, mc, p
+ return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
+
+
+class DSegment(DDetect):
+ # YOLO Segment head for segmentation models
+ def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
+ super().__init__(nc, ch[:-1], inplace)
+ self.nl = len(ch)-1
+ self.nm = nm # number of masks
+ self.npr = npr # number of protos
+ self.proto = Conv(ch[-1], self.nm, 1) # protos
+ self.detect = DDetect.forward
+
+ c4 = max(ch[0] // 4, self.nm)
+ self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch[:-1])
+
+ def forward(self, x):
+ p = self.proto(x[-1])
+ bs = p.shape[0]
+
+ mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
+ x = self.detect(self, x[:-1])
+ if self.training:
+ return x, mc, p
+ return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
+
+
+class DualDSegment(DualDDetect):
+ # YOLO Segment head for segmentation models
+ def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
+ super().__init__(nc, ch[:-2], inplace)
+ self.nl = (len(ch)-2) // 2
+ self.nm = nm # number of masks
+ self.npr = npr # number of protos
+ self.proto = Conv(ch[-2], self.nm, 1) # protos
+ self.proto2 = Conv(ch[-1], self.nm, 1) # protos
+ self.detect = DualDDetect.forward
+
+ c6 = max(ch[0] // 4, self.nm)
+ c7 = max(ch[self.nl] // 4, self.nm)
+ self.cv6 = nn.ModuleList(nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, self.nm, 1)) for x in ch[:self.nl])
+ self.cv7 = nn.ModuleList(nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nm, 1)) for x in ch[self.nl:self.nl*2])
+
+ def forward(self, x):
+ p = [self.proto(x[-2]), self.proto2(x[-1])]
+ bs = p[0].shape[0]
+
+ mc = [torch.cat([self.cv6[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2),
+ torch.cat([self.cv7[i](x[self.nl+i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)] # mask coefficients
+ d = self.detect(self, x[:-2])
+ if self.training:
+ return d, mc, p
+ return (torch.cat([d[0][1], mc[1]], 1), (d[1][1], mc[1], p[1]))
+
+
+class Panoptic(Detect):
+ # YOLO Panoptic head for panoptic segmentation models
+ def __init__(self, nc=80, sem_nc=93, nm=32, npr=256, ch=(), inplace=True):
+ super().__init__(nc, ch, inplace)
+ self.sem_nc = sem_nc
+ self.nm = nm # number of masks
+ self.npr = npr # number of protos
+ self.proto = Proto(ch[0], self.npr, self.nm) # protos
+ self.uconv = UConv(ch[0], ch[0]//4, self.sem_nc+self.nc)
+ self.detect = Detect.forward
+
+ c4 = max(ch[0] // 4, self.nm)
+ self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
+
+
+ def forward(self, x):
+ p = self.proto(x[0])
+ s = self.uconv(x[0])
+ bs = p.shape[0]
+
+ mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
+ x = self.detect(self, x)
+ if self.training:
+ return x, mc, p, s
+ return (torch.cat([x, mc], 1), p, s) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p, s))
+
+
+class BaseModel(nn.Module):
+ # YOLO base model
+ def forward(self, x, profile=False, visualize=False):
+ return self._forward_once(x, profile, visualize) # single-scale inference, train
+
+ def _forward_once(self, x, profile=False, visualize=False):
+ y, dt = [], [] # outputs
+ for m in self.model:
+ if m.f != -1: # if not from previous layer
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
+ if profile:
+ self._profile_one_layer(m, x, dt)
+ x = m(x) # run
+ y.append(x if m.i in self.save else None) # save output
+ if visualize:
+ feature_visualization(x, m.type, m.i, save_dir=visualize)
+ return x
+
+ def _profile_one_layer(self, m, x, dt):
+ c = m == self.model[-1] # is final layer, copy input as inplace fix
+ o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
+ t = time_sync()
+ for _ in range(10):
+ m(x.copy() if c else x)
+ dt.append((time_sync() - t) * 100)
+ if m == self.model[0]:
+ LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
+ LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
+ if c:
+ LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
+
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
+ LOGGER.info('Fusing layers... ')
+ for m in self.model.modules():
+ if isinstance(m, (RepConvN)) and hasattr(m, 'fuse_convs'):
+ m.fuse_convs()
+ m.forward = m.forward_fuse # update forward
+ if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
+ delattr(m, 'bn') # remove batchnorm
+ m.forward = m.forward_fuse # update forward
+ self.info()
+ return self
+
+ def info(self, verbose=False, img_size=640): # print model information
+ model_info(self, verbose, img_size)
+
+ def _apply(self, fn):
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
+ self = super()._apply(fn)
+ m = self.model[-1] # Detect()
+ if isinstance(m, (Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment, DSegment, DualDSegment, Panoptic)):
+ m.stride = fn(m.stride)
+ m.anchors = fn(m.anchors)
+ m.strides = fn(m.strides)
+ # m.grid = list(map(fn, m.grid))
+ return self
+
+
+class DetectionModel(BaseModel):
+ # YOLO detection model
+ def __init__(self, cfg='yolo.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
+ super().__init__()
+ if isinstance(cfg, dict):
+ self.yaml = cfg # model dict
+ else: # is *.yaml
+ import yaml # for torch hub
+ self.yaml_file = Path(cfg).name
+ with open(cfg, encoding='ascii', errors='ignore') as f:
+ self.yaml = yaml.safe_load(f) # model dict
+
+ # Define model
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
+ if nc and nc != self.yaml['nc']:
+ LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
+ self.yaml['nc'] = nc # override yaml value
+ if anchors:
+ LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
+ self.yaml['anchors'] = round(anchors) # override yaml value
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
+ self.names = [str(i) for i in range(self.yaml['nc'])] # default names
+ self.inplace = self.yaml.get('inplace', True)
+
+ # Build strides, anchors
+ m = self.model[-1] # Detect()
+ if isinstance(m, (Detect, DDetect, Segment, DSegment, Panoptic)):
+ s = 256 # 2x min stride
+ m.inplace = self.inplace
+ forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, DSegment, Panoptic)) else self.forward(x)
+ m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
+ # check_anchor_order(m)
+ # m.anchors /= m.stride.view(-1, 1, 1)
+ self.stride = m.stride
+ m.bias_init() # only run once
+ if isinstance(m, (DualDetect, TripleDetect, DualDDetect, TripleDDetect, DualDSegment)):
+ s = 256 # 2x min stride
+ m.inplace = self.inplace
+ forward = lambda x: self.forward(x)[0][0] if isinstance(m, (DualDSegment)) else self.forward(x)[0]
+ m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
+ # check_anchor_order(m)
+ # m.anchors /= m.stride.view(-1, 1, 1)
+ self.stride = m.stride
+ m.bias_init() # only run once
+
+ # Init weights, biases
+ initialize_weights(self)
+ self.info()
+ LOGGER.info('')
+
+ def forward(self, x, augment=False, profile=False, visualize=False):
+ if augment:
+ return self._forward_augment(x) # augmented inference, None
+ return self._forward_once(x, profile, visualize) # single-scale inference, train
+
+ def _forward_augment(self, x):
+ img_size = x.shape[-2:] # height, width
+ s = [1, 0.83, 0.67] # scales
+ f = [None, 3, None] # flips (2-ud, 3-lr)
+ y = [] # outputs
+ for si, fi in zip(s, f):
+ xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
+ yi = self._forward_once(xi)[0] # forward
+ # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
+ yi = self._descale_pred(yi, fi, si, img_size)
+ y.append(yi)
+ y = self._clip_augmented(y) # clip augmented tails
+ return torch.cat(y, 1), None # augmented inference, train
+
+ def _descale_pred(self, p, flips, scale, img_size):
+ # de-scale predictions following augmented inference (inverse operation)
+ if self.inplace:
+ p[..., :4] /= scale # de-scale
+ if flips == 2:
+ p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
+ elif flips == 3:
+ p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
+ else:
+ x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
+ if flips == 2:
+ y = img_size[0] - y # de-flip ud
+ elif flips == 3:
+ x = img_size[1] - x # de-flip lr
+ p = torch.cat((x, y, wh, p[..., 4:]), -1)
+ return p
+
+ def _clip_augmented(self, y):
+ # Clip YOLO augmented inference tails
+ nl = self.model[-1].nl # number of detection layers (P3-P5)
+ g = sum(4 ** x for x in range(nl)) # grid points
+ e = 1 # exclude layer count
+ i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
+ y[0] = y[0][:, :-i] # large
+ i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
+ y[-1] = y[-1][:, i:] # small
+ return y
+
+
+Model = DetectionModel # retain YOLO 'Model' class for backwards compatibility
+
+
+class SegmentationModel(DetectionModel):
+ # YOLO segmentation model
+ def __init__(self, cfg='yolo-seg.yaml', ch=3, nc=None, anchors=None):
+ super().__init__(cfg, ch, nc, anchors)
+
+
+class ClassificationModel(BaseModel):
+ # YOLO classification model
+ def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
+ super().__init__()
+ self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
+
+ def _from_detection_model(self, model, nc=1000, cutoff=10):
+ # Create a YOLO classification model from a YOLO detection model
+ if isinstance(model, DetectMultiBackend):
+ model = model.model # unwrap DetectMultiBackend
+ model.model = model.model[:cutoff] # backbone
+ m = model.model[-1] # last layer
+ ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
+ c = Classify(ch, nc) # Classify()
+ c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
+ model.model[-1] = c # replace
+ self.model = model.model
+ self.stride = model.stride
+ self.save = []
+ self.nc = nc
+
+ def _from_yaml(self, cfg):
+ # Create a YOLO classification model from a *.yaml file
+ self.model = None
+
+
+def parse_model(d, ch): # model_dict, input_channels(3)
+ # Parse a YOLO model.yaml dictionary
+ LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
+ anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
+ if act:
+ Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
+ RepConvN.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
+ LOGGER.info(f"{colorstr('activation:')} {act}") # print
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
+
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
+ m = eval(m) if isinstance(m, str) else m # eval strings
+ for j, a in enumerate(args):
+ with contextlib.suppress(NameError):
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
+
+ n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
+ if m in {
+ Conv, AConv, ConvTranspose,
+ Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
+ RepNCSPELAN4, SPPELAN}:
+ c1, c2 = ch[f], args[0]
+ if c2 != no: # if not output
+ c2 = make_divisible(c2 * gw, 8)
+
+ args = [c1, c2, *args[1:]]
+ if m in {BottleneckCSP, SPPCSPC}:
+ args.insert(2, n) # number of repeats
+ n = 1
+ elif m is nn.BatchNorm2d:
+ args = [ch[f]]
+ elif m is Concat:
+ c2 = sum(ch[x] for x in f)
+ elif m is Shortcut:
+ c2 = ch[f[0]]
+ elif m is ReOrg:
+ c2 = ch[f] * 4
+ elif m is CBLinear:
+ c2 = args[0]
+ c1 = ch[f]
+ args = [c1, c2, *args[1:]]
+ elif m is CBFuse:
+ c2 = ch[f[-1]]
+ # TODO: channel, gw, gd
+ elif m in {Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment, DSegment, DualDSegment, Panoptic}:
+ args.append([ch[x] for x in f])
+ # if isinstance(args[1], int): # number of anchors
+ # args[1] = [list(range(args[1] * 2))] * len(f)
+ if m in {Segment, DSegment, DualDSegment, Panoptic}:
+ args[2] = make_divisible(args[2] * gw, 8)
+ elif m is Contract:
+ c2 = ch[f] * args[0] ** 2
+ elif m is Expand:
+ c2 = ch[f] // args[0] ** 2
+ else:
+ c2 = ch[f]
+
+ m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
+ t = str(m)[8:-2].replace('__main__.', '') # module type
+ np = sum(x.numel() for x in m_.parameters()) # number params
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
+ LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
+ layers.append(m_)
+ if i == 0:
+ ch = []
+ ch.append(c2)
+ return nn.Sequential(*layers), sorted(save)
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml')
+ parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--profile', action='store_true', help='profile model speed')
+ parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
+ parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
+ opt = parser.parse_args()
+ opt.cfg = check_yaml(opt.cfg) # check YAML
+ print_args(vars(opt))
+ device = select_device(opt.device)
+
+ # Create model
+ im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
+ model = Model(opt.cfg).to(device)
+ model.eval()
+
+ # Options
+ if opt.line_profile: # profile layer by layer
+ model(im, profile=True)
+
+ elif opt.profile: # profile forward-backward
+ results = profile(input=im, ops=[model], n=3)
+
+ elif opt.test: # test all models
+ for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
+ try:
+ _ = Model(cfg)
+ except Exception as e:
+ print(f'Error in {cfg}: {e}')
+
+ else: # report fused model summary
+ model.fuse()
diff --git a/cv/3d_detection/yolov9/pytorch/panoptic/predict.py b/cv/3d_detection/yolov9/pytorch/panoptic/predict.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d7d2d800efd3e53ecee8dc87d108ef5faf0e010
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/panoptic/predict.py
@@ -0,0 +1,246 @@
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+ increment_path, non_max_suppression, print_args, scale_boxes, scale_segments,
+ strip_optimizer, xyxy2xywh)
+from utils.plots import Annotator, colors, save_one_box
+from utils.segment.general import masks2segments, process_mask
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+ weights=ROOT / 'yolo-pan.pt', # model.pt path(s)
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
+ imgsz=(640, 640), # inference size (height, width)
+ conf_thres=0.25, # confidence threshold
+ iou_thres=0.45, # NMS IOU threshold
+ max_det=1000, # maximum detections per image
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ view_img=False, # show results
+ save_txt=False, # save results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_crop=False, # save cropped prediction boxes
+ nosave=False, # do not save images/videos
+ classes=None, # filter by class: --class 0, or --class 0 2 3
+ agnostic_nms=False, # class-agnostic NMS
+ augment=False, # augmented inference
+ visualize=False, # visualize features
+ update=False, # update all models
+ project=ROOT / 'runs/predict-seg', # save results to project/name
+ name='exp', # save results to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ line_thickness=3, # bounding box thickness (pixels)
+ hide_labels=False, # hide labels
+ hide_conf=False, # hide confidences
+ half=False, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ vid_stride=1, # video frame-rate stride
+ retina_masks=False,
+):
+ source = str(source)
+ save_img = not nosave and not source.endswith('.txt') # save inference images
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+ webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
+ screenshot = source.lower().startswith('screen')
+ if is_url and is_file:
+ source = check_file(source) # download
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ device = select_device(device)
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, names, pt = model.stride, model.names, model.pt
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+
+ # Dataloader
+ bs = 1 # batch_size
+ if webcam:
+ view_img = check_imshow(warn=True)
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+ bs = len(dataset)
+ elif screenshot:
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+ else:
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+ vid_path, vid_writer = [None] * bs, [None] * bs
+
+ # Run inference
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
+ for path, im, im0s, vid_cap, s in dataset:
+ with dt[0]:
+ im = torch.from_numpy(im).to(model.device)
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ if len(im.shape) == 3:
+ im = im[None] # expand for batch dim
+
+ # Inference
+ with dt[1]:
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+ pred, proto = model(im, augment=augment, visualize=visualize)[:2]
+
+ # NMS
+ with dt[2]:
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32)
+
+ # Second-stage classifier (optional)
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+ # Process predictions
+ for i, det in enumerate(pred): # per image
+ seen += 1
+ if webcam: # batch_size >= 1
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
+ s += f'{i}: '
+ else:
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+ p = Path(p) # to Path
+ save_path = str(save_dir / p.name) # im.jpg
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
+ s += '%gx%g ' % im.shape[2:] # print string
+ imc = im0.copy() if save_crop else im0 # for save_crop
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+ if len(det):
+ masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size
+
+ # Segments
+ if save_txt:
+ segments = reversed(masks2segments(masks))
+ segments = [scale_segments(im.shape[2:], x, im0.shape, normalize=True) for x in segments]
+
+ # Print results
+ for c in det[:, 5].unique():
+ n = (det[:, 5] == c).sum() # detections per class
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
+
+ # Mask plotting
+ annotator.masks(masks,
+ colors=[colors(x, True) for x in det[:, 5]],
+ im_gpu=None if retina_masks else im[i])
+
+ # Write results
+ for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
+ if save_txt: # Write to file
+ segj = segments[j].reshape(-1) # (n,2) to (n*2)
+ line = (cls, *segj, conf) if save_conf else (cls, *segj) # label format
+ with open(f'{txt_path}.txt', 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+ if save_img or save_crop or view_img: # Add bbox to image
+ c = int(cls) # integer class
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
+ annotator.box_label(xyxy, label, color=colors(c, True))
+ # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
+ if save_crop:
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
+
+ # Stream results
+ im0 = annotator.result()
+ if view_img:
+ if platform.system() == 'Linux' and p not in windows:
+ windows.append(p)
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+ cv2.imshow(str(p), im0)
+ if cv2.waitKey(1) == ord('q'): # 1 millisecond
+ exit()
+
+ # Save results (image with detections)
+ if save_img:
+ if dataset.mode == 'image':
+ cv2.imwrite(save_path, im0)
+ else: # 'video' or 'stream'
+ if vid_path[i] != save_path: # new video
+ vid_path[i] = save_path
+ if isinstance(vid_writer[i], cv2.VideoWriter):
+ vid_writer[i].release() # release previous video writer
+ if vid_cap: # video
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ else: # stream
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+ vid_writer[i].write(im0)
+
+ # Print time (inference-only)
+ LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
+
+ # Print results
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+ if save_txt or save_img:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ if update:
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo-pan.pt', help='model path(s)')
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--view-img', action='store_true', help='show results')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
+ parser.add_argument('--update', action='store_true', help='update all models')
+ parser.add_argument('--project', default=ROOT / 'runs/predict-seg', help='save results to project/name')
+ parser.add_argument('--name', default='exp', help='save results to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+ parser.add_argument('--retina-masks', action='store_true', help='whether to plot masks in native resolution')
+ opt = parser.parse_args()
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ check_requirements(exclude=('tensorboard', 'thop'))
+ run(**vars(opt))
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/panoptic/train.py b/cv/3d_detection/yolov9/pytorch/panoptic/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..e20244c9949ac801f6040a5b5a19037bf98592bc
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/panoptic/train.py
@@ -0,0 +1,662 @@
+import argparse
+import math
+import os
+import random
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+import panoptic.val as validate # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import SegmentationModel
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.downloads import attempt_download, is_url
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
+ check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
+ get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
+ labels_to_image_weights, one_cycle, one_flat_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
+from utils.loggers import GenericLogger
+from utils.plots import plot_evolve, plot_labels
+from utils.panoptic.dataloaders import create_dataloader
+from utils.panoptic.loss_tal import ComputeLoss
+from utils.panoptic.metrics import KEYS, fitness
+from utils.panoptic.plots import plot_images_and_masks, plot_results_with_masks
+from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
+ smart_resume, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = None#check_git_info()
+
+
+def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
+ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, mask_ratio = \
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
+ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.mask_ratio
+ # callbacks.run('on_pretrain_routine_start')
+
+ # Directories
+ w = save_dir / 'weights' # weights dir
+ (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
+ last, best = w / 'last.pt', w / 'best.pt'
+
+ # Hyperparameters
+ if isinstance(hyp, str):
+ with open(hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+ opt.hyp = hyp.copy() # for saving hyps to checkpoints
+
+ # Save run settings
+ if not evolve:
+ yaml_save(save_dir / 'hyp.yaml', hyp)
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+ # Loggers
+ data_dict = None
+ if RANK in {-1, 0}:
+ logger = GenericLogger(opt=opt, console_logger=LOGGER)
+
+ # Config
+ plots = not evolve and not opt.noplots # create plots
+ overlap = not opt.no_overlap
+ cuda = device.type != 'cpu'
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
+ with torch_distributed_zero_first(LOCAL_RANK):
+ data_dict = data_dict or check_dataset(data) # check if None
+ train_path, val_path = data_dict['train'], data_dict['val']
+ nc = 1 if single_cls else int(data_dict['nc']) # number of classes
+ names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
+ #is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
+ is_coco = isinstance(val_path, str) and val_path.endswith('val2017.txt') # COCO dataset
+
+ # Model
+ check_suffix(weights, '.pt') # check weights
+ pretrained = weights.endswith('.pt')
+ if pretrained:
+ with torch_distributed_zero_first(LOCAL_RANK):
+ weights = attempt_download(weights) # download if not found locally
+ ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
+ model = SegmentationModel(cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)
+ exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
+ csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
+ model.load_state_dict(csd, strict=False) # load
+ LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
+ else:
+ model = SegmentationModel(cfg, ch=3, nc=nc).to(device) # create
+ amp = check_amp(model) # check AMP
+
+ # Freeze
+ freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
+ for k, v in model.named_parameters():
+ #v.requires_grad = True # train all layers
+ # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
+ if any(x in k for x in freeze):
+ LOGGER.info(f'freezing {k}')
+ v.requires_grad = False
+
+ # Image size
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
+ imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
+
+ # Batch size
+ if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
+ batch_size = check_train_batch_size(model, imgsz, amp)
+ logger.update_params({"batch_size": batch_size})
+ # loggers.on_params_update({"batch_size": batch_size})
+
+ # Optimizer
+ nbs = 64 # nominal batch size
+ accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
+ hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
+ optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
+
+ # Scheduler
+ if opt.cos_lr:
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
+ elif opt.flat_cos_lr:
+ lf = one_flat_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
+ elif opt.fixed_lr:
+ lf = lambda x: 1.0
+ elif opt.poly_lr:
+ power = 0.9
+ lf = lambda x: ((1 - (x / epochs)) ** power) * (1.0 - hyp['lrf']) + hyp['lrf']
+ else:
+ lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+ # EMA
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+ # Resume
+ best_fitness, start_epoch = 0.0, 0
+ if pretrained:
+ if resume:
+ best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+ del ckpt, csd
+
+ # DP mode
+ if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+ LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.')
+ model = torch.nn.DataParallel(model)
+
+ # SyncBatchNorm
+ if opt.sync_bn and cuda and RANK != -1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+ LOGGER.info('Using SyncBatchNorm()')
+
+ # Trainloader
+ train_loader, dataset = create_dataloader(
+ train_path,
+ imgsz,
+ batch_size // WORLD_SIZE,
+ gs,
+ single_cls,
+ hyp=hyp,
+ augment=True,
+ cache=None if opt.cache == 'val' else opt.cache,
+ rect=opt.rect,
+ rank=LOCAL_RANK,
+ workers=workers,
+ image_weights=opt.image_weights,
+ close_mosaic=opt.close_mosaic != 0,
+ quad=opt.quad,
+ prefix=colorstr('train: '),
+ shuffle=True,
+ mask_downsample_ratio=mask_ratio,
+ overlap_mask=overlap,
+ )
+ labels = np.concatenate(dataset.labels, 0)
+ mlc = int(labels[:, 0].max()) # max label class
+ assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
+
+ # Process 0
+ if RANK in {-1, 0}:
+ val_loader = create_dataloader(val_path,
+ imgsz,
+ batch_size // WORLD_SIZE * 2,
+ gs,
+ single_cls,
+ hyp=hyp,
+ cache=None if noval else opt.cache,
+ rect=True,
+ rank=-1,
+ workers=workers * 2,
+ pad=0.5,
+ mask_downsample_ratio=mask_ratio,
+ overlap_mask=overlap,
+ prefix=colorstr('val: '))[0]
+
+ if not resume:
+ #if not opt.noautoanchor:
+ # check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
+ model.half().float() # pre-reduce anchor precision
+
+ if plots:
+ plot_labels(labels, names, save_dir)
+ # callbacks.run('on_pretrain_routine_end', labels, names)
+
+ # DDP mode
+ if cuda and RANK != -1:
+ model = smart_DDP(model)
+
+ # Model attributes
+ nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
+ #hyp['box'] *= 3 / nl # scale to layers
+ #hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
+ #hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
+ hyp['label_smoothing'] = opt.label_smoothing
+ model.nc = nc # attach number of classes to model
+ model.hyp = hyp # attach hyperparameters to model
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
+ model.names = names
+
+ # Start training
+ t0 = time.time()
+ nb = len(train_loader) # number of batches
+ nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
+ last_opt_step = -1
+ maps = np.zeros(nc) # mAP per class
+ results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ scheduler.last_epoch = start_epoch - 1 # do not move
+ scaler = torch.cuda.amp.GradScaler(enabled=amp)
+ stopper, stop = EarlyStopping(patience=opt.patience), False
+ compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
+ # callbacks.run('on_train_start')
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
+ f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+ f"Logging results to {colorstr('bold', save_dir)}\n"
+ f'Starting training for {epochs} epochs...')
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
+ # callbacks.run('on_train_epoch_start')
+ model.train()
+
+ # Update image weights (optional, single-GPU only)
+ if opt.image_weights:
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
+ if epoch == (epochs - opt.close_mosaic):
+ LOGGER.info("Closing dataloader mosaic")
+ dataset.mosaic = False
+
+ # Update mosaic border (optional)
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
+
+ mloss = torch.zeros(6, device=device) # mean losses
+ if RANK != -1:
+ train_loader.sampler.set_epoch(epoch)
+ pbar = enumerate(train_loader)
+ LOGGER.info(('\n' + '%11s' * 10) %
+ ('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss', 'fcl_loss', 'dic_loss', 'Instances', 'Size'))
+ if RANK in {-1, 0}:
+ pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
+ optimizer.zero_grad()
+ for i, (imgs, targets, paths, _, masks, semasks) in pbar: # batch ------------------------------------------------------
+ # callbacks.run('on_train_batch_start')
+ #print(imgs.shape)
+ #print(semasks.shape)
+ #print(masks.shape)
+ ni = i + nb * epoch # number integrated batches (since train start)
+ imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
+
+ # Warmup
+ if ni <= nw:
+ xi = [0, nw] # x interp
+ # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+ # Multi-scale
+ if opt.multi_scale:
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
+ sf = sz / max(imgs.shape[2:]) # scale factor
+ if sf != 1:
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
+ imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+ # Forward
+ with torch.cuda.amp.autocast(amp):
+ pred = model(imgs) # forward
+ loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float(),
+ semasks=semasks.to(device).float())
+ if RANK != -1:
+ loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
+ if opt.quad:
+ loss *= 4.
+
+ # Backward
+ torch.use_deterministic_algorithms(False)
+ scaler.scale(loss).backward()
+
+ # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+ if ni - last_opt_step >= accumulate:
+ scaler.unscale_(optimizer) # unscale gradients
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
+ scaler.step(optimizer) # optimizer.step
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+ last_opt_step = ni
+
+ # Log
+ if RANK in {-1, 0}:
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
+ mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
+ pbar.set_description(('%11s' * 2 + '%11.4g' * 8) %
+ (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
+ # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
+ # if callbacks.stop_training:
+ # return
+
+ # Mosaic plots
+ if plots:
+ if ni < 10:
+ plot_images_and_masks(imgs, targets, masks, semasks, paths, save_dir / f"train_batch{ni}.jpg")
+ if ni == 10:
+ files = sorted(save_dir.glob('train*.jpg'))
+ logger.log_images(files, "Mosaics", epoch)
+ # end batch ------------------------------------------------------------------------------------------------
+
+ # Scheduler
+ lr = [x['lr'] for x in optimizer.param_groups] # for loggers
+ scheduler.step()
+
+ if RANK in {-1, 0}:
+ # mAP
+ # callbacks.run('on_train_epoch_end', epoch=epoch)
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
+ final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+ if not noval or final_epoch: # Calculate mAP
+ if (opt.save_period > 0 and epoch % opt.save_period == 0) or (epoch > (epochs - 2 * opt.close_mosaic)):
+ results, maps, _ = validate.run(data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ half=amp,
+ model=ema.ema,
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ plots=False,
+ callbacks=callbacks,
+ compute_loss=compute_loss,
+ mask_downsample_ratio=mask_ratio,
+ overlap=overlap)
+
+ # Update best mAP
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ stop = stopper(epoch=epoch, fitness=fi) # early stop check
+ if fi > best_fitness:
+ best_fitness = fi
+ log_vals = list(mloss) + list(results) + lr
+ # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+ # Log val metrics and media
+ metrics_dict = dict(zip(KEYS, log_vals))
+ logger.log_metrics(metrics_dict, epoch)
+
+ # Save model
+ if (not nosave) or (final_epoch and not evolve): # if save
+ ckpt = {
+ 'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'model': deepcopy(de_parallel(model)).half(),
+ 'ema': deepcopy(ema.ema).half(),
+ 'updates': ema.updates,
+ 'optimizer': optimizer.state_dict(),
+ 'opt': vars(opt),
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
+ 'date': datetime.now().isoformat()}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fi:
+ torch.save(ckpt, best)
+ if opt.save_period > 0 and epoch % opt.save_period == 0:
+ torch.save(ckpt, w / f'epoch{epoch}.pt')
+ logger.log_model(w / f'epoch{epoch}.pt')
+ del ckpt
+ # callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+ # EarlyStopping
+ if RANK != -1: # if DDP training
+ broadcast_list = [stop if RANK == 0 else None]
+ dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
+ if RANK != 0:
+ stop = broadcast_list[0]
+ if stop:
+ break # must break all DDP ranks
+
+ # end epoch ----------------------------------------------------------------------------------------------------
+ # end training -----------------------------------------------------------------------------------------------------
+ if RANK in {-1, 0}:
+ LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
+ for f in last, best:
+ if f.exists():
+ strip_optimizer(f) # strip optimizers
+ if f is best:
+ LOGGER.info(f'\nValidating {f}...')
+ results, _, _ = validate.run(
+ data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ model=attempt_load(f, device).half(),
+ iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ save_json=is_coco,
+ verbose=True,
+ plots=plots,
+ callbacks=callbacks,
+ compute_loss=compute_loss,
+ mask_downsample_ratio=mask_ratio,
+ overlap=overlap) # val best model with plots
+ if is_coco:
+ # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+ metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
+ logger.log_metrics(metrics_dict, epoch)
+
+ # callbacks.run('on_train_end', last, best, epoch, results)
+ # on train end callback using genericLogger
+ logger.log_metrics(dict(zip(KEYS[6:22], results)), epochs)
+ if not opt.evolve:
+ logger.log_model(best, epoch)
+ if plots:
+ plot_results_with_masks(file=save_dir / 'results.csv') # save results.png
+ files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
+ files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
+ logger.log_images(files, "Results", epoch + 1)
+ logger.log_images(sorted(save_dir.glob('val*.jpg')), "Validation", epoch + 1)
+ torch.cuda.empty_cache()
+ return results
+
+
+def parse_opt(known=False):
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolo-pan.pt', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
+ parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+ parser.add_argument('--noplots', action='store_true', help='save no plot files')
+ parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+ parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--project', default=ROOT / 'runs/train-pan', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
+ parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+ parser.add_argument('--flat-cos-lr', action='store_true', help='cosine LR scheduler')
+ parser.add_argument('--fixed-lr', action='store_true', help='fixed LR scheduler')
+ parser.add_argument('--poly-lr', action='store_true', help='fixed LR scheduler')
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+ parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+ parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+ parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
+
+ # Instance Segmentation Args
+ parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
+ parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')
+
+ return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+ # Checks
+ if RANK in {-1, 0}:
+ print_args(vars(opt))
+ #check_git_status()
+ #check_requirements()
+
+ # Resume
+ if opt.resume and not opt.evolve: # resume from specified or most recent last.pt
+ last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+ opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
+ opt_data = opt.data # original dataset
+ if opt_yaml.is_file():
+ with open(opt_yaml, errors='ignore') as f:
+ d = yaml.safe_load(f)
+ else:
+ d = torch.load(last, map_location='cpu')['opt']
+ opt = argparse.Namespace(**d) # replace
+ opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
+ if is_url(opt_data):
+ opt.data = check_file(opt_data) # avoid HUB resume auth timeout
+ else:
+ opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
+ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+ if opt.evolve:
+ if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
+ opt.project = str(ROOT / 'runs/evolve')
+ opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
+ if opt.name == 'cfg':
+ opt.name = Path(opt.cfg).stem # use model.yaml as name
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+ # DDP mode
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if LOCAL_RANK != -1:
+ msg = 'is not compatible with YOLO Multi-GPU DDP training'
+ assert not opt.image_weights, f'--image-weights {msg}'
+ assert not opt.evolve, f'--evolve {msg}'
+ assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+ torch.cuda.set_device(LOCAL_RANK)
+ device = torch.device('cuda', LOCAL_RANK)
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+ # Train
+ if not opt.evolve:
+ train(opt.hyp, opt, device, callbacks)
+
+ # Evolve hyperparameters (optional)
+ else:
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+ meta = {
+ 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
+ 'box': (1, 0.02, 0.2), # box loss gain
+ 'cls': (1, 0.2, 4.0), # cls loss gain
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
+ 'mixup': (1, 0.0, 1.0), # image mixup (probability)
+ 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
+
+ with open(opt.hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
+ hyp['anchors'] = 3
+ if opt.noautoanchor:
+ del hyp['anchors'], meta['anchors']
+ opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
+ evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
+ if opt.bucket:
+ os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
+
+ for _ in range(opt.evolve): # generations to evolve
+ if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
+ # Select parent(s)
+ parent = 'single' # parent selection method: 'single' or 'weighted'
+ x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
+ n = min(5, len(x)) # number of previous results to consider
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
+ w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
+ if parent == 'single' or len(x) == 1:
+ # x = x[random.randint(0, n - 1)] # random selection
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
+ elif parent == 'weighted':
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
+
+ # Mutate
+ mp, s = 0.8, 0.2 # mutation probability, sigma
+ npr = np.random
+ npr.seed(int(time.time()))
+ g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
+ ng = len(meta)
+ v = np.ones(ng)
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
+
+ # Constrain to limits
+ for k, v in meta.items():
+ hyp[k] = max(hyp[k], v[1]) # lower limit
+ hyp[k] = min(hyp[k], v[2]) # upper limit
+ hyp[k] = round(hyp[k], 5) # significant digits
+
+ # Train mutation
+ results = train(hyp.copy(), opt, device, callbacks)
+ callbacks = Callbacks()
+ # Write mutation results
+ print_mutation(KEYS, results, hyp.copy(), save_dir, opt.bucket)
+
+ # Plot results
+ plot_evolve(evolve_csv)
+ LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
+ f"Results saved to {colorstr('bold', save_dir)}\n"
+ f'Usage example: $ python train.py --hyp {evolve_yaml}')
+
+
+def run(**kwargs):
+ # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolo.pt')
+ opt = parse_opt(True)
+ for k, v in kwargs.items():
+ setattr(opt, k, v)
+ main(opt)
+ return opt
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/panoptic/val.py b/cv/3d_detection/yolov9/pytorch/panoptic/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..569b7efe0c50e58739d3c85ece94079e28796c10
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/panoptic/val.py
@@ -0,0 +1,597 @@
+import argparse
+import json
+import os
+import sys
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+import torch.nn.functional as F
+import torchvision.transforms as transforms
+from pycocotools import mask as maskUtils
+from models.common import DetectMultiBackend
+from models.yolo import SegmentationModel
+from utils.callbacks import Callbacks
+from utils.coco_utils import getCocoIds, getMappingId, getMappingIndex
+from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
+ check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
+ non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, box_iou
+from utils.plots import output_to_target, plot_val_study
+from utils.panoptic.dataloaders import create_dataloader
+from utils.panoptic.general import mask_iou, process_mask, process_mask_upsample, scale_image
+from utils.panoptic.metrics import Metrics, ap_per_class_box_and_mask, Semantic_Metrics
+from utils.panoptic.plots import plot_images_and_masks
+from utils.torch_utils import de_parallel, select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+ # Save one txt result
+ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
+ for *xyxy, conf, cls in predn.tolist():
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(file, 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map, pred_masks):
+ # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+ from pycocotools.mask import encode
+
+ def single_encode(x):
+ rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
+ rle["counts"] = rle["counts"].decode("utf-8")
+ return rle
+
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+ box = xyxy2xywh(predn[:, :4]) # xywh
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
+ pred_masks = np.transpose(pred_masks, (2, 0, 1))
+ with ThreadPool(NUM_THREADS) as pool:
+ rles = pool.map(single_encode, pred_masks)
+ for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
+ jdict.append({
+ 'image_id': image_id,
+ 'category_id': class_map[int(p[5])],
+ 'bbox': [round(x, 3) for x in b],
+ 'score': round(p[4], 5),
+ 'segmentation': rles[i]})
+
+
+def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
+ """
+ Return correct prediction matrix
+ Arguments:
+ detections (array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ correct (array[N, 10]), for 10 IoU levels
+ """
+ if masks:
+ if overlap:
+ nl = len(labels)
+ index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
+ gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
+ gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
+ if gt_masks.shape[1:] != pred_masks.shape[1:]:
+ gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
+ gt_masks = gt_masks.gt_(0.5)
+ iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
+ else: # boxes
+ iou = box_iou(labels[:, 1:], detections[:, :4])
+
+ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+ correct_class = labels[:, 0:1] == detections[:, 5]
+ for i in range(len(iouv)):
+ x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ # matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ correct[matches[:, 1].astype(int), i] = True
+ return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+ data,
+ weights=None, # model.pt path(s)
+ batch_size=32, # batch size
+ imgsz=640, # inference size (pixels)
+ conf_thres=0.001, # confidence threshold
+ iou_thres=0.6, # NMS IoU threshold
+ max_det=300, # maximum detections per image
+ task='val', # train, val, test, speed or study
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ workers=8, # max dataloader workers (per RANK in DDP mode)
+ single_cls=False, # treat as single-class dataset
+ augment=False, # augmented inference
+ verbose=False, # verbose output
+ save_txt=False, # save results to *.txt
+ save_hybrid=False, # save label+prediction hybrid results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_json=False, # save a COCO-JSON results file
+ project=ROOT / 'runs/val-pan', # save to project/name
+ name='exp', # save to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ half=True, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ model=None,
+ dataloader=None,
+ save_dir=Path(''),
+ plots=True,
+ overlap=False,
+ mask_downsample_ratio=1,
+ compute_loss=None,
+ callbacks=Callbacks(),
+):
+ if save_json:
+ check_requirements(['pycocotools'])
+ process = process_mask_upsample # more accurate
+ else:
+ process = process_mask # faster
+
+ # Initialize/load model and set device
+ training = model is not None
+ if training: # called by train.py
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
+ half &= device.type != 'cpu' # half precision only supported on CUDA
+ model.half() if half else model.float()
+ nm = de_parallel(model).model[-1].nm # number of masks
+ else: # called directly
+ device = select_device(device, batch_size=batch_size)
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+ half = model.fp16 # FP16 supported on limited backends with CUDA
+ nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks
+ if engine:
+ batch_size = model.batch_size
+ else:
+ device = model.device
+ if not (pt or jit):
+ batch_size = 1 # export.py models default to batch-size 1
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+ # Data
+ data = check_dataset(data) # check
+
+ # Configure
+ model.eval()
+ cuda = device.type != 'cpu'
+ #is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
+ is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset
+ nc = 1 if single_cls else int(data['nc']) # number of classes
+ stuff_names = data.get('stuff_names', []) # names of stuff classes
+ stuff_nc = len(stuff_names) # number of stuff classes
+ iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+
+ # Semantic Segmentation
+ img_id_list = []
+
+ # Dataloader
+ if not training:
+ if pt and not single_cls: # check --weights are trained on --data
+ ncm = model.model.nc
+ assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+ f'classes). Pass correct combination of --weights and --data that are trained together.'
+ model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
+ pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
+ task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
+ dataloader = create_dataloader(data[task],
+ imgsz,
+ batch_size,
+ stride,
+ single_cls,
+ pad=pad,
+ rect=rect,
+ workers=workers,
+ prefix=colorstr(f'{task}: '),
+ overlap_mask=overlap,
+ mask_downsample_ratio=mask_downsample_ratio)[0]
+
+ seen = 0
+ confusion_matrix = ConfusionMatrix(nc=nc)
+ names = model.names if hasattr(model, 'names') else model.module.names # get class names
+ if isinstance(names, (list, tuple)): # old format
+ names = dict(enumerate(names))
+ class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+ s = ('%22s' + '%11s' * 12) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P", "R",
+ "mAP50", "mAP50-95)", 'S(MIoU', 'FWIoU)')
+ dt = Profile(), Profile(), Profile()
+ metrics = Metrics()
+ semantic_metrics = Semantic_Metrics(nc = (nc + stuff_nc), device = device)
+ loss = torch.zeros(6, device=device)
+ jdict, stats = [], []
+ semantic_jdict = []
+ # callbacks.run('on_val_start')
+ pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
+ for batch_i, (im, targets, paths, shapes, masks, semasks) in enumerate(pbar):
+ # callbacks.run('on_val_batch_start')
+ with dt[0]:
+ if cuda:
+ im = im.to(device, non_blocking=True)
+ targets = targets.to(device)
+ masks = masks.to(device)
+ semasks = semasks.to(device)
+ masks = masks.float()
+ semasks = semasks.float()
+ im = im.half() if half else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ nb, _, height, width = im.shape # batch size, channels, height, width
+
+ # Inference
+ with dt[1]:
+ preds, train_out = model(im)# if compute_loss else (*model(im, augment=augment)[:2], None)
+ #train_out, preds, protos = p if len(p) == 3 else p[1]
+ #preds = p
+ #train_out = p[1][0] if len(p[1]) == 3 else p[0]
+ # protos = train_out[-1]
+ #print(preds.shape)
+ #print(train_out[0].shape)
+ #print(train_out[1].shape)
+ #print(train_out[2].shape)
+ _, pred_masks, protos, psemasks = train_out
+
+ # Loss
+ if compute_loss:
+ loss += compute_loss(train_out, targets, masks, semasks = semasks)[1] # box, obj, cls
+
+ # NMS
+ targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
+ with dt[2]:
+ preds = non_max_suppression(preds,
+ conf_thres,
+ iou_thres,
+ labels=lb,
+ multi_label=True,
+ agnostic=single_cls,
+ max_det=max_det,
+ nm=nm)
+
+ # Metrics
+ plot_masks = [] # masks for plotting
+ plot_semasks = [] # masks for plotting
+
+ if training:
+ semantic_metrics.update(psemasks, semasks)
+ else:
+ _, _, smh, smw = semasks.shape
+ semantic_metrics.update(torch.nn.functional.interpolate(psemasks, size = (smh, smw), mode = 'bilinear', align_corners = False), semasks)
+
+ if plots and batch_i < 3:
+ plot_semasks.append(psemasks.clone().detach().cpu())
+
+ for si, (pred, proto, psemask) in enumerate(zip(preds, protos, psemasks)):
+ labels = targets[targets[:, 0] == si, 1:]
+ nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
+ path, shape = Path(paths[si]), shapes[si][0]
+ image_id = path.stem
+ img_id_list.append(image_id)
+ correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
+ correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
+ seen += 1
+
+ if npr == 0:
+ if nl:
+ stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
+ if plots:
+ confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+ else:
+ # Masks
+ midx = [si] if overlap else targets[:, 0] == si
+ gt_masks = masks[midx]
+ pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
+
+ # Predictions
+ if single_cls:
+ pred[:, 5] = 0
+ predn = pred.clone()
+ scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
+
+ # Evaluate
+ if nl:
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
+ scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
+ correct_bboxes = process_batch(predn, labelsn, iouv)
+ correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
+ if plots:
+ confusion_matrix.process_batch(predn, labelsn)
+ stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls)
+
+ pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
+ if plots and batch_i < 3:
+ plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
+
+ # Save/log
+ if save_txt:
+ save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+ if save_json:
+ pred_masks = scale_image(im[si].shape[1:],
+ pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
+ save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
+ # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+ # Semantic Segmentation
+ h0, w0 = shape
+
+ # resize
+ _, mask_h, mask_w = psemask.shape
+ h_ratio = mask_h / h0
+ w_ratio = mask_w / w0
+
+ if h_ratio == w_ratio:
+ psemask = torch.nn.functional.interpolate(psemask[None, :], size = (h0, w0), mode = 'bilinear', align_corners = False)
+ else:
+ transform = transforms.CenterCrop((h0, w0))
+
+ if (1 != h_ratio) and (1 != w_ratio):
+ h_new = h0 if (h_ratio < w_ratio) else int(mask_h / w_ratio)
+ w_new = w0 if (h_ratio > w_ratio) else int(mask_w / h_ratio)
+ psemask = torch.nn.functional.interpolate(psemask[None, :], size = (h_new, w_new), mode = 'bilinear', align_corners = False)
+
+ psemask = transform(psemask)
+
+ psemask = torch.squeeze(psemask)
+
+ nc, h, w = psemask.shape
+
+ semantic_mask = torch.flatten(psemask, start_dim = 1).permute(1, 0) # class x h x w -> (h x w) x class
+
+ max_idx = semantic_mask.argmax(1)
+ output_masks = torch.zeros(semantic_mask.shape).scatter(1, max_idx.cpu().unsqueeze(1), 1.0) # one hot: (h x w) x class
+ output_masks = torch.reshape(output_masks.permute(1, 0), (nc, h, w)) # (h x w) x class -> class x h x w
+ psemask = output_masks.to(device = device)
+
+ # TODO: check is_coco
+ instances_ids = getCocoIds(name = 'instances')
+ stuff_mask = torch.zeros((h, w), device = device)
+ check_semantic_mask = False
+ for idx, pred_semantic_mask in enumerate(psemask):
+ category_id = int(getMappingId(idx))
+ if 183 == category_id:
+ # set all non-stuff pixels to other
+ pred_semantic_mask = (torch.logical_xor(stuff_mask, torch.ones((h, w), device = device))).int()
+
+ # ignore the classes which all zeros / unlabeled class
+ if (0 >= torch.max(pred_semantic_mask)) or (0 >= category_id):
+ continue
+
+ if category_id not in instances_ids:
+ # record all stuff mask
+ stuff_mask = torch.logical_or(stuff_mask, pred_semantic_mask)
+
+ if (category_id not in instances_ids):
+ rle = maskUtils.encode(np.asfortranarray(pred_semantic_mask.cpu(), dtype = np.uint8))
+ rle['counts'] = rle['counts'].decode('utf-8')
+
+ temp_d = {
+ 'image_id': int(image_id) if image_id.isnumeric() else image_id,
+ 'category_id': category_id,
+ 'segmentation': rle,
+ 'score': 1
+ }
+
+ semantic_jdict.append(temp_d)
+ check_semantic_mask = True
+
+ if not check_semantic_mask:
+ # append a other mask for evaluation if the image without any mask
+ other_mask = (torch.ones((h, w), device = device)).int()
+
+ rle = maskUtils.encode(np.asfortranarray(other_mask.cpu(), dtype = np.uint8))
+ rle['counts'] = rle['counts'].decode('utf-8')
+
+ temp_d = {
+ 'image_id': int(image_id) if image_id.isnumeric() else image_id,
+ 'category_id': 183,
+ 'segmentation': rle,
+ 'score': 1
+ }
+
+ semantic_jdict.append(temp_d)
+
+ # Plot images
+ if plots and batch_i < 3:
+ if len(plot_masks):
+ plot_masks = torch.cat(plot_masks, dim=0)
+ if len(plot_semasks):
+ plot_semasks = torch.cat(plot_semasks, dim = 0)
+ plot_images_and_masks(im, targets, masks, semasks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
+ plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, plot_semasks, paths,
+ save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
+
+ # callbacks.run('on_val_batch_end')
+
+ # Compute metrics
+ stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+ results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
+ metrics.update(results)
+ nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class
+
+ # Print results
+ pf = '%22s' + '%11i' * 2 + '%11.3g' * 10 # print format
+ LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results(), *semantic_metrics.results()))
+ if nt.sum() == 0:
+ LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+ # Print results per class
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+ for i, c in enumerate(metrics.ap_class_index):
+ LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i), *semantic_metrics.results()))
+
+ # Print speeds
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ if not training:
+ shape = (batch_size, 3, imgsz, imgsz)
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+ # Plots
+ if plots:
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+ # callbacks.run('on_val_end')
+
+ mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
+ miou_sem, fwiou_sem = semantic_metrics.results()
+ semantic_metrics.reset()
+
+ # Save JSON
+ if save_json and len(jdict):
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
+ anno_path = Path(data.get('path', '../coco'))
+ anno_json = str(anno_path / 'annotations/instances_val2017.json') # annotations json
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
+ LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+ with open(pred_json, 'w') as f:
+ json.dump(jdict, f)
+
+ semantic_anno_json = str(anno_path / 'annotations/stuff_val2017.json') # annotations json
+ semantic_pred_json = str(save_dir / f"{w}_predictions_stuff.json") # predictions json
+ LOGGER.info(f'\nsaving {semantic_pred_json}...')
+ with open(semantic_pred_json, 'w') as f:
+ json.dump(semantic_jdict, f)
+
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+ from pycocotools.coco import COCO
+ from pycocotools.cocoeval import COCOeval
+
+ anno = COCO(anno_json) # init annotations api
+ pred = anno.loadRes(pred_json) # init predictions api
+ results = []
+ for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'):
+ if is_coco:
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate
+ eval.evaluate()
+ eval.accumulate()
+ eval.summarize()
+ results.extend(eval.stats[:2]) # update results (mAP@0.5:0.95, mAP@0.5)
+ map_bbox, map50_bbox, map_mask, map50_mask = results
+
+ # Semantic Segmentation
+ from utils.stuff_seg.cocostuffeval import COCOStuffeval
+
+ LOGGER.info(f'\nEvaluating pycocotools stuff... ')
+ imgIds = [int(x) for x in img_id_list]
+
+ stuffGt = COCO(semantic_anno_json) # initialize COCO ground truth api
+ stuffDt = stuffGt.loadRes(semantic_pred_json) # initialize COCO pred api
+
+ cocoStuffEval = COCOStuffeval(stuffGt, stuffDt)
+ cocoStuffEval.params.imgIds = imgIds # image IDs to evaluate
+ cocoStuffEval.evaluate()
+ stats, statsClass = cocoStuffEval.summarize()
+ stuffIds = getCocoIds(name = 'stuff')
+ title = ' {:<5} | {:^6} | {:^6} '.format('class', 'iou', 'macc') if (0 >= len(stuff_names)) else \
+ ' {:<5} | {:<20} | {:^6} | {:^6} '.format('class', 'class name', 'iou', 'macc')
+ print(title)
+ for idx, (iou, macc) in enumerate(zip(statsClass['ious'], statsClass['maccs'])):
+ id = (idx + 1)
+ if id not in stuffIds:
+ continue
+ content = ' {:<5} | {:0.4f} | {:0.4f} '.format(str(id), iou, macc) if (0 >= len(stuff_names)) else \
+ ' {:<5} | {:<20} | {:0.4f} | {:0.4f} '.format(str(id), str(stuff_names[getMappingIndex(id, name = 'stuff')]), iou, macc)
+ print(content)
+
+ except Exception as e:
+ LOGGER.info(f'pycocotools unable to run: {e}')
+
+ # Return results
+ model.float() # for training
+ if not training:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask, miou_sem, fwiou_sem
+ return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-pan.yaml', help='dataset.yaml path')
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo-pan.pt', help='model path(s)')
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+ parser.add_argument('--project', default=ROOT / 'runs/val-pan', help='save results to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ opt = parser.parse_args()
+ opt.data = check_yaml(opt.data) # check YAML
+ # opt.save_json |= opt.data.endswith('coco.yaml')
+ opt.save_txt |= opt.save_hybrid
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ #check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+
+ if opt.task in ('train', 'val', 'test'): # run normally
+ if opt.conf_thres > 0.001: # https://github.com/
+ LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+ if opt.save_hybrid:
+ LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone')
+ run(**vars(opt))
+
+ else:
+ weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+ opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
+ if opt.task == 'speed': # speed benchmarks
+ # python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
+ opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+ for opt.weights in weights:
+ run(**vars(opt), plots=False)
+
+ elif opt.task == 'study': # speed vs mAP benchmarks
+ # python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
+ for opt.weights in weights:
+ f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
+ x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
+ for opt.imgsz in x: # img-size
+ LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+ r, _, t = run(**vars(opt), plots=False)
+ y.append(r + t) # results and times
+ np.savetxt(f, y, fmt='%10.4g') # save
+ os.system('zip -r study.zip study_*.txt')
+ plot_val_study(x=x) # plot
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/requirements.txt b/cv/3d_detection/yolov9/pytorch/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..bbdd44953d8de12ccbac22562639d69d5f082791
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/requirements.txt
@@ -0,0 +1,47 @@
+# requirements
+# Usage: pip install -r requirements.txt
+
+# Base ------------------------------------------------------------------------
+gitpython
+ipython
+matplotlib>=3.2.2
+numpy>=1.18.5
+opencv-python>=4.1.1
+Pillow==9.5.0
+psutil
+PyYAML>=5.3.1
+requests>=2.23.0
+scipy>=1.4.1
+thop>=0.1.1
+torch>=1.7.0
+torchvision>=0.8.1
+tqdm>=4.64.0
+# protobuf<=3.20.1
+
+# Logging ---------------------------------------------------------------------
+tensorboard>=2.4.1
+# clearml>=1.2.0
+# comet
+
+# Plotting --------------------------------------------------------------------
+pandas>=1.1.4
+seaborn>=0.11.0
+
+# Export ----------------------------------------------------------------------
+# coremltools>=6.0
+# onnx>=1.9.0
+# onnx-simplifier>=0.4.1
+# nvidia-pyindex
+# nvidia-tensorrt
+# scikit-learn<=1.1.2
+# tensorflow>=2.4.1
+# tensorflowjs>=3.9.0
+# openvino-dev
+
+# Deploy ----------------------------------------------------------------------
+# tritonclient[all]~=2.24.0
+
+# Extras ----------------------------------------------------------------------
+# mss
+albumentations>=1.0.3
+pycocotools>=2.0
diff --git a/cv/3d_detection/yolov9/pytorch/scripts/get_coco.sh b/cv/3d_detection/yolov9/pytorch/scripts/get_coco.sh
new file mode 100644
index 0000000000000000000000000000000000000000..524f8dd9e2cae992a4047476520a7e4e1402e6de
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/scripts/get_coco.sh
@@ -0,0 +1,22 @@
+#!/bin/bash
+# COCO 2017 dataset http://cocodataset.org
+# Download command: bash ./scripts/get_coco.sh
+
+# Download/unzip labels
+d='./' # unzip directory
+url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
+f='coco2017labels-segments.zip' # or 'coco2017labels.zip', 68 MB
+echo 'Downloading' $url$f ' ...'
+curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
+
+# Download/unzip images
+d='./coco/images' # unzip directory
+url=http://images.cocodataset.org/zips/
+f1='train2017.zip' # 19G, 118k images
+f2='val2017.zip' # 1G, 5k images
+f3='test2017.zip' # 7G, 41k images (optional)
+for f in $f1 $f2 $f3; do
+ echo 'Downloading' $url$f '...'
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
+done
+wait # finish background tasks
diff --git a/cv/3d_detection/yolov9/pytorch/segment/predict.py b/cv/3d_detection/yolov9/pytorch/segment/predict.py
new file mode 100644
index 0000000000000000000000000000000000000000..aeab78781748d70452eaa6292ab3e601639ce32d
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/segment/predict.py
@@ -0,0 +1,246 @@
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+ increment_path, non_max_suppression, print_args, scale_boxes, scale_segments,
+ strip_optimizer, xyxy2xywh)
+from utils.plots import Annotator, colors, save_one_box
+from utils.segment.general import masks2segments, process_mask
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+ weights=ROOT / 'yolo-seg.pt', # model.pt path(s)
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
+ data=ROOT / 'data/coco.yaml', # dataset.yaml path
+ imgsz=(640, 640), # inference size (height, width)
+ conf_thres=0.25, # confidence threshold
+ iou_thres=0.45, # NMS IOU threshold
+ max_det=1000, # maximum detections per image
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ view_img=False, # show results
+ save_txt=False, # save results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_crop=False, # save cropped prediction boxes
+ nosave=False, # do not save images/videos
+ classes=None, # filter by class: --class 0, or --class 0 2 3
+ agnostic_nms=False, # class-agnostic NMS
+ augment=False, # augmented inference
+ visualize=False, # visualize features
+ update=False, # update all models
+ project=ROOT / 'runs/predict-seg', # save results to project/name
+ name='exp', # save results to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ line_thickness=3, # bounding box thickness (pixels)
+ hide_labels=False, # hide labels
+ hide_conf=False, # hide confidences
+ half=False, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ vid_stride=1, # video frame-rate stride
+ retina_masks=False,
+):
+ source = str(source)
+ save_img = not nosave and not source.endswith('.txt') # save inference images
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+ webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
+ screenshot = source.lower().startswith('screen')
+ if is_url and is_file:
+ source = check_file(source) # download
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ device = select_device(device)
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, names, pt = model.stride, model.names, model.pt
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+
+ # Dataloader
+ bs = 1 # batch_size
+ if webcam:
+ view_img = check_imshow(warn=True)
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+ bs = len(dataset)
+ elif screenshot:
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+ else:
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+ vid_path, vid_writer = [None] * bs, [None] * bs
+
+ # Run inference
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
+ for path, im, im0s, vid_cap, s in dataset:
+ with dt[0]:
+ im = torch.from_numpy(im).to(model.device)
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ if len(im.shape) == 3:
+ im = im[None] # expand for batch dim
+
+ # Inference
+ with dt[1]:
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+ pred, proto = model(im, augment=augment, visualize=visualize)[:2]
+
+ # NMS
+ with dt[2]:
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32)
+
+ # Second-stage classifier (optional)
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+ # Process predictions
+ for i, det in enumerate(pred): # per image
+ seen += 1
+ if webcam: # batch_size >= 1
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
+ s += f'{i}: '
+ else:
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+ p = Path(p) # to Path
+ save_path = str(save_dir / p.name) # im.jpg
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
+ s += '%gx%g ' % im.shape[2:] # print string
+ imc = im0.copy() if save_crop else im0 # for save_crop
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+ if len(det):
+ masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size
+
+ # Segments
+ if save_txt:
+ segments = reversed(masks2segments(masks))
+ segments = [scale_segments(im.shape[2:], x, im0.shape, normalize=True) for x in segments]
+
+ # Print results
+ for c in det[:, 5].unique():
+ n = (det[:, 5] == c).sum() # detections per class
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
+
+ # Mask plotting
+ annotator.masks(masks,
+ colors=[colors(x, True) for x in det[:, 5]],
+ im_gpu=None if retina_masks else im[i])
+
+ # Write results
+ for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
+ if save_txt: # Write to file
+ segj = segments[j].reshape(-1) # (n,2) to (n*2)
+ line = (cls, *segj, conf) if save_conf else (cls, *segj) # label format
+ with open(f'{txt_path}.txt', 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+ if save_img or save_crop or view_img: # Add bbox to image
+ c = int(cls) # integer class
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
+ annotator.box_label(xyxy, label, color=colors(c, True))
+ # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
+ if save_crop:
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
+
+ # Stream results
+ im0 = annotator.result()
+ if view_img:
+ if platform.system() == 'Linux' and p not in windows:
+ windows.append(p)
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+ cv2.imshow(str(p), im0)
+ if cv2.waitKey(1) == ord('q'): # 1 millisecond
+ exit()
+
+ # Save results (image with detections)
+ if save_img:
+ if dataset.mode == 'image':
+ cv2.imwrite(save_path, im0)
+ else: # 'video' or 'stream'
+ if vid_path[i] != save_path: # new video
+ vid_path[i] = save_path
+ if isinstance(vid_writer[i], cv2.VideoWriter):
+ vid_writer[i].release() # release previous video writer
+ if vid_cap: # video
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ else: # stream
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+ vid_writer[i].write(im0)
+
+ # Print time (inference-only)
+ LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
+
+ # Print results
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+ if save_txt or save_img:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ if update:
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo-seg.pt', help='model path(s)')
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--view-img', action='store_true', help='show results')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
+ parser.add_argument('--update', action='store_true', help='update all models')
+ parser.add_argument('--project', default=ROOT / 'runs/predict-seg', help='save results to project/name')
+ parser.add_argument('--name', default='exp', help='save results to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+ parser.add_argument('--retina-masks', action='store_true', help='whether to plot masks in native resolution')
+ opt = parser.parse_args()
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ check_requirements(exclude=('tensorboard', 'thop'))
+ run(**vars(opt))
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/segment/train.py b/cv/3d_detection/yolov9/pytorch/segment/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..311f21d9d3a73ad9bf5d8644a17987994cbae989
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/segment/train.py
@@ -0,0 +1,646 @@
+import argparse
+import math
+import os
+import random
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+import segment.val as validate # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import SegmentationModel
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.downloads import attempt_download, is_url
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
+ check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
+ get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
+ labels_to_image_weights, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
+from utils.loggers import GenericLogger
+from utils.plots import plot_evolve, plot_labels
+from utils.segment.dataloaders import create_dataloader
+from utils.segment.loss_tal import ComputeLoss
+from utils.segment.metrics import KEYS, fitness
+from utils.segment.plots import plot_images_and_masks, plot_results_with_masks
+from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
+ smart_resume, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = None#check_git_info()
+
+
+def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
+ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, mask_ratio = \
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
+ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.mask_ratio
+ # callbacks.run('on_pretrain_routine_start')
+
+ # Directories
+ w = save_dir / 'weights' # weights dir
+ (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
+ last, best = w / 'last.pt', w / 'best.pt'
+
+ # Hyperparameters
+ if isinstance(hyp, str):
+ with open(hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+ opt.hyp = hyp.copy() # for saving hyps to checkpoints
+
+ # Save run settings
+ if not evolve:
+ yaml_save(save_dir / 'hyp.yaml', hyp)
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+ # Loggers
+ data_dict = None
+ if RANK in {-1, 0}:
+ logger = GenericLogger(opt=opt, console_logger=LOGGER)
+
+ # Config
+ plots = not evolve and not opt.noplots # create plots
+ overlap = not opt.no_overlap
+ cuda = device.type != 'cpu'
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
+ with torch_distributed_zero_first(LOCAL_RANK):
+ data_dict = data_dict or check_dataset(data) # check if None
+ train_path, val_path = data_dict['train'], data_dict['val']
+ nc = 1 if single_cls else int(data_dict['nc']) # number of classes
+ names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
+ #is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
+ is_coco = isinstance(val_path, str) and val_path.endswith('val2017.txt') # COCO dataset
+
+ # Model
+ check_suffix(weights, '.pt') # check weights
+ pretrained = weights.endswith('.pt')
+ if pretrained:
+ with torch_distributed_zero_first(LOCAL_RANK):
+ weights = attempt_download(weights) # download if not found locally
+ ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
+ model = SegmentationModel(cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)
+ exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
+ csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
+ model.load_state_dict(csd, strict=False) # load
+ LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
+ else:
+ model = SegmentationModel(cfg, ch=3, nc=nc).to(device) # create
+ amp = check_amp(model) # check AMP
+
+ # Freeze
+ freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
+ for k, v in model.named_parameters():
+ #v.requires_grad = True # train all layers
+ # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
+ if any(x in k for x in freeze):
+ LOGGER.info(f'freezing {k}')
+ v.requires_grad = False
+
+ # Image size
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
+ imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
+
+ # Batch size
+ if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
+ batch_size = check_train_batch_size(model, imgsz, amp)
+ logger.update_params({"batch_size": batch_size})
+ # loggers.on_params_update({"batch_size": batch_size})
+
+ # Optimizer
+ nbs = 64 # nominal batch size
+ accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
+ hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
+ optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
+
+ # Scheduler
+ if opt.cos_lr:
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
+ else:
+ lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+ # EMA
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+ # Resume
+ best_fitness, start_epoch = 0.0, 0
+ if pretrained:
+ if resume:
+ best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+ del ckpt, csd
+
+ # DP mode
+ if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+ LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.')
+ model = torch.nn.DataParallel(model)
+
+ # SyncBatchNorm
+ if opt.sync_bn and cuda and RANK != -1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+ LOGGER.info('Using SyncBatchNorm()')
+
+ # Trainloader
+ train_loader, dataset = create_dataloader(
+ train_path,
+ imgsz,
+ batch_size // WORLD_SIZE,
+ gs,
+ single_cls,
+ hyp=hyp,
+ augment=True,
+ cache=None if opt.cache == 'val' else opt.cache,
+ rect=opt.rect,
+ rank=LOCAL_RANK,
+ workers=workers,
+ image_weights=opt.image_weights,
+ close_mosaic=opt.close_mosaic != 0,
+ quad=opt.quad,
+ prefix=colorstr('train: '),
+ shuffle=True,
+ mask_downsample_ratio=mask_ratio,
+ overlap_mask=overlap,
+ )
+ labels = np.concatenate(dataset.labels, 0)
+ mlc = int(labels[:, 0].max()) # max label class
+ assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
+
+ # Process 0
+ if RANK in {-1, 0}:
+ val_loader = create_dataloader(val_path,
+ imgsz,
+ batch_size // WORLD_SIZE * 2,
+ gs,
+ single_cls,
+ hyp=hyp,
+ cache=None if noval else opt.cache,
+ rect=True,
+ rank=-1,
+ workers=workers * 2,
+ pad=0.5,
+ mask_downsample_ratio=mask_ratio,
+ overlap_mask=overlap,
+ prefix=colorstr('val: '))[0]
+
+ if not resume:
+ #if not opt.noautoanchor:
+ # check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
+ model.half().float() # pre-reduce anchor precision
+
+ if plots:
+ plot_labels(labels, names, save_dir)
+ # callbacks.run('on_pretrain_routine_end', labels, names)
+
+ # DDP mode
+ if cuda and RANK != -1:
+ model = smart_DDP(model)
+
+ # Model attributes
+ nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
+ #hyp['box'] *= 3 / nl # scale to layers
+ #hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
+ #hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
+ hyp['label_smoothing'] = opt.label_smoothing
+ model.nc = nc # attach number of classes to model
+ model.hyp = hyp # attach hyperparameters to model
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
+ model.names = names
+
+ # Start training
+ t0 = time.time()
+ nb = len(train_loader) # number of batches
+ nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
+ last_opt_step = -1
+ maps = np.zeros(nc) # mAP per class
+ results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ scheduler.last_epoch = start_epoch - 1 # do not move
+ scaler = torch.cuda.amp.GradScaler(enabled=amp)
+ stopper, stop = EarlyStopping(patience=opt.patience), False
+ compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
+ # callbacks.run('on_train_start')
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
+ f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+ f"Logging results to {colorstr('bold', save_dir)}\n"
+ f'Starting training for {epochs} epochs...')
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
+ # callbacks.run('on_train_epoch_start')
+ model.train()
+
+ # Update image weights (optional, single-GPU only)
+ if opt.image_weights:
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
+ if epoch == (epochs - opt.close_mosaic):
+ LOGGER.info("Closing dataloader mosaic")
+ dataset.mosaic = False
+
+ # Update mosaic border (optional)
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
+
+ mloss = torch.zeros(4, device=device) # mean losses
+ if RANK != -1:
+ train_loader.sampler.set_epoch(epoch)
+ pbar = enumerate(train_loader)
+ LOGGER.info(('\n' + '%11s' * 8) %
+ ('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss', 'Instances', 'Size'))
+ if RANK in {-1, 0}:
+ pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
+ optimizer.zero_grad()
+ for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------
+ # callbacks.run('on_train_batch_start')
+ ni = i + nb * epoch # number integrated batches (since train start)
+ imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
+
+ # Warmup
+ if ni <= nw:
+ xi = [0, nw] # x interp
+ # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+ # Multi-scale
+ if opt.multi_scale:
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
+ sf = sz / max(imgs.shape[2:]) # scale factor
+ if sf != 1:
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
+ imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+ # Forward
+ with torch.cuda.amp.autocast(amp):
+ pred = model(imgs) # forward
+ loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
+ if RANK != -1:
+ loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
+ if opt.quad:
+ loss *= 4.
+
+ # Backward
+ scaler.scale(loss).backward()
+
+ # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+ if ni - last_opt_step >= accumulate:
+ scaler.unscale_(optimizer) # unscale gradients
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
+ scaler.step(optimizer) # optimizer.step
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+ last_opt_step = ni
+
+ # Log
+ if RANK in {-1, 0}:
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
+ mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
+ pbar.set_description(('%11s' * 2 + '%11.4g' * 6) %
+ (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
+ # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
+ # if callbacks.stop_training:
+ # return
+
+ # Mosaic plots
+ if plots:
+ if ni < 3:
+ plot_images_and_masks(imgs, targets, masks, paths, save_dir / f"train_batch{ni}.jpg")
+ if ni == 10:
+ files = sorted(save_dir.glob('train*.jpg'))
+ logger.log_images(files, "Mosaics", epoch)
+ # end batch ------------------------------------------------------------------------------------------------
+
+ # Scheduler
+ lr = [x['lr'] for x in optimizer.param_groups] # for loggers
+ scheduler.step()
+
+ if RANK in {-1, 0}:
+ # mAP
+ # callbacks.run('on_train_epoch_end', epoch=epoch)
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
+ final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+ if not noval or final_epoch: # Calculate mAP
+ results, maps, _ = validate.run(data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ half=amp,
+ model=ema.ema,
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ plots=False,
+ callbacks=callbacks,
+ compute_loss=compute_loss,
+ mask_downsample_ratio=mask_ratio,
+ overlap=overlap)
+
+ # Update best mAP
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ stop = stopper(epoch=epoch, fitness=fi) # early stop check
+ if fi > best_fitness:
+ best_fitness = fi
+ log_vals = list(mloss) + list(results) + lr
+ # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+ # Log val metrics and media
+ metrics_dict = dict(zip(KEYS, log_vals))
+ logger.log_metrics(metrics_dict, epoch)
+
+ # Save model
+ if (not nosave) or (final_epoch and not evolve): # if save
+ ckpt = {
+ 'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'model': deepcopy(de_parallel(model)).half(),
+ 'ema': deepcopy(ema.ema).half(),
+ 'updates': ema.updates,
+ 'optimizer': optimizer.state_dict(),
+ 'opt': vars(opt),
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
+ 'date': datetime.now().isoformat()}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fi:
+ torch.save(ckpt, best)
+ if opt.save_period > 0 and epoch % opt.save_period == 0:
+ torch.save(ckpt, w / f'epoch{epoch}.pt')
+ logger.log_model(w / f'epoch{epoch}.pt')
+ del ckpt
+ # callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+ # EarlyStopping
+ if RANK != -1: # if DDP training
+ broadcast_list = [stop if RANK == 0 else None]
+ dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
+ if RANK != 0:
+ stop = broadcast_list[0]
+ if stop:
+ break # must break all DDP ranks
+
+ # end epoch ----------------------------------------------------------------------------------------------------
+ # end training -----------------------------------------------------------------------------------------------------
+ if RANK in {-1, 0}:
+ LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
+ for f in last, best:
+ if f.exists():
+ strip_optimizer(f) # strip optimizers
+ if f is best:
+ LOGGER.info(f'\nValidating {f}...')
+ results, _, _ = validate.run(
+ data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ model=attempt_load(f, device).half(),
+ iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ save_json=is_coco,
+ verbose=True,
+ plots=plots,
+ callbacks=callbacks,
+ compute_loss=compute_loss,
+ mask_downsample_ratio=mask_ratio,
+ overlap=overlap) # val best model with plots
+ if is_coco:
+ # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+ metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
+ logger.log_metrics(metrics_dict, epoch)
+
+ # callbacks.run('on_train_end', last, best, epoch, results)
+ # on train end callback using genericLogger
+ logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs)
+ if not opt.evolve:
+ logger.log_model(best, epoch)
+ if plots:
+ plot_results_with_masks(file=save_dir / 'results.csv') # save results.png
+ files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
+ files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
+ logger.log_images(files, "Results", epoch + 1)
+ logger.log_images(sorted(save_dir.glob('val*.jpg')), "Validation", epoch + 1)
+ torch.cuda.empty_cache()
+ return results
+
+
+def parse_opt(known=False):
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolo-seg.pt', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
+ parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+ parser.add_argument('--noplots', action='store_true', help='save no plot files')
+ parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+ parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--project', default=ROOT / 'runs/train-seg', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
+ parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+ parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+ parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+ parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
+
+ # Instance Segmentation Args
+ parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
+ parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')
+
+ return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+ # Checks
+ if RANK in {-1, 0}:
+ print_args(vars(opt))
+ #check_git_status()
+ #check_requirements()
+
+ # Resume
+ if opt.resume and not opt.evolve: # resume from specified or most recent last.pt
+ last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+ opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
+ opt_data = opt.data # original dataset
+ if opt_yaml.is_file():
+ with open(opt_yaml, errors='ignore') as f:
+ d = yaml.safe_load(f)
+ else:
+ d = torch.load(last, map_location='cpu')['opt']
+ opt = argparse.Namespace(**d) # replace
+ opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
+ if is_url(opt_data):
+ opt.data = check_file(opt_data) # avoid HUB resume auth timeout
+ else:
+ opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
+ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+ if opt.evolve:
+ if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
+ opt.project = str(ROOT / 'runs/evolve')
+ opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
+ if opt.name == 'cfg':
+ opt.name = Path(opt.cfg).stem # use model.yaml as name
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+ # DDP mode
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if LOCAL_RANK != -1:
+ msg = 'is not compatible with YOLO Multi-GPU DDP training'
+ assert not opt.image_weights, f'--image-weights {msg}'
+ assert not opt.evolve, f'--evolve {msg}'
+ assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+ torch.cuda.set_device(LOCAL_RANK)
+ device = torch.device('cuda', LOCAL_RANK)
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+ # Train
+ if not opt.evolve:
+ train(opt.hyp, opt, device, callbacks)
+
+ # Evolve hyperparameters (optional)
+ else:
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+ meta = {
+ 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
+ 'box': (1, 0.02, 0.2), # box loss gain
+ 'cls': (1, 0.2, 4.0), # cls loss gain
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
+ 'mixup': (1, 0.0, 1.0), # image mixup (probability)
+ 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
+
+ with open(opt.hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
+ hyp['anchors'] = 3
+ if opt.noautoanchor:
+ del hyp['anchors'], meta['anchors']
+ opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
+ evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
+ if opt.bucket:
+ os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
+
+ for _ in range(opt.evolve): # generations to evolve
+ if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
+ # Select parent(s)
+ parent = 'single' # parent selection method: 'single' or 'weighted'
+ x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
+ n = min(5, len(x)) # number of previous results to consider
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
+ w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
+ if parent == 'single' or len(x) == 1:
+ # x = x[random.randint(0, n - 1)] # random selection
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
+ elif parent == 'weighted':
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
+
+ # Mutate
+ mp, s = 0.8, 0.2 # mutation probability, sigma
+ npr = np.random
+ npr.seed(int(time.time()))
+ g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
+ ng = len(meta)
+ v = np.ones(ng)
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
+
+ # Constrain to limits
+ for k, v in meta.items():
+ hyp[k] = max(hyp[k], v[1]) # lower limit
+ hyp[k] = min(hyp[k], v[2]) # upper limit
+ hyp[k] = round(hyp[k], 5) # significant digits
+
+ # Train mutation
+ results = train(hyp.copy(), opt, device, callbacks)
+ callbacks = Callbacks()
+ # Write mutation results
+ print_mutation(KEYS, results, hyp.copy(), save_dir, opt.bucket)
+
+ # Plot results
+ plot_evolve(evolve_csv)
+ LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
+ f"Results saved to {colorstr('bold', save_dir)}\n"
+ f'Usage example: $ python train.py --hyp {evolve_yaml}')
+
+
+def run(**kwargs):
+ # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolo.pt')
+ opt = parse_opt(True)
+ for k, v in kwargs.items():
+ setattr(opt, k, v)
+ main(opt)
+ return opt
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/segment/train_dual.py b/cv/3d_detection/yolov9/pytorch/segment/train_dual.py
new file mode 100644
index 0000000000000000000000000000000000000000..1411f245b498fb2fb0cb7bd2ad94461f93fbf8e4
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/segment/train_dual.py
@@ -0,0 +1,647 @@
+import argparse
+import math
+import os
+import random
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+import segment.val_dual as validate # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import SegmentationModel
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.downloads import attempt_download, is_url
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
+ check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
+ get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
+ labels_to_image_weights, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
+from utils.loggers import GenericLogger
+from utils.plots import plot_evolve, plot_labels
+from utils.segment.dataloaders import create_dataloader
+from utils.segment.loss_tal_dual import ComputeLoss
+#from utils.segment.loss_tal_dual import ComputeLossLH as ComputeLoss
+from utils.segment.metrics import KEYS, fitness
+from utils.segment.plots import plot_images_and_masks, plot_results_with_masks
+from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
+ smart_resume, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = None#check_git_info()
+
+
+def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
+ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, mask_ratio = \
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
+ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.mask_ratio
+ # callbacks.run('on_pretrain_routine_start')
+
+ # Directories
+ w = save_dir / 'weights' # weights dir
+ (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
+ last, best = w / 'last.pt', w / 'best.pt'
+
+ # Hyperparameters
+ if isinstance(hyp, str):
+ with open(hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+ opt.hyp = hyp.copy() # for saving hyps to checkpoints
+
+ # Save run settings
+ if not evolve:
+ yaml_save(save_dir / 'hyp.yaml', hyp)
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+ # Loggers
+ data_dict = None
+ if RANK in {-1, 0}:
+ logger = GenericLogger(opt=opt, console_logger=LOGGER)
+
+ # Config
+ plots = not evolve and not opt.noplots # create plots
+ overlap = not opt.no_overlap
+ cuda = device.type != 'cpu'
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
+ with torch_distributed_zero_first(LOCAL_RANK):
+ data_dict = data_dict or check_dataset(data) # check if None
+ train_path, val_path = data_dict['train'], data_dict['val']
+ nc = 1 if single_cls else int(data_dict['nc']) # number of classes
+ names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
+ #is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
+ is_coco = isinstance(val_path, str) and val_path.endswith('val2017.txt') # COCO dataset
+
+ # Model
+ check_suffix(weights, '.pt') # check weights
+ pretrained = weights.endswith('.pt')
+ if pretrained:
+ with torch_distributed_zero_first(LOCAL_RANK):
+ weights = attempt_download(weights) # download if not found locally
+ ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
+ model = SegmentationModel(cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)
+ exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
+ csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
+ model.load_state_dict(csd, strict=False) # load
+ LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
+ else:
+ model = SegmentationModel(cfg, ch=3, nc=nc).to(device) # create
+ amp = check_amp(model) # check AMP
+
+ # Freeze
+ freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
+ for k, v in model.named_parameters():
+ #v.requires_grad = True # train all layers
+ # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
+ if any(x in k for x in freeze):
+ LOGGER.info(f'freezing {k}')
+ v.requires_grad = False
+
+ # Image size
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
+ imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
+
+ # Batch size
+ if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
+ batch_size = check_train_batch_size(model, imgsz, amp)
+ logger.update_params({"batch_size": batch_size})
+ # loggers.on_params_update({"batch_size": batch_size})
+
+ # Optimizer
+ nbs = 64 # nominal batch size
+ accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
+ hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
+ optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
+
+ # Scheduler
+ if opt.cos_lr:
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
+ else:
+ lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+ # EMA
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+ # Resume
+ best_fitness, start_epoch = 0.0, 0
+ if pretrained:
+ if resume:
+ best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+ del ckpt, csd
+
+ # DP mode
+ if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+ LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.')
+ model = torch.nn.DataParallel(model)
+
+ # SyncBatchNorm
+ if opt.sync_bn and cuda and RANK != -1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+ LOGGER.info('Using SyncBatchNorm()')
+
+ # Trainloader
+ train_loader, dataset = create_dataloader(
+ train_path,
+ imgsz,
+ batch_size // WORLD_SIZE,
+ gs,
+ single_cls,
+ hyp=hyp,
+ augment=True,
+ cache=None if opt.cache == 'val' else opt.cache,
+ rect=opt.rect,
+ rank=LOCAL_RANK,
+ workers=workers,
+ image_weights=opt.image_weights,
+ close_mosaic=opt.close_mosaic != 0,
+ quad=opt.quad,
+ prefix=colorstr('train: '),
+ shuffle=True,
+ mask_downsample_ratio=mask_ratio,
+ overlap_mask=overlap,
+ )
+ labels = np.concatenate(dataset.labels, 0)
+ mlc = int(labels[:, 0].max()) # max label class
+ assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
+
+ # Process 0
+ if RANK in {-1, 0}:
+ val_loader = create_dataloader(val_path,
+ imgsz,
+ batch_size // WORLD_SIZE * 2,
+ gs,
+ single_cls,
+ hyp=hyp,
+ cache=None if noval else opt.cache,
+ rect=True,
+ rank=-1,
+ workers=workers * 2,
+ pad=0.5,
+ mask_downsample_ratio=mask_ratio,
+ overlap_mask=overlap,
+ prefix=colorstr('val: '))[0]
+
+ if not resume:
+ #if not opt.noautoanchor:
+ # check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
+ model.half().float() # pre-reduce anchor precision
+
+ if plots:
+ plot_labels(labels, names, save_dir)
+ # callbacks.run('on_pretrain_routine_end', labels, names)
+
+ # DDP mode
+ if cuda and RANK != -1:
+ model = smart_DDP(model)
+
+ # Model attributes
+ nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
+ #hyp['box'] *= 3 / nl # scale to layers
+ #hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
+ #hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
+ hyp['label_smoothing'] = opt.label_smoothing
+ model.nc = nc # attach number of classes to model
+ model.hyp = hyp # attach hyperparameters to model
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
+ model.names = names
+
+ # Start training
+ t0 = time.time()
+ nb = len(train_loader) # number of batches
+ nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
+ last_opt_step = -1
+ maps = np.zeros(nc) # mAP per class
+ results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ scheduler.last_epoch = start_epoch - 1 # do not move
+ scaler = torch.cuda.amp.GradScaler(enabled=amp)
+ stopper, stop = EarlyStopping(patience=opt.patience), False
+ compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
+ # callbacks.run('on_train_start')
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
+ f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+ f"Logging results to {colorstr('bold', save_dir)}\n"
+ f'Starting training for {epochs} epochs...')
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
+ # callbacks.run('on_train_epoch_start')
+ model.train()
+
+ # Update image weights (optional, single-GPU only)
+ if opt.image_weights:
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
+ if epoch == (epochs - opt.close_mosaic):
+ LOGGER.info("Closing dataloader mosaic")
+ dataset.mosaic = False
+
+ # Update mosaic border (optional)
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
+
+ mloss = torch.zeros(4, device=device) # mean losses
+ if RANK != -1:
+ train_loader.sampler.set_epoch(epoch)
+ pbar = enumerate(train_loader)
+ LOGGER.info(('\n' + '%11s' * 8) %
+ ('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss', 'Instances', 'Size'))
+ if RANK in {-1, 0}:
+ pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
+ optimizer.zero_grad()
+ for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------
+ # callbacks.run('on_train_batch_start')
+ ni = i + nb * epoch # number integrated batches (since train start)
+ imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
+
+ # Warmup
+ if ni <= nw:
+ xi = [0, nw] # x interp
+ # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+ # Multi-scale
+ if opt.multi_scale:
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
+ sf = sz / max(imgs.shape[2:]) # scale factor
+ if sf != 1:
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
+ imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+ # Forward
+ with torch.cuda.amp.autocast(amp):
+ pred = model(imgs) # forward
+ loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
+ if RANK != -1:
+ loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
+ if opt.quad:
+ loss *= 4.
+
+ # Backward
+ scaler.scale(loss).backward()
+
+ # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+ if ni - last_opt_step >= accumulate:
+ scaler.unscale_(optimizer) # unscale gradients
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
+ scaler.step(optimizer) # optimizer.step
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+ last_opt_step = ni
+
+ # Log
+ if RANK in {-1, 0}:
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
+ mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
+ pbar.set_description(('%11s' * 2 + '%11.4g' * 6) %
+ (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
+ # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
+ # if callbacks.stop_training:
+ # return
+
+ # Mosaic plots
+ if plots:
+ if ni < 3:
+ plot_images_and_masks(imgs, targets, masks, paths, save_dir / f"train_batch{ni}.jpg")
+ if ni == 10:
+ files = sorted(save_dir.glob('train*.jpg'))
+ logger.log_images(files, "Mosaics", epoch)
+ # end batch ------------------------------------------------------------------------------------------------
+
+ # Scheduler
+ lr = [x['lr'] for x in optimizer.param_groups] # for loggers
+ scheduler.step()
+
+ if RANK in {-1, 0}:
+ # mAP
+ # callbacks.run('on_train_epoch_end', epoch=epoch)
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
+ final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+ if not noval or final_epoch: # Calculate mAP
+ results, maps, _ = validate.run(data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ half=amp,
+ model=ema.ema,
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ plots=False,
+ callbacks=callbacks,
+ compute_loss=compute_loss,
+ mask_downsample_ratio=mask_ratio,
+ overlap=overlap)
+
+ # Update best mAP
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ stop = stopper(epoch=epoch, fitness=fi) # early stop check
+ if fi > best_fitness:
+ best_fitness = fi
+ log_vals = list(mloss) + list(results) + lr
+ # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+ # Log val metrics and media
+ metrics_dict = dict(zip(KEYS, log_vals))
+ logger.log_metrics(metrics_dict, epoch)
+
+ # Save model
+ if (not nosave) or (final_epoch and not evolve): # if save
+ ckpt = {
+ 'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'model': deepcopy(de_parallel(model)).half(),
+ 'ema': deepcopy(ema.ema).half(),
+ 'updates': ema.updates,
+ 'optimizer': optimizer.state_dict(),
+ 'opt': vars(opt),
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
+ 'date': datetime.now().isoformat()}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fi:
+ torch.save(ckpt, best)
+ if opt.save_period > 0 and epoch % opt.save_period == 0:
+ torch.save(ckpt, w / f'epoch{epoch}.pt')
+ logger.log_model(w / f'epoch{epoch}.pt')
+ del ckpt
+ # callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+ # EarlyStopping
+ if RANK != -1: # if DDP training
+ broadcast_list = [stop if RANK == 0 else None]
+ dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
+ if RANK != 0:
+ stop = broadcast_list[0]
+ if stop:
+ break # must break all DDP ranks
+
+ # end epoch ----------------------------------------------------------------------------------------------------
+ # end training -----------------------------------------------------------------------------------------------------
+ if RANK in {-1, 0}:
+ LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
+ for f in last, best:
+ if f.exists():
+ strip_optimizer(f) # strip optimizers
+ if f is best:
+ LOGGER.info(f'\nValidating {f}...')
+ results, _, _ = validate.run(
+ data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ model=attempt_load(f, device).half(),
+ iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ save_json=is_coco,
+ verbose=True,
+ plots=plots,
+ callbacks=callbacks,
+ compute_loss=compute_loss,
+ mask_downsample_ratio=mask_ratio,
+ overlap=overlap) # val best model with plots
+ if is_coco:
+ # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+ metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
+ logger.log_metrics(metrics_dict, epoch)
+
+ # callbacks.run('on_train_end', last, best, epoch, results)
+ # on train end callback using genericLogger
+ logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs)
+ if not opt.evolve:
+ logger.log_model(best, epoch)
+ if plots:
+ plot_results_with_masks(file=save_dir / 'results.csv') # save results.png
+ files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
+ files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
+ logger.log_images(files, "Results", epoch + 1)
+ logger.log_images(sorted(save_dir.glob('val*.jpg')), "Validation", epoch + 1)
+ torch.cuda.empty_cache()
+ return results
+
+
+def parse_opt(known=False):
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolo-seg.pt', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
+ parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+ parser.add_argument('--noplots', action='store_true', help='save no plot files')
+ parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+ parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--project', default=ROOT / 'runs/train-seg', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
+ parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+ parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+ parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+ parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
+
+ # Instance Segmentation Args
+ parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
+ parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')
+
+ return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+ # Checks
+ if RANK in {-1, 0}:
+ print_args(vars(opt))
+ #check_git_status()
+ #check_requirements()
+
+ # Resume
+ if opt.resume and not opt.evolve: # resume from specified or most recent last.pt
+ last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+ opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
+ opt_data = opt.data # original dataset
+ if opt_yaml.is_file():
+ with open(opt_yaml, errors='ignore') as f:
+ d = yaml.safe_load(f)
+ else:
+ d = torch.load(last, map_location='cpu')['opt']
+ opt = argparse.Namespace(**d) # replace
+ opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
+ if is_url(opt_data):
+ opt.data = check_file(opt_data) # avoid HUB resume auth timeout
+ else:
+ opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
+ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+ if opt.evolve:
+ if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
+ opt.project = str(ROOT / 'runs/evolve')
+ opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
+ if opt.name == 'cfg':
+ opt.name = Path(opt.cfg).stem # use model.yaml as name
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+ # DDP mode
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if LOCAL_RANK != -1:
+ msg = 'is not compatible with YOLO Multi-GPU DDP training'
+ assert not opt.image_weights, f'--image-weights {msg}'
+ assert not opt.evolve, f'--evolve {msg}'
+ assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+ torch.cuda.set_device(LOCAL_RANK)
+ device = torch.device('cuda', LOCAL_RANK)
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+ # Train
+ if not opt.evolve:
+ train(opt.hyp, opt, device, callbacks)
+
+ # Evolve hyperparameters (optional)
+ else:
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+ meta = {
+ 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
+ 'box': (1, 0.02, 0.2), # box loss gain
+ 'cls': (1, 0.2, 4.0), # cls loss gain
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
+ 'mixup': (1, 0.0, 1.0), # image mixup (probability)
+ 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
+
+ with open(opt.hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
+ hyp['anchors'] = 3
+ if opt.noautoanchor:
+ del hyp['anchors'], meta['anchors']
+ opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
+ evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
+ if opt.bucket:
+ os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
+
+ for _ in range(opt.evolve): # generations to evolve
+ if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
+ # Select parent(s)
+ parent = 'single' # parent selection method: 'single' or 'weighted'
+ x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
+ n = min(5, len(x)) # number of previous results to consider
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
+ w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
+ if parent == 'single' or len(x) == 1:
+ # x = x[random.randint(0, n - 1)] # random selection
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
+ elif parent == 'weighted':
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
+
+ # Mutate
+ mp, s = 0.8, 0.2 # mutation probability, sigma
+ npr = np.random
+ npr.seed(int(time.time()))
+ g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
+ ng = len(meta)
+ v = np.ones(ng)
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
+
+ # Constrain to limits
+ for k, v in meta.items():
+ hyp[k] = max(hyp[k], v[1]) # lower limit
+ hyp[k] = min(hyp[k], v[2]) # upper limit
+ hyp[k] = round(hyp[k], 5) # significant digits
+
+ # Train mutation
+ results = train(hyp.copy(), opt, device, callbacks)
+ callbacks = Callbacks()
+ # Write mutation results
+ print_mutation(KEYS, results, hyp.copy(), save_dir, opt.bucket)
+
+ # Plot results
+ plot_evolve(evolve_csv)
+ LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
+ f"Results saved to {colorstr('bold', save_dir)}\n"
+ f'Usage example: $ python train.py --hyp {evolve_yaml}')
+
+
+def run(**kwargs):
+ # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolo.pt')
+ opt = parse_opt(True)
+ for k, v in kwargs.items():
+ setattr(opt, k, v)
+ main(opt)
+ return opt
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/segment/val.py b/cv/3d_detection/yolov9/pytorch/segment/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..479a09a086d7f394a8ce544e86d59759e112bc59
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/segment/val.py
@@ -0,0 +1,457 @@
+import argparse
+import json
+import os
+import sys
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+import torch.nn.functional as F
+
+from models.common import DetectMultiBackend
+from models.yolo import SegmentationModel
+from utils.callbacks import Callbacks
+from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
+ check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
+ non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, box_iou
+from utils.plots import output_to_target, plot_val_study
+from utils.segment.dataloaders import create_dataloader
+from utils.segment.general import mask_iou, process_mask, process_mask_upsample, scale_image
+from utils.segment.metrics import Metrics, ap_per_class_box_and_mask
+from utils.segment.plots import plot_images_and_masks
+from utils.torch_utils import de_parallel, select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+ # Save one txt result
+ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
+ for *xyxy, conf, cls in predn.tolist():
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(file, 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map, pred_masks):
+ # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+ from pycocotools.mask import encode
+
+ def single_encode(x):
+ rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
+ rle["counts"] = rle["counts"].decode("utf-8")
+ return rle
+
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+ box = xyxy2xywh(predn[:, :4]) # xywh
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
+ pred_masks = np.transpose(pred_masks, (2, 0, 1))
+ with ThreadPool(NUM_THREADS) as pool:
+ rles = pool.map(single_encode, pred_masks)
+ for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
+ jdict.append({
+ 'image_id': image_id,
+ 'category_id': class_map[int(p[5])],
+ 'bbox': [round(x, 3) for x in b],
+ 'score': round(p[4], 5),
+ 'segmentation': rles[i]})
+
+
+def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
+ """
+ Return correct prediction matrix
+ Arguments:
+ detections (array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ correct (array[N, 10]), for 10 IoU levels
+ """
+ if masks:
+ if overlap:
+ nl = len(labels)
+ index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
+ gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
+ gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
+ if gt_masks.shape[1:] != pred_masks.shape[1:]:
+ gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
+ gt_masks = gt_masks.gt_(0.5)
+ iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
+ else: # boxes
+ iou = box_iou(labels[:, 1:], detections[:, :4])
+
+ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+ correct_class = labels[:, 0:1] == detections[:, 5]
+ for i in range(len(iouv)):
+ x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ # matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ correct[matches[:, 1].astype(int), i] = True
+ return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+ data,
+ weights=None, # model.pt path(s)
+ batch_size=32, # batch size
+ imgsz=640, # inference size (pixels)
+ conf_thres=0.001, # confidence threshold
+ iou_thres=0.6, # NMS IoU threshold
+ max_det=300, # maximum detections per image
+ task='val', # train, val, test, speed or study
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ workers=8, # max dataloader workers (per RANK in DDP mode)
+ single_cls=False, # treat as single-class dataset
+ augment=False, # augmented inference
+ verbose=False, # verbose output
+ save_txt=False, # save results to *.txt
+ save_hybrid=False, # save label+prediction hybrid results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_json=False, # save a COCO-JSON results file
+ project=ROOT / 'runs/val-seg', # save to project/name
+ name='exp', # save to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ half=True, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ model=None,
+ dataloader=None,
+ save_dir=Path(''),
+ plots=True,
+ overlap=False,
+ mask_downsample_ratio=1,
+ compute_loss=None,
+ callbacks=Callbacks(),
+):
+ if save_json:
+ check_requirements(['pycocotools'])
+ process = process_mask_upsample # more accurate
+ else:
+ process = process_mask # faster
+
+ # Initialize/load model and set device
+ training = model is not None
+ if training: # called by train.py
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
+ half &= device.type != 'cpu' # half precision only supported on CUDA
+ model.half() if half else model.float()
+ nm = de_parallel(model).model[-1].nm # number of masks
+ else: # called directly
+ device = select_device(device, batch_size=batch_size)
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+ half = model.fp16 # FP16 supported on limited backends with CUDA
+ nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks
+ if engine:
+ batch_size = model.batch_size
+ else:
+ device = model.device
+ if not (pt or jit):
+ batch_size = 1 # export.py models default to batch-size 1
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+ # Data
+ data = check_dataset(data) # check
+
+ # Configure
+ model.eval()
+ cuda = device.type != 'cpu'
+ #is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
+ is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset
+ nc = 1 if single_cls else int(data['nc']) # number of classes
+ iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+
+ # Dataloader
+ if not training:
+ if pt and not single_cls: # check --weights are trained on --data
+ ncm = model.model.nc
+ assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+ f'classes). Pass correct combination of --weights and --data that are trained together.'
+ model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
+ pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
+ task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
+ dataloader = create_dataloader(data[task],
+ imgsz,
+ batch_size,
+ stride,
+ single_cls,
+ pad=pad,
+ rect=rect,
+ workers=workers,
+ prefix=colorstr(f'{task}: '),
+ overlap_mask=overlap,
+ mask_downsample_ratio=mask_downsample_ratio)[0]
+
+ seen = 0
+ confusion_matrix = ConfusionMatrix(nc=nc)
+ names = model.names if hasattr(model, 'names') else model.module.names # get class names
+ if isinstance(names, (list, tuple)): # old format
+ names = dict(enumerate(names))
+ class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+ s = ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P", "R",
+ "mAP50", "mAP50-95)")
+ dt = Profile(), Profile(), Profile()
+ metrics = Metrics()
+ loss = torch.zeros(4, device=device)
+ jdict, stats = [], []
+ # callbacks.run('on_val_start')
+ pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
+ for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
+ # callbacks.run('on_val_batch_start')
+ with dt[0]:
+ if cuda:
+ im = im.to(device, non_blocking=True)
+ targets = targets.to(device)
+ masks = masks.to(device)
+ masks = masks.float()
+ im = im.half() if half else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ nb, _, height, width = im.shape # batch size, channels, height, width
+
+ # Inference
+ with dt[1]:
+ preds, train_out = model(im)# if compute_loss else (*model(im, augment=augment)[:2], None)
+ #train_out, preds, protos = p if len(p) == 3 else p[1]
+ #preds = p
+ #train_out = p[1][0] if len(p[1]) == 3 else p[0]
+ protos = train_out[-1]
+ #print(preds.shape)
+ #print(train_out[0].shape)
+ #print(train_out[1].shape)
+ #print(train_out[2].shape)
+
+ # Loss
+ if compute_loss:
+ loss += compute_loss(train_out, targets, masks)[1] # box, obj, cls
+
+ # NMS
+ targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
+ with dt[2]:
+ preds = non_max_suppression(preds,
+ conf_thres,
+ iou_thres,
+ labels=lb,
+ multi_label=True,
+ agnostic=single_cls,
+ max_det=max_det,
+ nm=nm)
+
+ # Metrics
+ plot_masks = [] # masks for plotting
+ for si, (pred, proto) in enumerate(zip(preds, protos)):
+ labels = targets[targets[:, 0] == si, 1:]
+ nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
+ path, shape = Path(paths[si]), shapes[si][0]
+ correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
+ correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
+ seen += 1
+
+ if npr == 0:
+ if nl:
+ stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
+ if plots:
+ confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+ continue
+
+ # Masks
+ midx = [si] if overlap else targets[:, 0] == si
+ gt_masks = masks[midx]
+ pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
+
+ # Predictions
+ if single_cls:
+ pred[:, 5] = 0
+ predn = pred.clone()
+ scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
+
+ # Evaluate
+ if nl:
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
+ scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
+ correct_bboxes = process_batch(predn, labelsn, iouv)
+ correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
+ if plots:
+ confusion_matrix.process_batch(predn, labelsn)
+ stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls)
+
+ pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
+ if plots and batch_i < 3:
+ plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
+
+ # Save/log
+ if save_txt:
+ save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+ if save_json:
+ pred_masks = scale_image(im[si].shape[1:],
+ pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
+ save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
+ # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+ # Plot images
+ if plots and batch_i < 3:
+ if len(plot_masks):
+ plot_masks = torch.cat(plot_masks, dim=0)
+ plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
+ plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths,
+ save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
+
+ # callbacks.run('on_val_batch_end')
+
+ # Compute metrics
+ stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+ results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
+ metrics.update(results)
+ nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class
+
+ # Print results
+ pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
+ LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results()))
+ if nt.sum() == 0:
+ LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+ # Print results per class
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+ for i, c in enumerate(metrics.ap_class_index):
+ LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i)))
+
+ # Print speeds
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ if not training:
+ shape = (batch_size, 3, imgsz, imgsz)
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+ # Plots
+ if plots:
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+ # callbacks.run('on_val_end')
+
+ mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
+
+ # Save JSON
+ if save_json and len(jdict):
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
+ anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
+ LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+ with open(pred_json, 'w') as f:
+ json.dump(jdict, f)
+
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+ from pycocotools.coco import COCO
+ from pycocotools.cocoeval import COCOeval
+
+ anno = COCO(anno_json) # init annotations api
+ pred = anno.loadRes(pred_json) # init predictions api
+ results = []
+ for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'):
+ if is_coco:
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate
+ eval.evaluate()
+ eval.accumulate()
+ eval.summarize()
+ results.extend(eval.stats[:2]) # update results (mAP@0.5:0.95, mAP@0.5)
+ map_bbox, map50_bbox, map_mask, map50_mask = results
+ except Exception as e:
+ LOGGER.info(f'pycocotools unable to run: {e}')
+
+ # Return results
+ model.float() # for training
+ if not training:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask
+ return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo-seg.pt', help='model path(s)')
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+ parser.add_argument('--project', default=ROOT / 'runs/val-seg', help='save results to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ opt = parser.parse_args()
+ opt.data = check_yaml(opt.data) # check YAML
+ # opt.save_json |= opt.data.endswith('coco.yaml')
+ opt.save_txt |= opt.save_hybrid
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ #check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+
+ if opt.task in ('train', 'val', 'test'): # run normally
+ if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
+ LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+ if opt.save_hybrid:
+ LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone')
+ run(**vars(opt))
+
+ else:
+ weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+ opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
+ if opt.task == 'speed': # speed benchmarks
+ # python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
+ opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+ for opt.weights in weights:
+ run(**vars(opt), plots=False)
+
+ elif opt.task == 'study': # speed vs mAP benchmarks
+ # python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
+ for opt.weights in weights:
+ f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
+ x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
+ for opt.imgsz in x: # img-size
+ LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+ r, _, t = run(**vars(opt), plots=False)
+ y.append(r + t) # results and times
+ np.savetxt(f, y, fmt='%10.4g') # save
+ os.system('zip -r study.zip study_*.txt')
+ plot_val_study(x=x) # plot
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/segment/val_dual.py b/cv/3d_detection/yolov9/pytorch/segment/val_dual.py
new file mode 100644
index 0000000000000000000000000000000000000000..c30f12fa26853158b0ecced26b7a4eb69888db3c
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/segment/val_dual.py
@@ -0,0 +1,458 @@
+import argparse
+import json
+import os
+import sys
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+import torch.nn.functional as F
+
+from models.common import DetectMultiBackend
+from models.yolo import SegmentationModel
+from utils.callbacks import Callbacks
+from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
+ check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
+ non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, box_iou
+from utils.plots import output_to_target, plot_val_study
+from utils.segment.dataloaders import create_dataloader
+from utils.segment.general import mask_iou, process_mask, process_mask_upsample, scale_image
+from utils.segment.metrics import Metrics, ap_per_class_box_and_mask
+from utils.segment.plots import plot_images_and_masks
+from utils.torch_utils import de_parallel, select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+ # Save one txt result
+ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
+ for *xyxy, conf, cls in predn.tolist():
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(file, 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map, pred_masks):
+ # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+ from pycocotools.mask import encode
+
+ def single_encode(x):
+ rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
+ rle["counts"] = rle["counts"].decode("utf-8")
+ return rle
+
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+ box = xyxy2xywh(predn[:, :4]) # xywh
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
+ pred_masks = np.transpose(pred_masks, (2, 0, 1))
+ with ThreadPool(NUM_THREADS) as pool:
+ rles = pool.map(single_encode, pred_masks)
+ for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
+ jdict.append({
+ 'image_id': image_id,
+ 'category_id': class_map[int(p[5])],
+ 'bbox': [round(x, 3) for x in b],
+ 'score': round(p[4], 5),
+ 'segmentation': rles[i]})
+
+
+def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
+ """
+ Return correct prediction matrix
+ Arguments:
+ detections (array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ correct (array[N, 10]), for 10 IoU levels
+ """
+ if masks:
+ if overlap:
+ nl = len(labels)
+ index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
+ gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
+ gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
+ if gt_masks.shape[1:] != pred_masks.shape[1:]:
+ gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
+ gt_masks = gt_masks.gt_(0.5)
+ iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
+ else: # boxes
+ iou = box_iou(labels[:, 1:], detections[:, :4])
+
+ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+ correct_class = labels[:, 0:1] == detections[:, 5]
+ for i in range(len(iouv)):
+ x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ # matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ correct[matches[:, 1].astype(int), i] = True
+ return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+ data,
+ weights=None, # model.pt path(s)
+ batch_size=32, # batch size
+ imgsz=640, # inference size (pixels)
+ conf_thres=0.001, # confidence threshold
+ iou_thres=0.6, # NMS IoU threshold
+ max_det=300, # maximum detections per image
+ task='val', # train, val, test, speed or study
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ workers=8, # max dataloader workers (per RANK in DDP mode)
+ single_cls=False, # treat as single-class dataset
+ augment=False, # augmented inference
+ verbose=False, # verbose output
+ save_txt=False, # save results to *.txt
+ save_hybrid=False, # save label+prediction hybrid results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_json=False, # save a COCO-JSON results file
+ project=ROOT / 'runs/val-seg', # save to project/name
+ name='exp', # save to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ half=True, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ model=None,
+ dataloader=None,
+ save_dir=Path(''),
+ plots=True,
+ overlap=False,
+ mask_downsample_ratio=1,
+ compute_loss=None,
+ callbacks=Callbacks(),
+):
+ if save_json:
+ check_requirements(['pycocotools'])
+ process = process_mask_upsample # more accurate
+ else:
+ process = process_mask # faster
+
+ # Initialize/load model and set device
+ training = model is not None
+ if training: # called by train.py
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
+ half &= device.type != 'cpu' # half precision only supported on CUDA
+ model.half() if half else model.float()
+ nm = de_parallel(model).model[-1].nm # number of masks
+ else: # called directly
+ device = select_device(device, batch_size=batch_size)
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+ half = model.fp16 # FP16 supported on limited backends with CUDA
+ nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks
+ if engine:
+ batch_size = model.batch_size
+ else:
+ device = model.device
+ if not (pt or jit):
+ batch_size = 1 # export.py models default to batch-size 1
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+ # Data
+ data = check_dataset(data) # check
+
+ # Configure
+ model.eval()
+ cuda = device.type != 'cpu'
+ #is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
+ is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset
+ nc = 1 if single_cls else int(data['nc']) # number of classes
+ iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+
+ # Dataloader
+ if not training:
+ if pt and not single_cls: # check --weights are trained on --data
+ ncm = model.model.nc
+ assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+ f'classes). Pass correct combination of --weights and --data that are trained together.'
+ model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
+ pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
+ task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
+ dataloader = create_dataloader(data[task],
+ imgsz,
+ batch_size,
+ stride,
+ single_cls,
+ pad=pad,
+ rect=rect,
+ workers=workers,
+ prefix=colorstr(f'{task}: '),
+ overlap_mask=overlap,
+ mask_downsample_ratio=mask_downsample_ratio)[0]
+
+ seen = 0
+ confusion_matrix = ConfusionMatrix(nc=nc)
+ names = model.names if hasattr(model, 'names') else model.module.names # get class names
+ if isinstance(names, (list, tuple)): # old format
+ names = dict(enumerate(names))
+ class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+ s = ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P", "R",
+ "mAP50", "mAP50-95)")
+ dt = Profile(), Profile(), Profile()
+ metrics = Metrics()
+ loss = torch.zeros(4, device=device)
+ jdict, stats = [], []
+ # callbacks.run('on_val_start')
+ pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
+ for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
+ # callbacks.run('on_val_batch_start')
+ with dt[0]:
+ if cuda:
+ im = im.to(device, non_blocking=True)
+ targets = targets.to(device)
+ masks = masks.to(device)
+ masks = masks.float()
+ im = im.half() if half else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ nb, _, height, width = im.shape # batch size, channels, height, width
+
+ # Inference
+ with dt[1]:
+ preds, train_out = model(im)# if compute_loss else (*model(im, augment=augment)[:2], None)
+ #preds = preds[1]
+ #train_out, preds, protos = p if len(p) == 3 else p[1]
+ #preds = p
+ #train_out = p[1][0] if len(p[1]) == 3 else p[0]
+ protos = train_out[-1]
+ #print(preds.shape)
+ #print(train_out[0].shape)
+ #print(train_out[1].shape)
+ #print(train_out[2].shape)
+
+ # Loss
+ #if compute_loss:
+ # loss += compute_loss(train_out, targets, masks)[1] # box, obj, cls
+
+ # NMS
+ targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
+ with dt[2]:
+ preds = non_max_suppression(preds,
+ conf_thres,
+ iou_thres,
+ labels=lb,
+ multi_label=True,
+ agnostic=single_cls,
+ max_det=max_det,
+ nm=nm)
+
+ # Metrics
+ plot_masks = [] # masks for plotting
+ for si, (pred, proto) in enumerate(zip(preds, protos)):
+ labels = targets[targets[:, 0] == si, 1:]
+ nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
+ path, shape = Path(paths[si]), shapes[si][0]
+ correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
+ correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
+ seen += 1
+
+ if npr == 0:
+ if nl:
+ stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
+ if plots:
+ confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+ continue
+
+ # Masks
+ midx = [si] if overlap else targets[:, 0] == si
+ gt_masks = masks[midx]
+ pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
+
+ # Predictions
+ if single_cls:
+ pred[:, 5] = 0
+ predn = pred.clone()
+ scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
+
+ # Evaluate
+ if nl:
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
+ scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
+ correct_bboxes = process_batch(predn, labelsn, iouv)
+ correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
+ if plots:
+ confusion_matrix.process_batch(predn, labelsn)
+ stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls)
+
+ pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
+ if plots and batch_i < 3:
+ plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
+
+ # Save/log
+ if save_txt:
+ save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+ if save_json:
+ pred_masks = scale_image(im[si].shape[1:],
+ pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
+ save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
+ # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+ # Plot images
+ if plots and batch_i < 3:
+ if len(plot_masks):
+ plot_masks = torch.cat(plot_masks, dim=0)
+ plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
+ plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths,
+ save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
+
+ # callbacks.run('on_val_batch_end')
+
+ # Compute metrics
+ stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+ results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
+ metrics.update(results)
+ nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class
+
+ # Print results
+ pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
+ LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results()))
+ if nt.sum() == 0:
+ LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+ # Print results per class
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+ for i, c in enumerate(metrics.ap_class_index):
+ LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i)))
+
+ # Print speeds
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ if not training:
+ shape = (batch_size, 3, imgsz, imgsz)
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+ # Plots
+ if plots:
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+ # callbacks.run('on_val_end')
+
+ mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
+
+ # Save JSON
+ if save_json and len(jdict):
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
+ anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
+ LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+ with open(pred_json, 'w') as f:
+ json.dump(jdict, f)
+
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+ from pycocotools.coco import COCO
+ from pycocotools.cocoeval import COCOeval
+
+ anno = COCO(anno_json) # init annotations api
+ pred = anno.loadRes(pred_json) # init predictions api
+ results = []
+ for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'):
+ if is_coco:
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate
+ eval.evaluate()
+ eval.accumulate()
+ eval.summarize()
+ results.extend(eval.stats[:2]) # update results (mAP@0.5:0.95, mAP@0.5)
+ map_bbox, map50_bbox, map_mask, map50_mask = results
+ except Exception as e:
+ LOGGER.info(f'pycocotools unable to run: {e}')
+
+ # Return results
+ model.float() # for training
+ if not training:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask
+ return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo-seg.pt', help='model path(s)')
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+ parser.add_argument('--project', default=ROOT / 'runs/val-seg', help='save results to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ opt = parser.parse_args()
+ opt.data = check_yaml(opt.data) # check YAML
+ # opt.save_json |= opt.data.endswith('coco.yaml')
+ opt.save_txt |= opt.save_hybrid
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ #check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+
+ if opt.task in ('train', 'val', 'test'): # run normally
+ if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
+ LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+ if opt.save_hybrid:
+ LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone')
+ run(**vars(opt))
+
+ else:
+ weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+ opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
+ if opt.task == 'speed': # speed benchmarks
+ # python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
+ opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+ for opt.weights in weights:
+ run(**vars(opt), plots=False)
+
+ elif opt.task == 'study': # speed vs mAP benchmarks
+ # python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
+ for opt.weights in weights:
+ f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
+ x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
+ for opt.imgsz in x: # img-size
+ LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+ r, _, t = run(**vars(opt), plots=False)
+ y.append(r + t) # results and times
+ np.savetxt(f, y, fmt='%10.4g') # save
+ os.system('zip -r study.zip study_*.txt')
+ plot_val_study(x=x) # plot
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/tools/reparameterization.ipynb b/cv/3d_detection/yolov9/pytorch/tools/reparameterization.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..43b786d8850b65c6ba327bec204665499d457dec
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/tools/reparameterization.ipynb
@@ -0,0 +1,244 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4beac401",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "from models.yolo import Model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8680f822",
+ "metadata": {},
+ "source": [
+ "## Convert YOLOv9-C"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "59f0198d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "device = torch.device(\"cpu\")\n",
+ "cfg = \"./models/detect/gelan-c.yaml\"\n",
+ "model = Model(cfg, ch=3, nc=80, anchors=3)\n",
+ "#model = model.half()\n",
+ "model = model.to(device)\n",
+ "_ = model.eval()\n",
+ "ckpt = torch.load('./yolov9-c.pt', map_location='cpu')\n",
+ "model.names = ckpt['model'].names\n",
+ "model.nc = ckpt['model'].nc"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2de7e1be",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx = 0\n",
+ "for k, v in model.state_dict().items():\n",
+ " if \"model.{}.\".format(idx) in k:\n",
+ " if idx < 22:\n",
+ " kr = k.replace(\"model.{}.\".format(idx), \"model.{}.\".format(idx+1))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " elif \"model.{}.cv2.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.cv2.\".format(idx), \"model.{}.cv4.\".format(idx+16))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " elif \"model.{}.cv3.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.cv3.\".format(idx), \"model.{}.cv5.\".format(idx+16))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " elif \"model.{}.dfl.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.dfl.\".format(idx), \"model.{}.dfl2.\".format(idx+16))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " else:\n",
+ " while True:\n",
+ " idx += 1\n",
+ " if \"model.{}.\".format(idx) in k:\n",
+ " break\n",
+ " if idx < 22:\n",
+ " kr = k.replace(\"model.{}.\".format(idx), \"model.{}.\".format(idx+1))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " elif \"model.{}.cv2.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.cv2.\".format(idx), \"model.{}.cv4.\".format(idx+16))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " elif \"model.{}.cv3.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.cv3.\".format(idx), \"model.{}.cv5.\".format(idx+16))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " elif \"model.{}.dfl.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.dfl.\".format(idx), \"model.{}.dfl2.\".format(idx+16))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ "_ = model.eval()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "960796e3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "m_ckpt = {'model': model.half(),\n",
+ " 'optimizer': None,\n",
+ " 'best_fitness': None,\n",
+ " 'ema': None,\n",
+ " 'updates': None,\n",
+ " 'opt': None,\n",
+ " 'git': None,\n",
+ " 'date': None,\n",
+ " 'epoch': -1}\n",
+ "torch.save(m_ckpt, \"./yolov9-c-converted.pt\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "47c6e6ae",
+ "metadata": {},
+ "source": [
+ "## Convert YOLOv9-E"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "801a1b7c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "device = torch.device(\"cpu\")\n",
+ "cfg = \"./models/detect/gelan-e.yaml\"\n",
+ "model = Model(cfg, ch=3, nc=80, anchors=3)\n",
+ "#model = model.half()\n",
+ "model = model.to(device)\n",
+ "_ = model.eval()\n",
+ "ckpt = torch.load('./yolov9-e.pt', map_location='cpu')\n",
+ "model.names = ckpt['model'].names\n",
+ "model.nc = ckpt['model'].nc"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a2ef4fe6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx = 0\n",
+ "for k, v in model.state_dict().items():\n",
+ " if \"model.{}.\".format(idx) in k:\n",
+ " if idx < 29:\n",
+ " kr = k.replace(\"model.{}.\".format(idx), \"model.{}.\".format(idx))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ " elif idx < 42:\n",
+ " kr = k.replace(\"model.{}.\".format(idx), \"model.{}.\".format(idx+7))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ " elif \"model.{}.cv2.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.cv2.\".format(idx), \"model.{}.cv4.\".format(idx+7))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ " elif \"model.{}.cv3.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.cv3.\".format(idx), \"model.{}.cv5.\".format(idx+7))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ " elif \"model.{}.dfl.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.dfl.\".format(idx), \"model.{}.dfl2.\".format(idx+7))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ " else:\n",
+ " while True:\n",
+ " idx += 1\n",
+ " if \"model.{}.\".format(idx) in k:\n",
+ " break\n",
+ " if idx < 29:\n",
+ " kr = k.replace(\"model.{}.\".format(idx), \"model.{}.\".format(idx))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ " elif idx < 42:\n",
+ " kr = k.replace(\"model.{}.\".format(idx), \"model.{}.\".format(idx+7))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ " elif \"model.{}.cv2.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.cv2.\".format(idx), \"model.{}.cv4.\".format(idx+7))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ " elif \"model.{}.cv3.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.cv3.\".format(idx), \"model.{}.cv5.\".format(idx+7))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ " elif \"model.{}.dfl.\".format(idx) in k:\n",
+ " kr = k.replace(\"model.{}.dfl.\".format(idx), \"model.{}.dfl2.\".format(idx+7))\n",
+ " model.state_dict()[k] -= model.state_dict()[k]\n",
+ " model.state_dict()[k] += ckpt['model'].state_dict()[kr]\n",
+ " print(k, \"perfectly matched!!\")\n",
+ "_ = model.eval()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "27bc1869",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "m_ckpt = {'model': model.half(),\n",
+ " 'optimizer': None,\n",
+ " 'best_fitness': None,\n",
+ " 'ema': None,\n",
+ " 'updates': None,\n",
+ " 'opt': None,\n",
+ " 'git': None,\n",
+ " 'date': None,\n",
+ " 'epoch': -1}\n",
+ "torch.save(m_ckpt, \"./yolov9-e-converted.pt\")"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/cv/3d_detection/yolov9/pytorch/train.py b/cv/3d_detection/yolov9/pytorch/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..59c372afebbbb32035de5819e35285cbef77d4db
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/train.py
@@ -0,0 +1,634 @@
+import argparse
+import math
+import os
+import random
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+import val as validate # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import Model
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.downloads import attempt_download, is_url
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_img_size,
+ check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
+ intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
+ one_cycle, one_flat_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
+from utils.loggers import Loggers
+from utils.loggers.comet.comet_utils import check_comet_resume
+from utils.loss_tal import ComputeLoss
+from utils.metrics import fitness
+from utils.plots import plot_evolve
+from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP,
+ smart_optimizer, smart_resume, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = None
+
+
+def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
+ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
+ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
+ callbacks.run('on_pretrain_routine_start')
+
+ # Directories
+ w = save_dir / 'weights' # weights dir
+ (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
+ last, best = w / 'last.pt', w / 'best.pt'
+ last_striped, best_striped = w / 'last_striped.pt', w / 'best_striped.pt'
+
+ # Hyperparameters
+ if isinstance(hyp, str):
+ with open(hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+ hyp['anchor_t'] = 5.0
+ opt.hyp = hyp.copy() # for saving hyps to checkpoints
+
+ # Save run settings
+ if not evolve:
+ yaml_save(save_dir / 'hyp.yaml', hyp)
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+ # Loggers
+ data_dict = None
+ if RANK in {-1, 0}:
+ loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
+
+ # Register actions
+ for k in methods(loggers):
+ callbacks.register_action(k, callback=getattr(loggers, k))
+
+ # Process custom dataset artifact link
+ data_dict = loggers.remote_dataset
+ if resume: # If resuming runs from remote artifact
+ weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
+
+ # Config
+ plots = not evolve and not opt.noplots # create plots
+ cuda = device.type != 'cpu'
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
+ with torch_distributed_zero_first(LOCAL_RANK):
+ data_dict = data_dict or check_dataset(data) # check if None
+ train_path, val_path = data_dict['train'], data_dict['val']
+ nc = 1 if single_cls else int(data_dict['nc']) # number of classes
+ names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
+ #is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
+ is_coco = isinstance(val_path, str) and val_path.endswith('val2017.txt') # COCO dataset
+
+ # Model
+ check_suffix(weights, '.pt') # check weights
+ pretrained = weights.endswith('.pt')
+ if pretrained:
+ with torch_distributed_zero_first(LOCAL_RANK):
+ weights = attempt_download(weights) # download if not found locally
+ ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
+ model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
+ exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
+ csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
+ model.load_state_dict(csd, strict=False) # load
+ LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
+ else:
+ model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
+ amp = check_amp(model) # check AMP
+
+ # Freeze
+ freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
+ for k, v in model.named_parameters():
+ # v.requires_grad = True # train all layers TODO: uncomment this line as in master
+ # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
+ if any(x in k for x in freeze):
+ LOGGER.info(f'freezing {k}')
+ v.requires_grad = False
+
+ # Image size
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
+ imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
+
+ # Batch size
+ if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
+ batch_size = check_train_batch_size(model, imgsz, amp)
+ loggers.on_params_update({"batch_size": batch_size})
+
+ # Optimizer
+ nbs = 64 # nominal batch size
+ accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
+ hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
+ optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
+
+ # Scheduler
+ if opt.cos_lr:
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
+ elif opt.flat_cos_lr:
+ lf = one_flat_cycle(1, hyp['lrf'], epochs) # flat cosine 1->hyp['lrf']
+ elif opt.fixed_lr:
+ lf = lambda x: 1.0
+ else:
+ lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
+
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
+ # from utils.plots import plot_lr_scheduler; plot_lr_scheduler(optimizer, scheduler, epochs)
+
+ # EMA
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+ # Resume
+ best_fitness, start_epoch = 0.0, 0
+ if pretrained:
+ if resume:
+ best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+ del ckpt, csd
+
+ # DP mode
+ if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+ LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.')
+ model = torch.nn.DataParallel(model)
+
+ # SyncBatchNorm
+ if opt.sync_bn and cuda and RANK != -1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+ LOGGER.info('Using SyncBatchNorm()')
+
+ # Trainloader
+ train_loader, dataset = create_dataloader(train_path,
+ imgsz,
+ batch_size // WORLD_SIZE,
+ gs,
+ single_cls,
+ hyp=hyp,
+ augment=True,
+ cache=None if opt.cache == 'val' else opt.cache,
+ rect=opt.rect,
+ rank=LOCAL_RANK,
+ workers=workers,
+ image_weights=opt.image_weights,
+ close_mosaic=opt.close_mosaic != 0,
+ quad=opt.quad,
+ prefix=colorstr('train: '),
+ shuffle=True,
+ min_items=opt.min_items)
+ labels = np.concatenate(dataset.labels, 0)
+ mlc = int(labels[:, 0].max()) # max label class
+ assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
+
+ # Process 0
+ if RANK in {-1, 0}:
+ val_loader = create_dataloader(val_path,
+ imgsz,
+ batch_size // WORLD_SIZE * 2,
+ gs,
+ single_cls,
+ hyp=hyp,
+ cache=None if noval else opt.cache,
+ rect=True,
+ rank=-1,
+ workers=workers * 2,
+ pad=0.5,
+ prefix=colorstr('val: '))[0]
+
+ if not resume:
+ # if not opt.noautoanchor:
+ # check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
+ model.half().float() # pre-reduce anchor precision
+
+ callbacks.run('on_pretrain_routine_end', labels, names)
+
+ # DDP mode
+ if cuda and RANK != -1:
+ model = smart_DDP(model)
+
+ # Model attributes
+ nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
+ #hyp['box'] *= 3 / nl # scale to layers
+ #hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
+ #hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
+ hyp['label_smoothing'] = opt.label_smoothing
+ model.nc = nc # attach number of classes to model
+ model.hyp = hyp # attach hyperparameters to model
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
+ model.names = names
+
+ # Start training
+ t0 = time.time()
+ nb = len(train_loader) # number of batches
+ nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
+ last_opt_step = -1
+ maps = np.zeros(nc) # mAP per class
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ scheduler.last_epoch = start_epoch - 1 # do not move
+ scaler = torch.cuda.amp.GradScaler(enabled=amp)
+ stopper, stop = EarlyStopping(patience=opt.patience), False
+ compute_loss = ComputeLoss(model) # init loss class
+ callbacks.run('on_train_start')
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
+ f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+ f"Logging results to {colorstr('bold', save_dir)}\n"
+ f'Starting training for {epochs} epochs...')
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
+ callbacks.run('on_train_epoch_start')
+ model.train()
+
+ # Update image weights (optional, single-GPU only)
+ if opt.image_weights:
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
+ if epoch == (epochs - opt.close_mosaic):
+ LOGGER.info("Closing dataloader mosaic")
+ dataset.mosaic = False
+
+ # Update mosaic border (optional)
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
+
+ mloss = torch.zeros(3, device=device) # mean losses
+ if RANK != -1:
+ train_loader.sampler.set_epoch(epoch)
+ pbar = enumerate(train_loader)
+ LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'cls_loss', 'dfl_loss', 'Instances', 'Size'))
+ if RANK in {-1, 0}:
+ pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
+ optimizer.zero_grad()
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
+ callbacks.run('on_train_batch_start')
+ ni = i + nb * epoch # number integrated batches (since train start)
+ imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
+
+ # Warmup
+ if ni <= nw:
+ xi = [0, nw] # x interp
+ # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+ # Multi-scale
+ if opt.multi_scale:
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
+ sf = sz / max(imgs.shape[2:]) # scale factor
+ if sf != 1:
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
+ imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+ # Forward
+ with torch.cuda.amp.autocast(amp):
+ pred = model(imgs) # forward
+ loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
+ if RANK != -1:
+ loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
+ if opt.quad:
+ loss *= 4.
+
+ # Backward
+ scaler.scale(loss).backward()
+
+ # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+ if ni - last_opt_step >= accumulate:
+ scaler.unscale_(optimizer) # unscale gradients
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
+ scaler.step(optimizer) # optimizer.step
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+ last_opt_step = ni
+
+ # Log
+ if RANK in {-1, 0}:
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
+ mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
+ pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
+ (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
+ callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
+ if callbacks.stop_training:
+ return
+ # end batch ------------------------------------------------------------------------------------------------
+
+ # Scheduler
+ lr = [x['lr'] for x in optimizer.param_groups] # for loggers
+ scheduler.step()
+
+ if RANK in {-1, 0}:
+ # mAP
+ callbacks.run('on_train_epoch_end', epoch=epoch)
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
+ final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+ if not noval or final_epoch: # Calculate mAP
+ results, maps, _ = validate.run(data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ half=amp,
+ model=ema.ema,
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ plots=False,
+ callbacks=callbacks,
+ compute_loss=compute_loss)
+
+ # Update best mAP
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ stop = stopper(epoch=epoch, fitness=fi) # early stop check
+ if fi > best_fitness:
+ best_fitness = fi
+ log_vals = list(mloss) + list(results) + lr
+ callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+
+ # Save model
+ if (not nosave) or (final_epoch and not evolve): # if save
+ ckpt = {
+ 'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'model': deepcopy(de_parallel(model)).half(),
+ 'ema': deepcopy(ema.ema).half(),
+ 'updates': ema.updates,
+ 'optimizer': optimizer.state_dict(),
+ 'opt': vars(opt),
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
+ 'date': datetime.now().isoformat()}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fi:
+ torch.save(ckpt, best)
+ if opt.save_period > 0 and epoch % opt.save_period == 0:
+ torch.save(ckpt, w / f'epoch{epoch}.pt')
+ del ckpt
+ callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+ # EarlyStopping
+ if RANK != -1: # if DDP training
+ broadcast_list = [stop if RANK == 0 else None]
+ dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
+ if RANK != 0:
+ stop = broadcast_list[0]
+ if stop:
+ break # must break all DDP ranks
+
+ # end epoch ----------------------------------------------------------------------------------------------------
+ # end training -----------------------------------------------------------------------------------------------------
+ if RANK in {-1, 0}:
+ LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
+ for f in last, best:
+ if f.exists():
+ if f is last:
+ strip_optimizer(f, last_striped) # strip optimizers
+ else:
+ strip_optimizer(f, best_striped) # strip optimizers
+ if f is best:
+ LOGGER.info(f'\nValidating {f}...')
+ results, _, _ = validate.run(
+ data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ model=attempt_load(f, device).half(),
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ save_json=is_coco,
+ verbose=True,
+ plots=plots,
+ callbacks=callbacks,
+ compute_loss=compute_loss) # val best model with plots
+ if is_coco:
+ callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+
+ callbacks.run('on_train_end', last, best, epoch, results)
+
+ torch.cuda.empty_cache()
+ return results
+
+
+def parse_opt(known=False):
+ parser = argparse.ArgumentParser()
+ # parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='initial weights path')
+ # parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--weights', type=str, default='', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml path')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+ parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+ parser.add_argument('--noplots', action='store_true', help='save no plot files')
+ parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+ parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
+ parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+ parser.add_argument('--flat-cos-lr', action='store_true', help='flat cosine LR scheduler')
+ parser.add_argument('--fixed-lr', action='store_true', help='fixed LR scheduler')
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+ parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+ parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+ parser.add_argument('--min-items', type=int, default=0, help='Experimental')
+ parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
+
+ # Logger arguments
+ parser.add_argument('--entity', default=None, help='Entity')
+ parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
+ parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
+ parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
+
+ return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+ # Checks
+ if RANK in {-1, 0}:
+ print_args(vars(opt))
+
+ # Resume (from specified or most recent last.pt)
+ if opt.resume and not check_comet_resume(opt) and not opt.evolve:
+ last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+ opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
+ opt_data = opt.data # original dataset
+ if opt_yaml.is_file():
+ with open(opt_yaml, errors='ignore') as f:
+ d = yaml.safe_load(f)
+ else:
+ d = torch.load(last, map_location='cpu')['opt']
+ opt = argparse.Namespace(**d) # replace
+ opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
+ if is_url(opt_data):
+ opt.data = check_file(opt_data) # avoid HUB resume auth timeout
+ else:
+ opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
+ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+ if opt.evolve:
+ if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
+ opt.project = str(ROOT / 'runs/evolve')
+ opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
+ if opt.name == 'cfg':
+ opt.name = Path(opt.cfg).stem # use model.yaml as name
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+ # DDP mode
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if LOCAL_RANK != -1:
+ msg = 'is not compatible with YOLO Multi-GPU DDP training'
+ assert not opt.image_weights, f'--image-weights {msg}'
+ assert not opt.evolve, f'--evolve {msg}'
+ assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+ torch.cuda.set_device(LOCAL_RANK)
+ device = torch.device('cuda', LOCAL_RANK)
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+ # Train
+ if not opt.evolve:
+ train(opt.hyp, opt, device, callbacks)
+
+ # Evolve hyperparameters (optional)
+ else:
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+ meta = {
+ 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
+ 'box': (1, 0.02, 0.2), # box loss gain
+ 'cls': (1, 0.2, 4.0), # cls loss gain
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
+ 'mixup': (1, 0.0, 1.0), # image mixup (probability)
+ 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
+
+ with open(opt.hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
+ hyp['anchors'] = 3
+ if opt.noautoanchor:
+ del hyp['anchors'], meta['anchors']
+ opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
+ evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
+ if opt.bucket:
+ os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
+
+ for _ in range(opt.evolve): # generations to evolve
+ if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
+ # Select parent(s)
+ parent = 'single' # parent selection method: 'single' or 'weighted'
+ x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
+ n = min(5, len(x)) # number of previous results to consider
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
+ w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
+ if parent == 'single' or len(x) == 1:
+ # x = x[random.randint(0, n - 1)] # random selection
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
+ elif parent == 'weighted':
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
+
+ # Mutate
+ mp, s = 0.8, 0.2 # mutation probability, sigma
+ npr = np.random
+ npr.seed(int(time.time()))
+ g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
+ ng = len(meta)
+ v = np.ones(ng)
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
+
+ # Constrain to limits
+ for k, v in meta.items():
+ hyp[k] = max(hyp[k], v[1]) # lower limit
+ hyp[k] = min(hyp[k], v[2]) # upper limit
+ hyp[k] = round(hyp[k], 5) # significant digits
+
+ # Train mutation
+ results = train(hyp.copy(), opt, device, callbacks)
+ callbacks = Callbacks()
+ # Write mutation results
+ keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
+ 'val/obj_loss', 'val/cls_loss')
+ print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
+
+ # Plot results
+ plot_evolve(evolve_csv)
+ LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
+ f"Results saved to {colorstr('bold', save_dir)}\n"
+ f'Usage example: $ python train.py --hyp {evolve_yaml}')
+
+
+def run(**kwargs):
+ # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolo.pt')
+ opt = parse_opt(True)
+ for k, v in kwargs.items():
+ setattr(opt, k, v)
+ main(opt)
+ return opt
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/train_dual.py b/cv/3d_detection/yolov9/pytorch/train_dual.py
new file mode 100644
index 0000000000000000000000000000000000000000..672e32426b30726b321b0b79f62758e5ba9f0b22
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/train_dual.py
@@ -0,0 +1,644 @@
+import argparse
+import math
+import os
+import random
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+import val_dual as validate # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import Model
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.downloads import attempt_download, is_url
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
+ check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
+ get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
+ labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
+ yaml_save, one_flat_cycle)
+from utils.loggers import Loggers
+from utils.loggers.comet.comet_utils import check_comet_resume
+from utils.loss_tal_dual import ComputeLoss
+#from utils.loss_tal_dual import ComputeLossLH as ComputeLoss
+#from utils.loss_tal_dual import ComputeLossLHCF as ComputeLoss
+from utils.metrics import fitness
+from utils.plots import plot_evolve
+from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
+ smart_resume, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = None#check_git_info()
+
+
+def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
+ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
+ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
+ callbacks.run('on_pretrain_routine_start')
+
+ # Directories
+ w = save_dir / 'weights' # weights dir
+ (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
+ last, best = w / 'last.pt', w / 'best.pt'
+
+ # Hyperparameters
+ if isinstance(hyp, str):
+ with open(hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+ hyp['anchor_t'] = 5.0
+ opt.hyp = hyp.copy() # for saving hyps to checkpoints
+
+ # Save run settings
+ if not evolve:
+ yaml_save(save_dir / 'hyp.yaml', hyp)
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+ # Loggers
+ data_dict = None
+ if RANK in {-1, 0}:
+ loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
+
+ # Register actions
+ for k in methods(loggers):
+ callbacks.register_action(k, callback=getattr(loggers, k))
+
+ # Process custom dataset artifact link
+ data_dict = loggers.remote_dataset
+ if resume: # If resuming runs from remote artifact
+ weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
+
+ # Config
+ plots = not evolve and not opt.noplots # create plots
+ cuda = device.type != 'cpu'
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
+ with torch_distributed_zero_first(LOCAL_RANK):
+ data_dict = data_dict or check_dataset(data) # check if None
+ train_path, val_path = data_dict['train'], data_dict['val']
+ nc = 1 if single_cls else int(data_dict['nc']) # number of classes
+ names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
+ #is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
+ is_coco = isinstance(val_path, str) and val_path.endswith('val2017.txt') # COCO dataset
+
+ # Model
+ check_suffix(weights, '.pt') # check weights
+ pretrained = weights.endswith('.pt')
+ if pretrained:
+ with torch_distributed_zero_first(LOCAL_RANK):
+ weights = attempt_download(weights) # download if not found locally
+ ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
+ model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
+ exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
+ csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
+ model.load_state_dict(csd, strict=False) # load
+ LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
+ else:
+ model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
+ amp = check_amp(model) # check AMP
+
+ # Freeze
+ freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
+ for k, v in model.named_parameters():
+ # v.requires_grad = True # train all layers TODO: uncomment this line as in master
+ # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
+ if any(x in k for x in freeze):
+ LOGGER.info(f'freezing {k}')
+ v.requires_grad = False
+
+ # Image size
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
+ imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
+
+ # Batch size
+ if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
+ batch_size = check_train_batch_size(model, imgsz, amp)
+ loggers.on_params_update({"batch_size": batch_size})
+
+ # Optimizer
+ nbs = 64 # nominal batch size
+ accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
+ hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
+ optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
+
+ # Scheduler
+ if opt.cos_lr:
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
+ elif opt.flat_cos_lr:
+ lf = one_flat_cycle(1, hyp['lrf'], epochs) # flat cosine 1->hyp['lrf']
+ elif opt.fixed_lr:
+ lf = lambda x: 1.0
+ else:
+ lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
+
+ # def lf(x): # saw
+ # return (1 - (x % 30) / 30) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
+ #
+ # def lf(x): # triangle start at min
+ # return 2 * abs(x / 30 - math.floor(x / 30 + 1 / 2)) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
+ #
+ # def lf(x): # triangle start at max
+ # return 2 * abs(x / 32 + .5 - math.floor(x / 32 + 1)) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
+
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
+ # from utils.plots import plot_lr_scheduler; plot_lr_scheduler(optimizer, scheduler, epochs)
+
+ # EMA
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+ # Resume
+ best_fitness, start_epoch = 0.0, 0
+ if pretrained:
+ if resume:
+ best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+ del ckpt, csd
+
+ # DP mode
+ if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+ LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.')
+ model = torch.nn.DataParallel(model)
+
+ # SyncBatchNorm
+ if opt.sync_bn and cuda and RANK != -1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+ LOGGER.info('Using SyncBatchNorm()')
+
+ # Trainloader
+ train_loader, dataset = create_dataloader(train_path,
+ imgsz,
+ batch_size // WORLD_SIZE,
+ gs,
+ single_cls,
+ hyp=hyp,
+ augment=True,
+ cache=None if opt.cache == 'val' else opt.cache,
+ rect=opt.rect,
+ rank=LOCAL_RANK,
+ workers=workers,
+ image_weights=opt.image_weights,
+ close_mosaic=opt.close_mosaic != 0,
+ quad=opt.quad,
+ prefix=colorstr('train: '),
+ shuffle=True,
+ min_items=opt.min_items)
+ labels = np.concatenate(dataset.labels, 0)
+ mlc = int(labels[:, 0].max()) # max label class
+ assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
+
+ # Process 0
+ if RANK in {-1, 0}:
+ val_loader = create_dataloader(val_path,
+ imgsz,
+ batch_size // WORLD_SIZE * 2,
+ gs,
+ single_cls,
+ hyp=hyp,
+ cache=None if noval else opt.cache,
+ rect=True,
+ rank=-1,
+ workers=workers * 2,
+ pad=0.5,
+ prefix=colorstr('val: '))[0]
+
+ if not resume:
+ # if not opt.noautoanchor:
+ # check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
+ model.half().float() # pre-reduce anchor precision
+
+ callbacks.run('on_pretrain_routine_end', labels, names)
+
+ # DDP mode
+ if cuda and RANK != -1:
+ model = smart_DDP(model)
+
+ # Model attributes
+ nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
+ #hyp['box'] *= 3 / nl # scale to layers
+ #hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
+ #hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
+ hyp['label_smoothing'] = opt.label_smoothing
+ model.nc = nc # attach number of classes to model
+ model.hyp = hyp # attach hyperparameters to model
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
+ model.names = names
+
+ # Start training
+ t0 = time.time()
+ nb = len(train_loader) # number of batches
+ nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
+ last_opt_step = -1
+ maps = np.zeros(nc) # mAP per class
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ scheduler.last_epoch = start_epoch - 1 # do not move
+ scaler = torch.cuda.amp.GradScaler(enabled=amp)
+ stopper, stop = EarlyStopping(patience=opt.patience), False
+ compute_loss = ComputeLoss(model) # init loss class
+ callbacks.run('on_train_start')
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
+ f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+ f"Logging results to {colorstr('bold', save_dir)}\n"
+ f'Starting training for {epochs} epochs...')
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
+ callbacks.run('on_train_epoch_start')
+ model.train()
+
+ # Update image weights (optional, single-GPU only)
+ if opt.image_weights:
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
+ if epoch == (epochs - opt.close_mosaic):
+ LOGGER.info("Closing dataloader mosaic")
+ dataset.mosaic = False
+
+ # Update mosaic border (optional)
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
+
+ mloss = torch.zeros(3, device=device) # mean losses
+ if RANK != -1:
+ train_loader.sampler.set_epoch(epoch)
+ pbar = enumerate(train_loader)
+ LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'cls_loss', 'dfl_loss', 'Instances', 'Size'))
+ if RANK in {-1, 0}:
+ pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
+ optimizer.zero_grad()
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
+ callbacks.run('on_train_batch_start')
+ ni = i + nb * epoch # number integrated batches (since train start)
+ imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
+
+ # Warmup
+ if ni <= nw:
+ xi = [0, nw] # x interp
+ # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+ # Multi-scale
+ if opt.multi_scale:
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
+ sf = sz / max(imgs.shape[2:]) # scale factor
+ if sf != 1:
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
+ imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+ # Forward
+ with torch.cuda.amp.autocast(amp):
+ pred = model(imgs) # forward
+ loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
+ if RANK != -1:
+ loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
+ if opt.quad:
+ loss *= 4.
+
+ # Backward
+ scaler.scale(loss).backward()
+
+ # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+ if ni - last_opt_step >= accumulate:
+ scaler.unscale_(optimizer) # unscale gradients
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
+ scaler.step(optimizer) # optimizer.step
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+ last_opt_step = ni
+
+ # Log
+ if RANK in {-1, 0}:
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
+ mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
+ pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
+ (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
+ callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
+ if callbacks.stop_training:
+ return
+ # end batch ------------------------------------------------------------------------------------------------
+
+ # Scheduler
+ lr = [x['lr'] for x in optimizer.param_groups] # for loggers
+ scheduler.step()
+
+ if RANK in {-1, 0}:
+ # mAP
+ callbacks.run('on_train_epoch_end', epoch=epoch)
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
+ final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+ if not noval or final_epoch: # Calculate mAP
+ results, maps, _ = validate.run(data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ half=amp,
+ model=ema.ema,
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ plots=False,
+ callbacks=callbacks,
+ compute_loss=compute_loss)
+
+ # Update best mAP
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ stop = stopper(epoch=epoch, fitness=fi) # early stop check
+ if fi > best_fitness:
+ best_fitness = fi
+ log_vals = list(mloss) + list(results) + lr
+ callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+
+ # Save model
+ if (not nosave) or (final_epoch and not evolve): # if save
+ ckpt = {
+ 'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'model': deepcopy(de_parallel(model)).half(),
+ 'ema': deepcopy(ema.ema).half(),
+ 'updates': ema.updates,
+ 'optimizer': optimizer.state_dict(),
+ 'opt': vars(opt),
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
+ 'date': datetime.now().isoformat()}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fi:
+ torch.save(ckpt, best)
+ if opt.save_period > 0 and epoch % opt.save_period == 0:
+ torch.save(ckpt, w / f'epoch{epoch}.pt')
+ del ckpt
+ callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+ # EarlyStopping
+ if RANK != -1: # if DDP training
+ broadcast_list = [stop if RANK == 0 else None]
+ dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
+ if RANK != 0:
+ stop = broadcast_list[0]
+ if stop:
+ break # must break all DDP ranks
+
+ # end epoch ----------------------------------------------------------------------------------------------------
+ # end training -----------------------------------------------------------------------------------------------------
+ if RANK in {-1, 0}:
+ LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
+ for f in last, best:
+ if f.exists():
+ strip_optimizer(f) # strip optimizers
+ if f is best:
+ LOGGER.info(f'\nValidating {f}...')
+ results, _, _ = validate.run(
+ data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ model=attempt_load(f, device).half(),
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ save_json=is_coco,
+ verbose=True,
+ plots=plots,
+ callbacks=callbacks,
+ compute_loss=compute_loss) # val best model with plots
+ if is_coco:
+ callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+
+ callbacks.run('on_train_end', last, best, epoch, results)
+
+ torch.cuda.empty_cache()
+ return results
+
+
+def parse_opt(known=False):
+ parser = argparse.ArgumentParser()
+ # parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='initial weights path')
+ # parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--weights', type=str, default='', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml path')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
+ parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-high.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+ parser.add_argument('--noplots', action='store_true', help='save no plot files')
+ parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+ parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
+ parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+ parser.add_argument('--flat-cos-lr', action='store_true', help='flat cosine LR scheduler')
+ parser.add_argument('--fixed-lr', action='store_true', help='fixed LR scheduler')
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+ parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+ parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+ parser.add_argument('--local_rank','--local-rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+ parser.add_argument('--min-items', type=int, default=0, help='Experimental')
+ parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
+
+ # Logger arguments
+ parser.add_argument('--entity', default=None, help='Entity')
+ parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
+ parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
+ parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
+
+ return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+ # Checks
+ if RANK in {-1, 0}:
+ print_args(vars(opt))
+ #check_git_status()
+ #check_requirements()
+
+ # Resume (from specified or most recent last.pt)
+ if opt.resume and not check_comet_resume(opt) and not opt.evolve:
+ last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+ opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
+ opt_data = opt.data # original dataset
+ if opt_yaml.is_file():
+ with open(opt_yaml, errors='ignore') as f:
+ d = yaml.safe_load(f)
+ else:
+ d = torch.load(last, map_location='cpu')['opt']
+ opt = argparse.Namespace(**d) # replace
+ opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
+ if is_url(opt_data):
+ opt.data = check_file(opt_data) # avoid HUB resume auth timeout
+ else:
+ opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
+ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+ if opt.evolve:
+ if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
+ opt.project = str(ROOT / 'runs/evolve')
+ opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
+ if opt.name == 'cfg':
+ opt.name = Path(opt.cfg).stem # use model.yaml as name
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+ # DDP mode
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if LOCAL_RANK != -1:
+ msg = 'is not compatible with YOLO Multi-GPU DDP training'
+ assert not opt.image_weights, f'--image-weights {msg}'
+ assert not opt.evolve, f'--evolve {msg}'
+ assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+ torch.cuda.set_device(LOCAL_RANK)
+ device = torch.device('cuda', LOCAL_RANK)
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+ # Train
+ if not opt.evolve:
+ train(opt.hyp, opt, device, callbacks)
+
+ # Evolve hyperparameters (optional)
+ else:
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+ meta = {
+ 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
+ 'box': (1, 0.02, 0.2), # box loss gain
+ 'cls': (1, 0.2, 4.0), # cls loss gain
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
+ 'mixup': (1, 0.0, 1.0), # image mixup (probability)
+ 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
+
+ with open(opt.hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
+ hyp['anchors'] = 3
+ if opt.noautoanchor:
+ del hyp['anchors'], meta['anchors']
+ opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
+ evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
+ if opt.bucket:
+ os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
+
+ for _ in range(opt.evolve): # generations to evolve
+ if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
+ # Select parent(s)
+ parent = 'single' # parent selection method: 'single' or 'weighted'
+ x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
+ n = min(5, len(x)) # number of previous results to consider
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
+ w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
+ if parent == 'single' or len(x) == 1:
+ # x = x[random.randint(0, n - 1)] # random selection
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
+ elif parent == 'weighted':
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
+
+ # Mutate
+ mp, s = 0.8, 0.2 # mutation probability, sigma
+ npr = np.random
+ npr.seed(int(time.time()))
+ g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
+ ng = len(meta)
+ v = np.ones(ng)
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
+
+ # Constrain to limits
+ for k, v in meta.items():
+ hyp[k] = max(hyp[k], v[1]) # lower limit
+ hyp[k] = min(hyp[k], v[2]) # upper limit
+ hyp[k] = round(hyp[k], 5) # significant digits
+
+ # Train mutation
+ results = train(hyp.copy(), opt, device, callbacks)
+ callbacks = Callbacks()
+ # Write mutation results
+ keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
+ 'val/obj_loss', 'val/cls_loss')
+ print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
+
+ # Plot results
+ plot_evolve(evolve_csv)
+ LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
+ f"Results saved to {colorstr('bold', save_dir)}\n"
+ f'Usage example: $ python train.py --hyp {evolve_yaml}')
+
+
+def run(**kwargs):
+ # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolo.pt')
+ opt = parse_opt(True)
+ for k, v in kwargs.items():
+ setattr(opt, k, v)
+ main(opt)
+ return opt
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/train_triple.py b/cv/3d_detection/yolov9/pytorch/train_triple.py
new file mode 100644
index 0000000000000000000000000000000000000000..4dbbc1eeec60eb1871aecefe9808af4d33260f6d
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/train_triple.py
@@ -0,0 +1,636 @@
+import argparse
+import math
+import os
+import random
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+import val_triple as validate # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import Model
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.downloads import attempt_download, is_url
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
+ check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
+ get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
+ labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
+ yaml_save)
+from utils.loggers import Loggers
+from utils.loggers.comet.comet_utils import check_comet_resume
+from utils.loss_tal_triple import ComputeLoss
+from utils.metrics import fitness
+from utils.plots import plot_evolve
+from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
+ smart_resume, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = None#check_git_info()
+
+
+def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
+ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
+ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
+ callbacks.run('on_pretrain_routine_start')
+
+ # Directories
+ w = save_dir / 'weights' # weights dir
+ (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
+ last, best = w / 'last.pt', w / 'best.pt'
+
+ # Hyperparameters
+ if isinstance(hyp, str):
+ with open(hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+ hyp['anchor_t'] = 5.0
+ opt.hyp = hyp.copy() # for saving hyps to checkpoints
+
+ # Save run settings
+ if not evolve:
+ yaml_save(save_dir / 'hyp.yaml', hyp)
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+ # Loggers
+ data_dict = None
+ if RANK in {-1, 0}:
+ loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
+
+ # Register actions
+ for k in methods(loggers):
+ callbacks.register_action(k, callback=getattr(loggers, k))
+
+ # Process custom dataset artifact link
+ data_dict = loggers.remote_dataset
+ if resume: # If resuming runs from remote artifact
+ weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
+
+ # Config
+ plots = not evolve and not opt.noplots # create plots
+ cuda = device.type != 'cpu'
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
+ with torch_distributed_zero_first(LOCAL_RANK):
+ data_dict = data_dict or check_dataset(data) # check if None
+ train_path, val_path = data_dict['train'], data_dict['val']
+ nc = 1 if single_cls else int(data_dict['nc']) # number of classes
+ names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
+ #is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
+ is_coco = isinstance(val_path, str) and val_path.endswith('val2017.txt') # COCO dataset
+
+ # Model
+ check_suffix(weights, '.pt') # check weights
+ pretrained = weights.endswith('.pt')
+ if pretrained:
+ with torch_distributed_zero_first(LOCAL_RANK):
+ weights = attempt_download(weights) # download if not found locally
+ ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
+ model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
+ exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
+ csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
+ model.load_state_dict(csd, strict=False) # load
+ LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
+ else:
+ model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
+ amp = check_amp(model) # check AMP
+
+ # Freeze
+ freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
+ for k, v in model.named_parameters():
+ # v.requires_grad = True # train all layers TODO: uncomment this line as in master
+ # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
+ if any(x in k for x in freeze):
+ LOGGER.info(f'freezing {k}')
+ v.requires_grad = False
+
+ # Image size
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
+ imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
+
+ # Batch size
+ if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
+ batch_size = check_train_batch_size(model, imgsz, amp)
+ loggers.on_params_update({"batch_size": batch_size})
+
+ # Optimizer
+ nbs = 64 # nominal batch size
+ accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
+ hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
+ optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
+
+ # Scheduler
+ if opt.cos_lr:
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
+ else:
+ lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
+
+ # def lf(x): # saw
+ # return (1 - (x % 30) / 30) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
+ #
+ # def lf(x): # triangle start at min
+ # return 2 * abs(x / 30 - math.floor(x / 30 + 1 / 2)) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
+ #
+ # def lf(x): # triangle start at max
+ # return 2 * abs(x / 32 + .5 - math.floor(x / 32 + 1)) * (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
+
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
+ # from utils.plots import plot_lr_scheduler; plot_lr_scheduler(optimizer, scheduler, epochs)
+
+ # EMA
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+ # Resume
+ best_fitness, start_epoch = 0.0, 0
+ if pretrained:
+ if resume:
+ best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+ del ckpt, csd
+
+ # DP mode
+ if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+ LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.')
+ model = torch.nn.DataParallel(model)
+
+ # SyncBatchNorm
+ if opt.sync_bn and cuda and RANK != -1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+ LOGGER.info('Using SyncBatchNorm()')
+
+ # Trainloader
+ train_loader, dataset = create_dataloader(train_path,
+ imgsz,
+ batch_size // WORLD_SIZE,
+ gs,
+ single_cls,
+ hyp=hyp,
+ augment=True,
+ cache=None if opt.cache == 'val' else opt.cache,
+ rect=opt.rect,
+ rank=LOCAL_RANK,
+ workers=workers,
+ image_weights=opt.image_weights,
+ close_mosaic=opt.close_mosaic != 0,
+ quad=opt.quad,
+ prefix=colorstr('train: '),
+ shuffle=True,
+ min_items=opt.min_items)
+ labels = np.concatenate(dataset.labels, 0)
+ mlc = int(labels[:, 0].max()) # max label class
+ assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
+
+ # Process 0
+ if RANK in {-1, 0}:
+ val_loader = create_dataloader(val_path,
+ imgsz,
+ batch_size // WORLD_SIZE * 2,
+ gs,
+ single_cls,
+ hyp=hyp,
+ cache=None if noval else opt.cache,
+ rect=True,
+ rank=-1,
+ workers=workers * 2,
+ pad=0.5,
+ prefix=colorstr('val: '))[0]
+
+ if not resume:
+ # if not opt.noautoanchor:
+ # check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
+ model.half().float() # pre-reduce anchor precision
+
+ callbacks.run('on_pretrain_routine_end', labels, names)
+
+ # DDP mode
+ if cuda and RANK != -1:
+ model = smart_DDP(model)
+
+ # Model attributes
+ nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
+ #hyp['box'] *= 3 / nl # scale to layers
+ #hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
+ #hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
+ hyp['label_smoothing'] = opt.label_smoothing
+ model.nc = nc # attach number of classes to model
+ model.hyp = hyp # attach hyperparameters to model
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
+ model.names = names
+
+ # Start training
+ t0 = time.time()
+ nb = len(train_loader) # number of batches
+ nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
+ last_opt_step = -1
+ maps = np.zeros(nc) # mAP per class
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+ scheduler.last_epoch = start_epoch - 1 # do not move
+ scaler = torch.cuda.amp.GradScaler(enabled=amp)
+ stopper, stop = EarlyStopping(patience=opt.patience), False
+ compute_loss = ComputeLoss(model) # init loss class
+ callbacks.run('on_train_start')
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
+ f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+ f"Logging results to {colorstr('bold', save_dir)}\n"
+ f'Starting training for {epochs} epochs...')
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
+ callbacks.run('on_train_epoch_start')
+ model.train()
+
+ # Update image weights (optional, single-GPU only)
+ if opt.image_weights:
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
+ if epoch == (epochs - opt.close_mosaic):
+ LOGGER.info("Closing dataloader mosaic")
+ dataset.mosaic = False
+
+ # Update mosaic border (optional)
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
+
+ mloss = torch.zeros(3, device=device) # mean losses
+ if RANK != -1:
+ train_loader.sampler.set_epoch(epoch)
+ pbar = enumerate(train_loader)
+ LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'cls_loss', 'dfl_loss', 'Instances', 'Size'))
+ if RANK in {-1, 0}:
+ pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
+ optimizer.zero_grad()
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
+ callbacks.run('on_train_batch_start')
+ ni = i + nb * epoch # number integrated batches (since train start)
+ imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
+
+ # Warmup
+ if ni <= nw:
+ xi = [0, nw] # x interp
+ # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+ for j, x in enumerate(optimizer.param_groups):
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
+ if 'momentum' in x:
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+ # Multi-scale
+ if opt.multi_scale:
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
+ sf = sz / max(imgs.shape[2:]) # scale factor
+ if sf != 1:
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
+ imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+ # Forward
+ with torch.cuda.amp.autocast(amp):
+ pred = model(imgs) # forward
+ loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
+ if RANK != -1:
+ loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
+ if opt.quad:
+ loss *= 4.
+
+ # Backward
+ scaler.scale(loss).backward()
+
+ # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+ if ni - last_opt_step >= accumulate:
+ scaler.unscale_(optimizer) # unscale gradients
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
+ scaler.step(optimizer) # optimizer.step
+ scaler.update()
+ optimizer.zero_grad()
+ if ema:
+ ema.update(model)
+ last_opt_step = ni
+
+ # Log
+ if RANK in {-1, 0}:
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
+ mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
+ pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
+ (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
+ callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
+ if callbacks.stop_training:
+ return
+ # end batch ------------------------------------------------------------------------------------------------
+
+ # Scheduler
+ lr = [x['lr'] for x in optimizer.param_groups] # for loggers
+ scheduler.step()
+
+ if RANK in {-1, 0}:
+ # mAP
+ callbacks.run('on_train_epoch_end', epoch=epoch)
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
+ final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+ if not noval or final_epoch: # Calculate mAP
+ results, maps, _ = validate.run(data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ half=amp,
+ model=ema.ema,
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ plots=False,
+ callbacks=callbacks,
+ compute_loss=compute_loss)
+
+ # Update best mAP
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+ stop = stopper(epoch=epoch, fitness=fi) # early stop check
+ if fi > best_fitness:
+ best_fitness = fi
+ log_vals = list(mloss) + list(results) + lr
+ callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+
+ # Save model
+ if (not nosave) or (final_epoch and not evolve): # if save
+ ckpt = {
+ 'epoch': epoch,
+ 'best_fitness': best_fitness,
+ 'model': deepcopy(de_parallel(model)).half(),
+ 'ema': deepcopy(ema.ema).half(),
+ 'updates': ema.updates,
+ 'optimizer': optimizer.state_dict(),
+ 'opt': vars(opt),
+ 'git': GIT_INFO, # {remote, branch, commit} if a git repo
+ 'date': datetime.now().isoformat()}
+
+ # Save last, best and delete
+ torch.save(ckpt, last)
+ if best_fitness == fi:
+ torch.save(ckpt, best)
+ if opt.save_period > 0 and epoch % opt.save_period == 0:
+ torch.save(ckpt, w / f'epoch{epoch}.pt')
+ del ckpt
+ callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+ # EarlyStopping
+ if RANK != -1: # if DDP training
+ broadcast_list = [stop if RANK == 0 else None]
+ dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
+ if RANK != 0:
+ stop = broadcast_list[0]
+ if stop:
+ break # must break all DDP ranks
+
+ # end epoch ----------------------------------------------------------------------------------------------------
+ # end training -----------------------------------------------------------------------------------------------------
+ if RANK in {-1, 0}:
+ LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
+ for f in last, best:
+ if f.exists():
+ strip_optimizer(f) # strip optimizers
+ if f is best:
+ LOGGER.info(f'\nValidating {f}...')
+ results, _, _ = validate.run(
+ data_dict,
+ batch_size=batch_size // WORLD_SIZE * 2,
+ imgsz=imgsz,
+ model=attempt_load(f, device).half(),
+ single_cls=single_cls,
+ dataloader=val_loader,
+ save_dir=save_dir,
+ save_json=is_coco,
+ verbose=True,
+ plots=plots,
+ callbacks=callbacks,
+ compute_loss=compute_loss) # val best model with plots
+ if is_coco:
+ callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+
+ callbacks.run('on_train_end', last, best, epoch, results)
+
+ torch.cuda.empty_cache()
+ return results
+
+
+def parse_opt(known=False):
+ parser = argparse.ArgumentParser()
+ # parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='initial weights path')
+ # parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--weights', type=str, default='', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml path')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
+ parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-high.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+ parser.add_argument('--noplots', action='store_true', help='save no plot files')
+ parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+ parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
+ parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+ parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+ parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+ parser.add_argument('--min-items', type=int, default=0, help='Experimental')
+ parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
+
+ # Logger arguments
+ parser.add_argument('--entity', default=None, help='Entity')
+ parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
+ parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
+ parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
+
+ return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+ # Checks
+ if RANK in {-1, 0}:
+ print_args(vars(opt))
+ #check_git_status()
+ #check_requirements()
+
+ # Resume (from specified or most recent last.pt)
+ if opt.resume and not check_comet_resume(opt) and not opt.evolve:
+ last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+ opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
+ opt_data = opt.data # original dataset
+ if opt_yaml.is_file():
+ with open(opt_yaml, errors='ignore') as f:
+ d = yaml.safe_load(f)
+ else:
+ d = torch.load(last, map_location='cpu')['opt']
+ opt = argparse.Namespace(**d) # replace
+ opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
+ if is_url(opt_data):
+ opt.data = check_file(opt_data) # avoid HUB resume auth timeout
+ else:
+ opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
+ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+ if opt.evolve:
+ if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
+ opt.project = str(ROOT / 'runs/evolve')
+ opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
+ if opt.name == 'cfg':
+ opt.name = Path(opt.cfg).stem # use model.yaml as name
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+ # DDP mode
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ if LOCAL_RANK != -1:
+ msg = 'is not compatible with YOLO Multi-GPU DDP training'
+ assert not opt.image_weights, f'--image-weights {msg}'
+ assert not opt.evolve, f'--evolve {msg}'
+ assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+ torch.cuda.set_device(LOCAL_RANK)
+ device = torch.device('cuda', LOCAL_RANK)
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+ # Train
+ if not opt.evolve:
+ train(opt.hyp, opt, device, callbacks)
+
+ # Evolve hyperparameters (optional)
+ else:
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+ meta = {
+ 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
+ 'box': (1, 0.02, 0.2), # box loss gain
+ 'cls': (1, 0.2, 4.0), # cls loss gain
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
+ 'mixup': (1, 0.0, 1.0), # image mixup (probability)
+ 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
+
+ with open(opt.hyp, errors='ignore') as f:
+ hyp = yaml.safe_load(f) # load hyps dict
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
+ hyp['anchors'] = 3
+ if opt.noautoanchor:
+ del hyp['anchors'], meta['anchors']
+ opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
+ evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
+ if opt.bucket:
+ os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
+
+ for _ in range(opt.evolve): # generations to evolve
+ if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
+ # Select parent(s)
+ parent = 'single' # parent selection method: 'single' or 'weighted'
+ x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
+ n = min(5, len(x)) # number of previous results to consider
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
+ w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
+ if parent == 'single' or len(x) == 1:
+ # x = x[random.randint(0, n - 1)] # random selection
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
+ elif parent == 'weighted':
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
+
+ # Mutate
+ mp, s = 0.8, 0.2 # mutation probability, sigma
+ npr = np.random
+ npr.seed(int(time.time()))
+ g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
+ ng = len(meta)
+ v = np.ones(ng)
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
+
+ # Constrain to limits
+ for k, v in meta.items():
+ hyp[k] = max(hyp[k], v[1]) # lower limit
+ hyp[k] = min(hyp[k], v[2]) # upper limit
+ hyp[k] = round(hyp[k], 5) # significant digits
+
+ # Train mutation
+ results = train(hyp.copy(), opt, device, callbacks)
+ callbacks = Callbacks()
+ # Write mutation results
+ keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
+ 'val/obj_loss', 'val/cls_loss')
+ print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
+
+ # Plot results
+ plot_evolve(evolve_csv)
+ LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
+ f"Results saved to {colorstr('bold', save_dir)}\n"
+ f'Usage example: $ python train.py --hyp {evolve_yaml}')
+
+
+def run(**kwargs):
+ # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolo.pt')
+ opt = parse_opt(True)
+ for k, v in kwargs.items():
+ setattr(opt, k, v)
+ main(opt)
+ return opt
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..3d1de89ab906487f1ef16c8de246f7da5e2f408c
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/__init__.py
@@ -0,0 +1,75 @@
+import contextlib
+import platform
+import threading
+
+
+def emojis(str=''):
+ # Return platform-dependent emoji-safe version of string
+ return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
+
+
+class TryExcept(contextlib.ContextDecorator):
+ # YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
+ def __init__(self, msg=''):
+ self.msg = msg
+
+ def __enter__(self):
+ pass
+
+ def __exit__(self, exc_type, value, traceback):
+ if value:
+ print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
+ return True
+
+
+def threaded(func):
+ # Multi-threads a target function and returns thread. Usage: @threaded decorator
+ def wrapper(*args, **kwargs):
+ thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
+ thread.start()
+ return thread
+
+ return wrapper
+
+
+def join_threads(verbose=False):
+ # Join all daemon threads, i.e. atexit.register(lambda: join_threads())
+ main_thread = threading.current_thread()
+ for t in threading.enumerate():
+ if t is not main_thread:
+ if verbose:
+ print(f'Joining thread {t.name}')
+ t.join()
+
+
+def notebook_init(verbose=True):
+ # Check system software and hardware
+ print('Checking setup...')
+
+ import os
+ import shutil
+
+ from utils.general import check_font, check_requirements, is_colab
+ from utils.torch_utils import select_device # imports
+
+ check_font()
+
+ import psutil
+ from IPython import display # to display images and clear console output
+
+ if is_colab():
+ shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
+
+ # System info
+ if verbose:
+ gb = 1 << 30 # bytes to GiB (1024 ** 3)
+ ram = psutil.virtual_memory().total
+ total, used, free = shutil.disk_usage("/")
+ display.clear_output()
+ s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
+ else:
+ s = ''
+
+ select_device(newline=False)
+ print(emojis(f'Setup complete ✅ {s}'))
+ return display
diff --git a/cv/3d_detection/yolov9/pytorch/utils/activations.py b/cv/3d_detection/yolov9/pytorch/utils/activations.py
new file mode 100644
index 0000000000000000000000000000000000000000..aeb00e6c7fc936ad596706c19a89ae7d2605f1c9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/activations.py
@@ -0,0 +1,98 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class SiLU(nn.Module):
+ # SiLU activation https://arxiv.org/pdf/1606.08415.pdf
+ @staticmethod
+ def forward(x):
+ return x * torch.sigmoid(x)
+
+
+class Hardswish(nn.Module):
+ # Hard-SiLU activation
+ @staticmethod
+ def forward(x):
+ # return x * F.hardsigmoid(x) # for TorchScript and CoreML
+ return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
+
+
+class Mish(nn.Module):
+ # Mish activation https://github.com/digantamisra98/Mish
+ @staticmethod
+ def forward(x):
+ return x * F.softplus(x).tanh()
+
+
+class MemoryEfficientMish(nn.Module):
+ # Mish activation memory-efficient
+ class F(torch.autograd.Function):
+
+ @staticmethod
+ def forward(ctx, x):
+ ctx.save_for_backward(x)
+ return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ x = ctx.saved_tensors[0]
+ sx = torch.sigmoid(x)
+ fx = F.softplus(x).tanh()
+ return grad_output * (fx + x * sx * (1 - fx * fx))
+
+ def forward(self, x):
+ return self.F.apply(x)
+
+
+class FReLU(nn.Module):
+ # FReLU activation https://arxiv.org/abs/2007.11824
+ def __init__(self, c1, k=3): # ch_in, kernel
+ super().__init__()
+ self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
+ self.bn = nn.BatchNorm2d(c1)
+
+ def forward(self, x):
+ return torch.max(x, self.bn(self.conv(x)))
+
+
+class AconC(nn.Module):
+ r""" ACON activation (activate or not)
+ AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
+ according to "Activate or Not: Learning Customized Activation" .
+ """
+
+ def __init__(self, c1):
+ super().__init__()
+ self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+ self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+ self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
+
+ def forward(self, x):
+ dpx = (self.p1 - self.p2) * x
+ return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
+
+
+class MetaAconC(nn.Module):
+ r""" ACON activation (activate or not)
+ MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
+ according to "Activate or Not: Learning Customized Activation" .
+ """
+
+ def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
+ super().__init__()
+ c2 = max(r, c1 // r)
+ self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+ self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+ self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
+ self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
+ # self.bn1 = nn.BatchNorm2d(c2)
+ # self.bn2 = nn.BatchNorm2d(c1)
+
+ def forward(self, x):
+ y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
+ # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
+ # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
+ beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
+ dpx = (self.p1 - self.p2) * x
+ return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
diff --git a/cv/3d_detection/yolov9/pytorch/utils/augmentations.py b/cv/3d_detection/yolov9/pytorch/utils/augmentations.py
new file mode 100644
index 0000000000000000000000000000000000000000..ad4c07fb69ea43a113b4fcd0bed58eb8dda13f71
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/augmentations.py
@@ -0,0 +1,395 @@
+import math
+import random
+
+import cv2
+import numpy as np
+import torch
+import torchvision.transforms as T
+import torchvision.transforms.functional as TF
+
+from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
+from utils.metrics import bbox_ioa
+
+IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
+IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
+
+
+class Albumentations:
+ # YOLOv5 Albumentations class (optional, only used if package is installed)
+ def __init__(self, size=640):
+ self.transform = None
+ prefix = colorstr('albumentations: ')
+ try:
+ import albumentations as A
+ check_version(A.__version__, '1.0.3', hard=True) # version requirement
+
+ T = [
+ A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
+ A.Blur(p=0.01),
+ A.MedianBlur(p=0.01),
+ A.ToGray(p=0.01),
+ A.CLAHE(p=0.01),
+ A.RandomBrightnessContrast(p=0.0),
+ A.RandomGamma(p=0.0),
+ A.ImageCompression(quality_lower=75, p=0.0)] # transforms
+ self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
+
+ LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
+ except ImportError: # package not installed, skip
+ pass
+ except Exception as e:
+ LOGGER.info(f'{prefix}{e}')
+
+ def __call__(self, im, labels, p=1.0):
+ if self.transform and random.random() < p:
+ new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
+ im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
+ return im, labels
+
+
+def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
+ # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
+ return TF.normalize(x, mean, std, inplace=inplace)
+
+
+def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
+ # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
+ for i in range(3):
+ x[:, i] = x[:, i] * std[i] + mean[i]
+ return x
+
+
+def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
+ # HSV color-space augmentation
+ if hgain or sgain or vgain:
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
+ hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
+ dtype = im.dtype # uint8
+
+ x = np.arange(0, 256, dtype=r.dtype)
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
+
+ im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
+ cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
+
+
+def hist_equalize(im, clahe=True, bgr=False):
+ # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
+ yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
+ if clahe:
+ c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
+ yuv[:, :, 0] = c.apply(yuv[:, :, 0])
+ else:
+ yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
+ return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
+
+
+def replicate(im, labels):
+ # Replicate labels
+ h, w = im.shape[:2]
+ boxes = labels[:, 1:].astype(int)
+ x1, y1, x2, y2 = boxes.T
+ s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
+ for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
+ x1b, y1b, x2b, y2b = boxes[i]
+ bh, bw = y2b - y1b, x2b - x1b
+ yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
+ x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
+ im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
+ labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
+
+ return im, labels
+
+
+def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
+ # Resize and pad image while meeting stride-multiple constraints
+ shape = im.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+ if not scaleup: # only scale down, do not scale up (for better val mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ ratio = r, r # width, height ratios
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+ if auto: # minimum rectangle
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
+ elif scaleFill: # stretch
+ dw, dh = 0.0, 0.0
+ new_unpad = (new_shape[1], new_shape[0])
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ if shape[::-1] != new_unpad: # resize
+ im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+ return im, ratio, (dw, dh)
+
+
+def random_perspective(im,
+ targets=(),
+ segments=(),
+ degrees=10,
+ translate=.1,
+ scale=.1,
+ shear=10,
+ perspective=0.0,
+ border=(0, 0)):
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
+ # targets = [cls, xyxy]
+
+ height = im.shape[0] + border[0] * 2 # shape(h,w,c)
+ width = im.shape[1] + border[1] * 2
+
+ # Center
+ C = np.eye(3)
+ C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
+ C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
+
+ # Perspective
+ P = np.eye(3)
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
+
+ # Rotation and Scale
+ R = np.eye(3)
+ a = random.uniform(-degrees, degrees)
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
+ s = random.uniform(1 - scale, 1 + scale)
+ # s = 2 ** random.uniform(-scale, scale)
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+ # Shear
+ S = np.eye(3)
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
+
+ # Translation
+ T = np.eye(3)
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
+
+ # Combined rotation matrix
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
+ if perspective:
+ im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
+ else: # affine
+ im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+ # Visualize
+ # import matplotlib.pyplot as plt
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+ # ax[0].imshow(im[:, :, ::-1]) # base
+ # ax[1].imshow(im2[:, :, ::-1]) # warped
+
+ # Transform label coordinates
+ n = len(targets)
+ if n:
+ use_segments = any(x.any() for x in segments)
+ new = np.zeros((n, 4))
+ if use_segments: # warp segments
+ segments = resample_segments(segments) # upsample
+ for i, segment in enumerate(segments):
+ xy = np.ones((len(segment), 3))
+ xy[:, :2] = segment
+ xy = xy @ M.T # transform
+ xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
+
+ # clip
+ new[i] = segment2box(xy, width, height)
+
+ else: # warp boxes
+ xy = np.ones((n * 4, 3))
+ xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
+ xy = xy @ M.T # transform
+ xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
+
+ # create new boxes
+ x = xy[:, [0, 2, 4, 6]]
+ y = xy[:, [1, 3, 5, 7]]
+ new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
+
+ # clip
+ new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
+ new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
+
+ # filter candidates
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
+ targets = targets[i]
+ targets[:, 1:5] = new[i]
+
+ return im, targets
+
+
+def copy_paste(im, labels, segments, p=0.5):
+ # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+ n = len(segments)
+ if p and n:
+ h, w, c = im.shape # height, width, channels
+ im_new = np.zeros(im.shape, np.uint8)
+
+ # calculate ioa first then select indexes randomly
+ boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4)
+ ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area
+ indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
+ n = len(indexes)
+ for j in random.sample(list(indexes), k=round(p * n)):
+ l, box, s = labels[j], boxes[j], segments[j]
+ labels = np.concatenate((labels, [[l[0], *box]]), 0)
+ segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
+ cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
+
+ result = cv2.flip(im, 1) # augment segments (flip left-right)
+ i = cv2.flip(im_new, 1).astype(bool)
+ im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
+
+ return im, labels, segments
+
+
+def cutout(im, labels, p=0.5):
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
+ if random.random() < p:
+ h, w = im.shape[:2]
+ scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
+ for s in scales:
+ mask_h = random.randint(1, int(h * s)) # create random masks
+ mask_w = random.randint(1, int(w * s))
+
+ # box
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
+ xmax = min(w, xmin + mask_w)
+ ymax = min(h, ymin + mask_h)
+
+ # apply random color mask
+ im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
+
+ # return unobscured labels
+ if len(labels) and s > 0.03:
+ box = np.array([[xmin, ymin, xmax, ymax]], dtype=np.float32)
+ ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h))[0] # intersection over area
+ labels = labels[ioa < 0.60] # remove >60% obscured labels
+
+ return labels
+
+
+def mixup(im, labels, im2, labels2):
+ # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
+ r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
+ im = (im * r + im2 * (1 - r)).astype(np.uint8)
+ labels = np.concatenate((labels, labels2), 0)
+ return im, labels
+
+
+def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
+ # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
+ ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
+
+
+def classify_albumentations(
+ augment=True,
+ size=224,
+ scale=(0.08, 1.0),
+ ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
+ hflip=0.5,
+ vflip=0.0,
+ jitter=0.4,
+ mean=IMAGENET_MEAN,
+ std=IMAGENET_STD,
+ auto_aug=False):
+ # YOLOv5 classification Albumentations (optional, only used if package is installed)
+ prefix = colorstr('albumentations: ')
+ try:
+ import albumentations as A
+ from albumentations.pytorch import ToTensorV2
+ check_version(A.__version__, '1.0.3', hard=True) # version requirement
+ if augment: # Resize and crop
+ T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
+ if auto_aug:
+ # TODO: implement AugMix, AutoAug & RandAug in albumentation
+ LOGGER.info(f'{prefix}auto augmentations are currently not supported')
+ else:
+ if hflip > 0:
+ T += [A.HorizontalFlip(p=hflip)]
+ if vflip > 0:
+ T += [A.VerticalFlip(p=vflip)]
+ if jitter > 0:
+ color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue
+ T += [A.ColorJitter(*color_jitter, 0)]
+ else: # Use fixed crop for eval set (reproducibility)
+ T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
+ T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
+ LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
+ return A.Compose(T)
+
+ except ImportError: # package not installed, skip
+ LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)')
+ except Exception as e:
+ LOGGER.info(f'{prefix}{e}')
+
+
+def classify_transforms(size=224):
+ # Transforms to apply if albumentations not installed
+ assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)'
+ # T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
+ return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
+
+
+class LetterBox:
+ # YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
+ def __init__(self, size=(640, 640), auto=False, stride=32):
+ super().__init__()
+ self.h, self.w = (size, size) if isinstance(size, int) else size
+ self.auto = auto # pass max size integer, automatically solve for short side using stride
+ self.stride = stride # used with auto
+
+ def __call__(self, im): # im = np.array HWC
+ imh, imw = im.shape[:2]
+ r = min(self.h / imh, self.w / imw) # ratio of new/old
+ h, w = round(imh * r), round(imw * r) # resized image
+ hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
+ top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
+ im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
+ im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
+ return im_out
+
+
+class CenterCrop:
+ # YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
+ def __init__(self, size=640):
+ super().__init__()
+ self.h, self.w = (size, size) if isinstance(size, int) else size
+
+ def __call__(self, im): # im = np.array HWC
+ imh, imw = im.shape[:2]
+ m = min(imh, imw) # min dimension
+ top, left = (imh - m) // 2, (imw - m) // 2
+ return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
+
+
+class ToTensor:
+ # YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
+ def __init__(self, half=False):
+ super().__init__()
+ self.half = half
+
+ def __call__(self, im): # im = np.array HWC in BGR order
+ im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
+ im = torch.from_numpy(im) # to torch
+ im = im.half() if self.half else im.float() # uint8 to fp16/32
+ im /= 255.0 # 0-255 to 0.0-1.0
+ return im
diff --git a/cv/3d_detection/yolov9/pytorch/utils/autoanchor.py b/cv/3d_detection/yolov9/pytorch/utils/autoanchor.py
new file mode 100644
index 0000000000000000000000000000000000000000..bd81af92c93353786ebcaced0cc2bbb419378071
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/autoanchor.py
@@ -0,0 +1,164 @@
+import random
+
+import numpy as np
+import torch
+import yaml
+from tqdm import tqdm
+
+from utils import TryExcept
+from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
+
+PREFIX = colorstr('AutoAnchor: ')
+
+
+def check_anchor_order(m):
+ # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
+ a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
+ da = a[-1] - a[0] # delta a
+ ds = m.stride[-1] - m.stride[0] # delta s
+ if da and (da.sign() != ds.sign()): # same order
+ LOGGER.info(f'{PREFIX}Reversing anchor order')
+ m.anchors[:] = m.anchors.flip(0)
+
+
+@TryExcept(f'{PREFIX}ERROR')
+def check_anchors(dataset, model, thr=4.0, imgsz=640):
+ # Check anchor fit to data, recompute if necessary
+ m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
+ shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+ scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
+ wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
+
+ def metric(k): # compute metric
+ r = wh[:, None] / k[None]
+ x = torch.min(r, 1 / r).min(2)[0] # ratio metric
+ best = x.max(1)[0] # best_x
+ aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
+ bpr = (best > 1 / thr).float().mean() # best possible recall
+ return bpr, aat
+
+ stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
+ anchors = m.anchors.clone() * stride # current anchors
+ bpr, aat = metric(anchors.cpu().view(-1, 2))
+ s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
+ if bpr > 0.98: # threshold to recompute
+ LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
+ else:
+ LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
+ na = m.anchors.numel() // 2 # number of anchors
+ anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
+ new_bpr = metric(anchors)[0]
+ if new_bpr > bpr: # replace anchors
+ anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
+ m.anchors[:] = anchors.clone().view_as(m.anchors)
+ check_anchor_order(m) # must be in pixel-space (not grid-space)
+ m.anchors /= stride
+ s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
+ else:
+ s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
+ LOGGER.info(s)
+
+
+def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
+ """ Creates kmeans-evolved anchors from training dataset
+
+ Arguments:
+ dataset: path to data.yaml, or a loaded dataset
+ n: number of anchors
+ img_size: image size used for training
+ thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
+ gen: generations to evolve anchors using genetic algorithm
+ verbose: print all results
+
+ Return:
+ k: kmeans evolved anchors
+
+ Usage:
+ from utils.autoanchor import *; _ = kmean_anchors()
+ """
+ from scipy.cluster.vq import kmeans
+
+ npr = np.random
+ thr = 1 / thr
+
+ def metric(k, wh): # compute metrics
+ r = wh[:, None] / k[None]
+ x = torch.min(r, 1 / r).min(2)[0] # ratio metric
+ # x = wh_iou(wh, torch.tensor(k)) # iou metric
+ return x, x.max(1)[0] # x, best_x
+
+ def anchor_fitness(k): # mutation fitness
+ _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
+ return (best * (best > thr).float()).mean() # fitness
+
+ def print_results(k, verbose=True):
+ k = k[np.argsort(k.prod(1))] # sort small to large
+ x, best = metric(k, wh0)
+ bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
+ s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
+ f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
+ f'past_thr={x[x > thr].mean():.3f}-mean: '
+ for x in k:
+ s += '%i,%i, ' % (round(x[0]), round(x[1]))
+ if verbose:
+ LOGGER.info(s[:-2])
+ return k
+
+ if isinstance(dataset, str): # *.yaml file
+ with open(dataset, errors='ignore') as f:
+ data_dict = yaml.safe_load(f) # model dict
+ from utils.dataloaders import LoadImagesAndLabels
+ dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
+
+ # Get label wh
+ shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+ wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
+
+ # Filter
+ i = (wh0 < 3.0).any(1).sum()
+ if i:
+ LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
+ wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
+ # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
+
+ # Kmeans init
+ try:
+ LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
+ assert n <= len(wh) # apply overdetermined constraint
+ s = wh.std(0) # sigmas for whitening
+ k = kmeans(wh / s, n, iter=30)[0] * s # points
+ assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
+ except Exception:
+ LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
+ k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
+ wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
+ k = print_results(k, verbose=False)
+
+ # Plot
+ # k, d = [None] * 20, [None] * 20
+ # for i in tqdm(range(1, 21)):
+ # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
+ # ax = ax.ravel()
+ # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
+ # ax[0].hist(wh[wh[:, 0]<100, 0],400)
+ # ax[1].hist(wh[wh[:, 1]<100, 1],400)
+ # fig.savefig('wh.png', dpi=200)
+
+ # Evolve
+ f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
+ pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar
+ for _ in pbar:
+ v = np.ones(sh)
+ while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
+ v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
+ kg = (k.copy() * v).clip(min=2.0)
+ fg = anchor_fitness(kg)
+ if fg > f:
+ f, k = fg, kg.copy()
+ pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
+ if verbose:
+ print_results(k, verbose)
+
+ return print_results(k).astype(np.float32)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/autobatch.py b/cv/3d_detection/yolov9/pytorch/utils/autobatch.py
new file mode 100644
index 0000000000000000000000000000000000000000..a5f0d519e59f7b13ef67e8934b61a2cd30770701
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/autobatch.py
@@ -0,0 +1,67 @@
+from copy import deepcopy
+
+import numpy as np
+import torch
+
+from utils.general import LOGGER, colorstr
+from utils.torch_utils import profile
+
+
+def check_train_batch_size(model, imgsz=640, amp=True):
+ # Check YOLOv5 training batch size
+ with torch.cuda.amp.autocast(amp):
+ return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
+
+
+def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
+ # Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory
+ # Usage:
+ # import torch
+ # from utils.autobatch import autobatch
+ # model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
+ # print(autobatch(model))
+
+ # Check device
+ prefix = colorstr('AutoBatch: ')
+ LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
+ device = next(model.parameters()).device # get model device
+ if device.type == 'cpu':
+ LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
+ return batch_size
+ if torch.backends.cudnn.benchmark:
+ LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
+ return batch_size
+
+ # Inspect CUDA memory
+ gb = 1 << 30 # bytes to GiB (1024 ** 3)
+ d = str(device).upper() # 'CUDA:0'
+ properties = torch.cuda.get_device_properties(device) # device properties
+ t = properties.total_memory / gb # GiB total
+ r = torch.cuda.memory_reserved(device) / gb # GiB reserved
+ a = torch.cuda.memory_allocated(device) / gb # GiB allocated
+ f = t - (r + a) # GiB free
+ LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
+
+ # Profile batch sizes
+ batch_sizes = [1, 2, 4, 8, 16]
+ try:
+ img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
+ results = profile(img, model, n=3, device=device)
+ except Exception as e:
+ LOGGER.warning(f'{prefix}{e}')
+
+ # Fit a solution
+ y = [x[2] for x in results if x] # memory [2]
+ p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
+ b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
+ if None in results: # some sizes failed
+ i = results.index(None) # first fail index
+ if b >= batch_sizes[i]: # y intercept above failure point
+ b = batch_sizes[max(i - 1, 0)] # select prior safe point
+ if b < 1 or b > 1024: # b outside of safe range
+ b = batch_size
+ LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
+
+ fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
+ LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
+ return b
diff --git a/cv/3d_detection/yolov9/pytorch/utils/callbacks.py b/cv/3d_detection/yolov9/pytorch/utils/callbacks.py
new file mode 100644
index 0000000000000000000000000000000000000000..893708bb7fcc10b0e51f5b51360a2c2c86afe462
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/callbacks.py
@@ -0,0 +1,71 @@
+import threading
+
+
+class Callbacks:
+ """"
+ Handles all registered callbacks for YOLOv5 Hooks
+ """
+
+ def __init__(self):
+ # Define the available callbacks
+ self._callbacks = {
+ 'on_pretrain_routine_start': [],
+ 'on_pretrain_routine_end': [],
+ 'on_train_start': [],
+ 'on_train_epoch_start': [],
+ 'on_train_batch_start': [],
+ 'optimizer_step': [],
+ 'on_before_zero_grad': [],
+ 'on_train_batch_end': [],
+ 'on_train_epoch_end': [],
+ 'on_val_start': [],
+ 'on_val_batch_start': [],
+ 'on_val_image_end': [],
+ 'on_val_batch_end': [],
+ 'on_val_end': [],
+ 'on_fit_epoch_end': [], # fit = train + val
+ 'on_model_save': [],
+ 'on_train_end': [],
+ 'on_params_update': [],
+ 'teardown': [],}
+ self.stop_training = False # set True to interrupt training
+
+ def register_action(self, hook, name='', callback=None):
+ """
+ Register a new action to a callback hook
+
+ Args:
+ hook: The callback hook name to register the action to
+ name: The name of the action for later reference
+ callback: The callback to fire
+ """
+ assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
+ assert callable(callback), f"callback '{callback}' is not callable"
+ self._callbacks[hook].append({'name': name, 'callback': callback})
+
+ def get_registered_actions(self, hook=None):
+ """"
+ Returns all the registered actions by callback hook
+
+ Args:
+ hook: The name of the hook to check, defaults to all
+ """
+ return self._callbacks[hook] if hook else self._callbacks
+
+ def run(self, hook, *args, thread=False, **kwargs):
+ """
+ Loop through the registered actions and fire all callbacks on main thread
+
+ Args:
+ hook: The name of the hook to check, defaults to all
+ args: Arguments to receive from YOLOv5
+ thread: (boolean) Run callbacks in daemon thread
+ kwargs: Keyword Arguments to receive from YOLOv5
+ """
+
+ assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
+ for logger in self._callbacks[hook]:
+ if thread:
+ threading.Thread(target=logger['callback'], args=args, kwargs=kwargs, daemon=True).start()
+ else:
+ logger['callback'](*args, **kwargs)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/coco_utils.py b/cv/3d_detection/yolov9/pytorch/utils/coco_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..87fa6e935a413f405f27ac8641390faf3ec10635
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/coco_utils.py
@@ -0,0 +1,108 @@
+import cv2
+
+from pycocotools.coco import COCO
+from pycocotools import mask as maskUtils
+
+# coco id: https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
+all_instances_ids = [
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 13, 14, 15, 16, 17, 18, 19, 20,
+ 21, 22, 23, 24, 25, 27, 28,
+ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
+ 41, 42, 43, 44, 46, 47, 48, 49, 50,
+ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
+ 61, 62, 63, 64, 65, 67, 70,
+ 72, 73, 74, 75, 76, 77, 78, 79, 80,
+ 81, 82, 84, 85, 86, 87, 88, 89, 90,
+]
+
+all_stuff_ids = [
+ 92, 93, 94, 95, 96, 97, 98, 99, 100,
+ 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
+ 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
+ 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
+ 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
+ 141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
+ 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
+ 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
+ 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
+ 181, 182,
+ # other
+ 183,
+ # unlabeled
+ 0,
+]
+
+# panoptic id: https://github.com/cocodataset/panopticapi/blob/master/panoptic_coco_categories.json
+panoptic_stuff_ids = [
+ 92, 93, 95, 100,
+ 107, 109,
+ 112, 118, 119,
+ 122, 125, 128, 130,
+ 133, 138,
+ 141, 144, 145, 147, 148, 149,
+ 151, 154, 155, 156, 159,
+ 161, 166, 168,
+ 171, 175, 176, 177, 178, 180,
+ 181, 184, 185, 186, 187, 188, 189, 190,
+ 191, 192, 193, 194, 195, 196, 197, 198, 199, 200,
+ # unlabeled
+ 0,
+]
+
+def getCocoIds(name = 'semantic'):
+ if 'instances' == name:
+ return all_instances_ids
+ elif 'stuff' == name:
+ return all_stuff_ids
+ elif 'panoptic' == name:
+ return all_instances_ids + panoptic_stuff_ids
+ else: # semantic
+ return all_instances_ids + all_stuff_ids
+
+def getMappingId(index, name = 'semantic'):
+ ids = getCocoIds(name = name)
+ return ids[index]
+
+def getMappingIndex(id, name = 'semantic'):
+ ids = getCocoIds(name = name)
+ return ids.index(id)
+
+# convert ann to rle encoded string
+def annToRLE(ann, img_size):
+ h, w = img_size
+ segm = ann['segmentation']
+ if list == type(segm):
+ # polygon -- a single object might consist of multiple parts
+ # we merge all parts into one mask rle code
+ rles = maskUtils.frPyObjects(segm, h, w)
+ rle = maskUtils.merge(rles)
+ elif list == type(segm['counts']):
+ # uncompressed RLE
+ rle = maskUtils.frPyObjects(segm, h, w)
+ else:
+ # rle
+ rle = ann['segmentation']
+ return rle
+
+# decode ann to mask martix
+def annToMask(ann, img_size):
+ rle = annToRLE(ann, img_size)
+ m = maskUtils.decode(rle)
+ return m
+
+# convert mask to polygans
+def convert_to_polys(mask):
+ # opencv 3.2
+ contours, hierarchy = cv2.findContours((mask).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+
+ # before opencv 3.2
+ # contours, hierarchy = cv2.findContours((mask).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+
+ segmentation = []
+ for contour in contours:
+ contour = contour.flatten().tolist()
+ if 4 < len(contour):
+ segmentation.append(contour)
+
+ return segmentation
diff --git a/cv/3d_detection/yolov9/pytorch/utils/dataloaders.py b/cv/3d_detection/yolov9/pytorch/utils/dataloaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..77604299954f7f7207370f83f6c01530f76fcbc1
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/dataloaders.py
@@ -0,0 +1,1217 @@
+import contextlib
+import glob
+import hashlib
+import json
+import math
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import Pool, ThreadPool
+from pathlib import Path
+from threading import Thread
+from urllib.parse import urlparse
+
+import numpy as np
+import psutil
+import torch
+import torch.nn.functional as F
+import torchvision
+import yaml
+from PIL import ExifTags, Image, ImageOps
+from torch.utils.data import DataLoader, Dataset, dataloader, distributed
+from tqdm import tqdm
+
+from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
+ letterbox, mixup, random_perspective)
+from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements,
+ check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy,
+ xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
+IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # include image suffixes
+VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+ if ExifTags.TAGS[orientation] == 'Orientation':
+ break
+
+
+def get_hash(paths):
+ # Returns a single hash value of a list of paths (files or dirs)
+ size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
+ h = hashlib.md5(str(size).encode()) # hash sizes
+ h.update(''.join(paths).encode()) # hash paths
+ return h.hexdigest() # return hash
+
+
+def exif_size(img):
+ # Returns exif-corrected PIL size
+ s = img.size # (width, height)
+ with contextlib.suppress(Exception):
+ rotation = dict(img._getexif().items())[orientation]
+ if rotation in [6, 8]: # rotation 270 or 90
+ s = (s[1], s[0])
+ return s
+
+
+def exif_transpose(image):
+ """
+ Transpose a PIL image accordingly if it has an EXIF Orientation tag.
+ Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
+
+ :param image: The image to transpose.
+ :return: An image.
+ """
+ exif = image.getexif()
+ orientation = exif.get(0x0112, 1) # default 1
+ if orientation > 1:
+ method = {
+ 2: Image.FLIP_LEFT_RIGHT,
+ 3: Image.ROTATE_180,
+ 4: Image.FLIP_TOP_BOTTOM,
+ 5: Image.TRANSPOSE,
+ 6: Image.ROTATE_270,
+ 7: Image.TRANSVERSE,
+ 8: Image.ROTATE_90}.get(orientation)
+ if method is not None:
+ image = image.transpose(method)
+ del exif[0x0112]
+ image.info["exif"] = exif.tobytes()
+ return image
+
+
+def seed_worker(worker_id):
+ # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
+ worker_seed = torch.initial_seed() % 2 ** 32
+ np.random.seed(worker_seed)
+ random.seed(worker_seed)
+
+
+def create_dataloader(path,
+ imgsz,
+ batch_size,
+ stride,
+ single_cls=False,
+ hyp=None,
+ augment=False,
+ cache=False,
+ pad=0.0,
+ rect=False,
+ rank=-1,
+ workers=8,
+ image_weights=False,
+ close_mosaic=False,
+ quad=False,
+ min_items=0,
+ prefix='',
+ shuffle=False):
+ if rect and shuffle:
+ LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
+ shuffle = False
+ with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
+ dataset = LoadImagesAndLabels(
+ path,
+ imgsz,
+ batch_size,
+ augment=augment, # augmentation
+ hyp=hyp, # hyperparameters
+ rect=rect, # rectangular batches
+ cache_images=cache,
+ single_cls=single_cls,
+ stride=int(stride),
+ pad=pad,
+ image_weights=image_weights,
+ min_items=min_items,
+ prefix=prefix)
+
+ batch_size = min(batch_size, len(dataset))
+ nd = torch.cuda.device_count() # number of CUDA devices
+ nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
+ sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+ #loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
+ loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader
+ generator = torch.Generator()
+ generator.manual_seed(6148914691236517205 + RANK)
+ return loader(dataset,
+ batch_size=batch_size,
+ shuffle=shuffle and sampler is None,
+ num_workers=nw,
+ sampler=sampler,
+ pin_memory=PIN_MEMORY,
+ collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn,
+ worker_init_fn=seed_worker,
+ generator=generator), dataset
+
+
+class InfiniteDataLoader(dataloader.DataLoader):
+ """ Dataloader that reuses workers
+
+ Uses same syntax as vanilla DataLoader
+ """
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
+ self.iterator = super().__iter__()
+
+ def __len__(self):
+ return len(self.batch_sampler.sampler)
+
+ def __iter__(self):
+ for _ in range(len(self)):
+ yield next(self.iterator)
+
+
+class _RepeatSampler:
+ """ Sampler that repeats forever
+
+ Args:
+ sampler (Sampler)
+ """
+
+ def __init__(self, sampler):
+ self.sampler = sampler
+
+ def __iter__(self):
+ while True:
+ yield from iter(self.sampler)
+
+
+class LoadScreenshots:
+ # YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
+ def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None):
+ # source = [screen_number left top width height] (pixels)
+ check_requirements('mss')
+ import mss
+
+ source, *params = source.split()
+ self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
+ if len(params) == 1:
+ self.screen = int(params[0])
+ elif len(params) == 4:
+ left, top, width, height = (int(x) for x in params)
+ elif len(params) == 5:
+ self.screen, left, top, width, height = (int(x) for x in params)
+ self.img_size = img_size
+ self.stride = stride
+ self.transforms = transforms
+ self.auto = auto
+ self.mode = 'stream'
+ self.frame = 0
+ self.sct = mss.mss()
+
+ # Parse monitor shape
+ monitor = self.sct.monitors[self.screen]
+ self.top = monitor["top"] if top is None else (monitor["top"] + top)
+ self.left = monitor["left"] if left is None else (monitor["left"] + left)
+ self.width = width or monitor["width"]
+ self.height = height or monitor["height"]
+ self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
+
+ def __iter__(self):
+ return self
+
+ def __next__(self):
+ # mss screen capture: get raw pixels from the screen as np array
+ im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
+ s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
+
+ if self.transforms:
+ im = self.transforms(im0) # transforms
+ else:
+ im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
+ im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
+ im = np.ascontiguousarray(im) # contiguous
+ self.frame += 1
+ return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
+
+
+class LoadImages:
+ # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
+ def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
+ files = []
+ for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
+ p = str(Path(p).resolve())
+ if '*' in p:
+ files.extend(sorted(glob.glob(p, recursive=True))) # glob
+ elif os.path.isdir(p):
+ files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
+ elif os.path.isfile(p):
+ files.append(p) # files
+ else:
+ raise FileNotFoundError(f'{p} does not exist')
+
+ images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
+ videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
+ ni, nv = len(images), len(videos)
+
+ self.img_size = img_size
+ self.stride = stride
+ self.files = images + videos
+ self.nf = ni + nv # number of files
+ self.video_flag = [False] * ni + [True] * nv
+ self.mode = 'image'
+ self.auto = auto
+ self.transforms = transforms # optional
+ self.vid_stride = vid_stride # video frame-rate stride
+ if any(videos):
+ self._new_video(videos[0]) # new video
+ else:
+ self.cap = None
+ assert self.nf > 0, f'No images or videos found in {p}. ' \
+ f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
+
+ def __iter__(self):
+ self.count = 0
+ return self
+
+ def __next__(self):
+ if self.count == self.nf:
+ raise StopIteration
+ path = self.files[self.count]
+
+ if self.video_flag[self.count]:
+ # Read video
+ self.mode = 'video'
+ for _ in range(self.vid_stride):
+ self.cap.grab()
+ ret_val, im0 = self.cap.retrieve()
+ while not ret_val:
+ self.count += 1
+ self.cap.release()
+ if self.count == self.nf: # last video
+ raise StopIteration
+ path = self.files[self.count]
+ self._new_video(path)
+ ret_val, im0 = self.cap.read()
+
+ self.frame += 1
+ # im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
+ s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
+
+ else:
+ # Read image
+ self.count += 1
+ im0 = cv2.imread(path) # BGR
+ assert im0 is not None, f'Image Not Found {path}'
+ s = f'image {self.count}/{self.nf} {path}: '
+
+ if self.transforms:
+ im = self.transforms(im0) # transforms
+ else:
+ im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
+ im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
+ im = np.ascontiguousarray(im) # contiguous
+
+ return path, im, im0, self.cap, s
+
+ def _new_video(self, path):
+ # Create a new video capture object
+ self.frame = 0
+ self.cap = cv2.VideoCapture(path)
+ self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
+ self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees
+ # self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) # disable https://github.com/ultralytics/yolov5/issues/8493
+
+ def _cv2_rotate(self, im):
+ # Rotate a cv2 video manually
+ if self.orientation == 0:
+ return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
+ elif self.orientation == 180:
+ return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
+ elif self.orientation == 90:
+ return cv2.rotate(im, cv2.ROTATE_180)
+ return im
+
+ def __len__(self):
+ return self.nf # number of files
+
+
+class LoadStreams:
+ # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
+ def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
+ torch.backends.cudnn.benchmark = True # faster for fixed-size inference
+ self.mode = 'stream'
+ self.img_size = img_size
+ self.stride = stride
+ self.vid_stride = vid_stride # video frame-rate stride
+ sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
+ n = len(sources)
+ self.sources = [clean_str(x) for x in sources] # clean source names for later
+ self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
+ for i, s in enumerate(sources): # index, source
+ # Start thread to read frames from video stream
+ st = f'{i + 1}/{n}: {s}... '
+ if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
+ # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
+ check_requirements(('pafy', 'youtube_dl==2020.12.2'))
+ import pafy
+ s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
+ s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
+ if s == 0:
+ assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
+ assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
+ cap = cv2.VideoCapture(s)
+ assert cap.isOpened(), f'{st}Failed to open {s}'
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
+ self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
+ self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
+
+ _, self.imgs[i] = cap.read() # guarantee first frame
+ self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
+ LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
+ self.threads[i].start()
+ LOGGER.info('') # newline
+
+ # check for common shapes
+ s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs])
+ self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
+ self.auto = auto and self.rect
+ self.transforms = transforms # optional
+ if not self.rect:
+ LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.')
+
+ def update(self, i, cap, stream):
+ # Read stream `i` frames in daemon thread
+ n, f = 0, self.frames[i] # frame number, frame array
+ while cap.isOpened() and n < f:
+ n += 1
+ cap.grab() # .read() = .grab() followed by .retrieve()
+ if n % self.vid_stride == 0:
+ success, im = cap.retrieve()
+ if success:
+ self.imgs[i] = im
+ else:
+ LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
+ self.imgs[i] = np.zeros_like(self.imgs[i])
+ cap.open(stream) # re-open stream if signal was lost
+ time.sleep(0.0) # wait time
+
+ def __iter__(self):
+ self.count = -1
+ return self
+
+ def __next__(self):
+ self.count += 1
+ if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
+ cv2.destroyAllWindows()
+ raise StopIteration
+
+ im0 = self.imgs.copy()
+ if self.transforms:
+ im = np.stack([self.transforms(x) for x in im0]) # transforms
+ else:
+ im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0]) # resize
+ im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
+ im = np.ascontiguousarray(im) # contiguous
+
+ return self.sources, im, im0, None, ''
+
+ def __len__(self):
+ return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+def img2label_paths(img_paths):
+ # Define label paths as a function of image paths
+ sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
+ return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
+
+
+class LoadImagesAndLabels(Dataset):
+ # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
+ cache_version = 0.6 # dataset labels *.cache version
+ rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
+
+ def __init__(self,
+ path,
+ img_size=640,
+ batch_size=16,
+ augment=False,
+ hyp=None,
+ rect=False,
+ image_weights=False,
+ cache_images=False,
+ single_cls=False,
+ stride=32,
+ pad=0.0,
+ min_items=0,
+ prefix=''):
+ self.img_size = img_size
+ self.augment = augment
+ self.hyp = hyp
+ self.image_weights = image_weights
+ self.rect = False if image_weights else rect
+ self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
+ self.stride = stride
+ self.path = path
+ self.albumentations = Albumentations(size=img_size) if augment else None
+
+ try:
+ f = [] # image files
+ for p in path if isinstance(path, list) else [path]:
+ p = Path(p) # os-agnostic
+ if p.is_dir(): # dir
+ f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+ # f = list(p.rglob('*.*')) # pathlib
+ elif p.is_file(): # file
+ with open(p) as t:
+ t = t.read().strip().splitlines()
+ parent = str(p.parent) + os.sep
+ f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t] # to global path
+ # f += [p.parent / x.lstrip(os.sep) for x in t] # to global path (pathlib)
+ else:
+ raise FileNotFoundError(f'{prefix}{p} does not exist')
+ self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
+ # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
+ assert self.im_files, f'{prefix}No images found'
+ except Exception as e:
+ raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
+
+ # Check cache
+ self.label_files = img2label_paths(self.im_files) # labels
+ cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
+ try:
+ cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
+ assert cache['version'] == self.cache_version # matches current version
+ assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash
+ except Exception:
+ cache, exists = self.cache_labels(cache_path, prefix), False # run cache ops
+
+ # Display cache
+ nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
+ if exists and LOCAL_RANK in {-1, 0}:
+ d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
+ tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results
+ if cache['msgs']:
+ LOGGER.info('\n'.join(cache['msgs'])) # display warnings
+ assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
+
+ # Read cache
+ [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
+ labels, shapes, self.segments = zip(*cache.values())
+ nl = len(np.concatenate(labels, 0)) # number of labels
+ assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}'
+ self.labels = list(labels)
+ self.shapes = np.array(shapes)
+ self.im_files = list(cache.keys()) # update
+ self.label_files = img2label_paths(cache.keys()) # update
+
+ # Filter images
+ if min_items:
+ include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int)
+ LOGGER.info(f'{prefix}{n - len(include)}/{n} images filtered from dataset')
+ self.im_files = [self.im_files[i] for i in include]
+ self.label_files = [self.label_files[i] for i in include]
+ self.labels = [self.labels[i] for i in include]
+ self.segments = [self.segments[i] for i in include]
+ self.shapes = self.shapes[include] # wh
+
+ # Create indices
+ n = len(self.shapes) # number of images
+ bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
+ nb = bi[-1] + 1 # number of batches
+ self.batch = bi # batch index of image
+ self.n = n
+ self.indices = range(n)
+
+ # Update labels
+ include_class = [] # filter labels to include only these classes (optional)
+ include_class_array = np.array(include_class).reshape(1, -1)
+ for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
+ if include_class:
+ j = (label[:, 0:1] == include_class_array).any(1)
+ self.labels[i] = label[j]
+ if segment:
+ self.segments[i] = segment[j]
+ if single_cls: # single-class training, merge all classes into 0
+ self.labels[i][:, 0] = 0
+
+ # Rectangular Training
+ if self.rect:
+ # Sort by aspect ratio
+ s = self.shapes # wh
+ ar = s[:, 1] / s[:, 0] # aspect ratio
+ irect = ar.argsort()
+ self.im_files = [self.im_files[i] for i in irect]
+ self.label_files = [self.label_files[i] for i in irect]
+ self.labels = [self.labels[i] for i in irect]
+ self.segments = [self.segments[i] for i in irect]
+ self.shapes = s[irect] # wh
+ ar = ar[irect]
+
+ # Set training image shapes
+ shapes = [[1, 1]] * nb
+ for i in range(nb):
+ ari = ar[bi == i]
+ mini, maxi = ari.min(), ari.max()
+ if maxi < 1:
+ shapes[i] = [maxi, 1]
+ elif mini > 1:
+ shapes[i] = [1, 1 / mini]
+
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
+
+ # Cache images into RAM/disk for faster training
+ if cache_images == 'ram' and not self.check_cache_ram(prefix=prefix):
+ cache_images = False
+ self.ims = [None] * n
+ self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
+ if cache_images:
+ b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
+ self.im_hw0, self.im_hw = [None] * n, [None] * n
+ fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
+ results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
+ pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
+ for i, x in pbar:
+ if cache_images == 'disk':
+ b += self.npy_files[i].stat().st_size
+ else: # 'ram'
+ self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
+ b += self.ims[i].nbytes
+ pbar.desc = f'{prefix}Caching images ({b / gb:.1f}GB {cache_images})'
+ pbar.close()
+
+ def check_cache_ram(self, safety_margin=0.1, prefix=''):
+ # Check image caching requirements vs available memory
+ b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
+ n = min(self.n, 30) # extrapolate from 30 random images
+ for _ in range(n):
+ im = cv2.imread(random.choice(self.im_files)) # sample image
+ ratio = self.img_size / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
+ b += im.nbytes * ratio ** 2
+ mem_required = b * self.n / n # GB required to cache dataset into RAM
+ mem = psutil.virtual_memory()
+ cache = mem_required * (1 + safety_margin) < mem.available # to cache or not to cache, that is the question
+ if not cache:
+ LOGGER.info(f"{prefix}{mem_required / gb:.1f}GB RAM required, "
+ f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, "
+ f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
+ return cache
+
+ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
+ # Cache dataset labels, check images and read shapes
+ x = {} # dict
+ nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
+ desc = f"{prefix}Scanning {path.parent / path.stem}..."
+ with Pool(NUM_THREADS) as pool:
+ pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
+ desc=desc,
+ total=len(self.im_files),
+ bar_format=TQDM_BAR_FORMAT)
+ for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
+ nm += nm_f
+ nf += nf_f
+ ne += ne_f
+ nc += nc_f
+ if im_file:
+ x[im_file] = [lb, shape, segments]
+ if msg:
+ msgs.append(msg)
+ pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
+
+ pbar.close()
+ if msgs:
+ LOGGER.info('\n'.join(msgs))
+ if nf == 0:
+ LOGGER.warning(f'{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}')
+ x['hash'] = get_hash(self.label_files + self.im_files)
+ x['results'] = nf, nm, ne, nc, len(self.im_files)
+ x['msgs'] = msgs # warnings
+ x['version'] = self.cache_version # cache version
+ try:
+ np.save(path, x) # save cache for next time
+ path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
+ LOGGER.info(f'{prefix}New cache created: {path}')
+ except Exception as e:
+ LOGGER.warning(f'{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable: {e}') # not writeable
+ return x
+
+ def __len__(self):
+ return len(self.im_files)
+
+ # def __iter__(self):
+ # self.count = -1
+ # print('ran dataset iter')
+ # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+ # return self
+
+ def __getitem__(self, index):
+ index = self.indices[index] # linear, shuffled, or image_weights
+
+ hyp = self.hyp
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
+ if mosaic:
+ # Load mosaic
+ img, labels = self.load_mosaic(index)
+ shapes = None
+
+ # MixUp augmentation
+ if random.random() < hyp['mixup']:
+ img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
+
+ else:
+ # Load image
+ img, (h0, w0), (h, w) = self.load_image(index)
+
+ # Letterbox
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
+
+ labels = self.labels[index].copy()
+ if labels.size: # normalized xywh to pixel xyxy format
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+ if self.augment:
+ img, labels = random_perspective(img,
+ labels,
+ degrees=hyp['degrees'],
+ translate=hyp['translate'],
+ scale=hyp['scale'],
+ shear=hyp['shear'],
+ perspective=hyp['perspective'])
+
+ nl = len(labels) # number of labels
+ if nl:
+ labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
+
+ if self.augment:
+ # Albumentations
+ img, labels = self.albumentations(img, labels)
+ nl = len(labels) # update after albumentations
+
+ # HSV color-space
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+ # Flip up-down
+ if random.random() < hyp['flipud']:
+ img = np.flipud(img)
+ if nl:
+ labels[:, 2] = 1 - labels[:, 2]
+
+ # Flip left-right
+ if random.random() < hyp['fliplr']:
+ img = np.fliplr(img)
+ if nl:
+ labels[:, 1] = 1 - labels[:, 1]
+
+ # Cutouts
+ # labels = cutout(img, labels, p=0.5)
+ # nl = len(labels) # update after cutout
+
+ labels_out = torch.zeros((nl, 6))
+ if nl:
+ labels_out[:, 1:] = torch.from_numpy(labels)
+
+ # Convert
+ img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
+ img = np.ascontiguousarray(img)
+
+ return torch.from_numpy(img), labels_out, self.im_files[index], shapes
+
+ def load_image(self, i):
+ # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
+ im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
+ if im is None: # not cached in RAM
+ if fn.exists(): # load npy
+ im = np.load(fn)
+ else: # read image
+ im = cv2.imread(f) # BGR
+ assert im is not None, f'Image Not Found {f}'
+ h0, w0 = im.shape[:2] # orig hw
+ r = self.img_size / max(h0, w0) # ratio
+ if r != 1: # if sizes are not equal
+ interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
+ im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=interp)
+ return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
+ return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
+
+ def cache_images_to_disk(self, i):
+ # Saves an image as an *.npy file for faster loading
+ f = self.npy_files[i]
+ if not f.exists():
+ np.save(f.as_posix(), cv2.imread(self.im_files[i]))
+
+ def load_mosaic(self, index):
+ # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
+ labels4, segments4 = [], []
+ s = self.img_size
+ yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
+ indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
+ random.shuffle(indices)
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = self.load_image(index)
+
+ # place img in img4
+ if i == 0: # top left
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
+ elif i == 1: # top right
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+ elif i == 2: # bottom left
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+ elif i == 3: # bottom right
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ padw = x1a - x1b
+ padh = y1a - y1b
+
+ # Labels
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
+ if labels.size:
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
+ segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+ labels4.append(labels)
+ segments4.extend(segments)
+
+ # Concat/clip labels
+ labels4 = np.concatenate(labels4, 0)
+ for x in (labels4[:, 1:], *segments4):
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
+ # img4, labels4 = replicate(img4, labels4) # replicate
+
+ # Augment
+ img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
+ img4, labels4 = random_perspective(img4,
+ labels4,
+ segments4,
+ degrees=self.hyp['degrees'],
+ translate=self.hyp['translate'],
+ scale=self.hyp['scale'],
+ shear=self.hyp['shear'],
+ perspective=self.hyp['perspective'],
+ border=self.mosaic_border) # border to remove
+
+ return img4, labels4
+
+ def load_mosaic9(self, index):
+ # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
+ labels9, segments9 = [], []
+ s = self.img_size
+ indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
+ random.shuffle(indices)
+ hp, wp = -1, -1 # height, width previous
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = self.load_image(index)
+
+ # place img in img9
+ if i == 0: # center
+ img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ h0, w0 = h, w
+ c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
+ elif i == 1: # top
+ c = s, s - h, s + w, s
+ elif i == 2: # top right
+ c = s + wp, s - h, s + wp + w, s
+ elif i == 3: # right
+ c = s + w0, s, s + w0 + w, s + h
+ elif i == 4: # bottom right
+ c = s + w0, s + hp, s + w0 + w, s + hp + h
+ elif i == 5: # bottom
+ c = s + w0 - w, s + h0, s + w0, s + h0 + h
+ elif i == 6: # bottom left
+ c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+ elif i == 7: # left
+ c = s - w, s + h0 - h, s, s + h0
+ elif i == 8: # top left
+ c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+ padx, pady = c[:2]
+ x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
+
+ # Labels
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
+ if labels.size:
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
+ segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
+ labels9.append(labels)
+ segments9.extend(segments)
+
+ # Image
+ img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
+ hp, wp = h, w # height, width previous
+
+ # Offset
+ yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
+ img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
+
+ # Concat/clip labels
+ labels9 = np.concatenate(labels9, 0)
+ labels9[:, [1, 3]] -= xc
+ labels9[:, [2, 4]] -= yc
+ c = np.array([xc, yc]) # centers
+ segments9 = [x - c for x in segments9]
+
+ for x in (labels9[:, 1:], *segments9):
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
+ # img9, labels9 = replicate(img9, labels9) # replicate
+
+ # Augment
+ img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp['copy_paste'])
+ img9, labels9 = random_perspective(img9,
+ labels9,
+ segments9,
+ degrees=self.hyp['degrees'],
+ translate=self.hyp['translate'],
+ scale=self.hyp['scale'],
+ shear=self.hyp['shear'],
+ perspective=self.hyp['perspective'],
+ border=self.mosaic_border) # border to remove
+
+ return img9, labels9
+
+ @staticmethod
+ def collate_fn(batch):
+ im, label, path, shapes = zip(*batch) # transposed
+ for i, lb in enumerate(label):
+ lb[:, 0] = i # add target image index for build_targets()
+ return torch.stack(im, 0), torch.cat(label, 0), path, shapes
+
+ @staticmethod
+ def collate_fn4(batch):
+ im, label, path, shapes = zip(*batch) # transposed
+ n = len(shapes) // 4
+ im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
+
+ ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
+ wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
+ s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
+ for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
+ i *= 4
+ if random.random() < 0.5:
+ im1 = F.interpolate(im[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
+ align_corners=False)[0].type(im[i].type())
+ lb = label[i]
+ else:
+ im1 = torch.cat((torch.cat((im[i], im[i + 1]), 1), torch.cat((im[i + 2], im[i + 3]), 1)), 2)
+ lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
+ im4.append(im1)
+ label4.append(lb)
+
+ for i, lb in enumerate(label4):
+ lb[:, 0] = i # add target image index for build_targets()
+
+ return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def flatten_recursive(path=DATASETS_DIR / 'coco128'):
+ # Flatten a recursive directory by bringing all files to top level
+ new_path = Path(f'{str(path)}_flat')
+ if os.path.exists(new_path):
+ shutil.rmtree(new_path) # delete output folder
+ os.makedirs(new_path) # make new output folder
+ for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)):
+ shutil.copyfile(file, new_path / Path(file).name)
+
+
+def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes()
+ # Convert detection dataset into classification dataset, with one directory per class
+ path = Path(path) # images dir
+ shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None # remove existing
+ files = list(path.rglob('*.*'))
+ n = len(files) # number of files
+ for im_file in tqdm(files, total=n):
+ if im_file.suffix[1:] in IMG_FORMATS:
+ # image
+ im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
+ h, w = im.shape[:2]
+
+ # labels
+ lb_file = Path(img2label_paths([str(im_file)])[0])
+ if Path(lb_file).exists():
+ with open(lb_file) as f:
+ lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
+
+ for j, x in enumerate(lb):
+ c = int(x[0]) # class
+ f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
+ if not f.parent.is_dir():
+ f.parent.mkdir(parents=True)
+
+ b = x[1:] * [w, h, w, h] # box
+ # b[2:] = b[2:].max() # rectangle to square
+ b[2:] = b[2:] * 1.2 + 3 # pad
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
+
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+ assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
+
+
+def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
+ """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
+ Usage: from utils.dataloaders import *; autosplit()
+ Arguments
+ path: Path to images directory
+ weights: Train, val, test weights (list, tuple)
+ annotated_only: Only use images with an annotated txt file
+ """
+ path = Path(path) # images dir
+ files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
+ n = len(files) # number of files
+ random.seed(0) # for reproducibility
+ indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
+
+ txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
+ for x in txt:
+ if (path.parent / x).exists():
+ (path.parent / x).unlink() # remove existing
+
+ print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
+ for i, img in tqdm(zip(indices, files), total=n):
+ if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
+ with open(path.parent / txt[i], 'a') as f:
+ f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file
+
+
+def verify_image_label(args):
+ # Verify one image-label pair
+ im_file, lb_file, prefix = args
+ nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
+ try:
+ # verify images
+ im = Image.open(im_file)
+ im.verify() # PIL verify
+ shape = exif_size(im) # image size
+ assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
+ assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
+ if im.format.lower() in ('jpg', 'jpeg'):
+ with open(im_file, 'rb') as f:
+ f.seek(-2, 2)
+ if f.read() != b'\xff\xd9': # corrupt JPEG
+ ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
+ msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
+
+ # verify labels
+ if os.path.isfile(lb_file):
+ nf = 1 # label found
+ with open(lb_file) as f:
+ lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
+ if any(len(x) > 6 for x in lb): # is segment
+ classes = np.array([x[0] for x in lb], dtype=np.float32)
+ segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
+ lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
+ lb = np.array(lb, dtype=np.float32)
+ nl = len(lb)
+ if nl:
+ assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
+ assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
+ assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
+ _, i = np.unique(lb, axis=0, return_index=True)
+ if len(i) < nl: # duplicate row check
+ lb = lb[i] # remove duplicates
+ if segments:
+ segments = [segments[x] for x in i]
+ msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
+ else:
+ ne = 1 # label empty
+ lb = np.zeros((0, 5), dtype=np.float32)
+ else:
+ nm = 1 # label missing
+ lb = np.zeros((0, 5), dtype=np.float32)
+ return im_file, lb, shape, segments, nm, nf, ne, nc, msg
+ except Exception as e:
+ nc = 1
+ msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
+ return [None, None, None, None, nm, nf, ne, nc, msg]
+
+
+class HUBDatasetStats():
+ """ Class for generating HUB dataset JSON and `-hub` dataset directory
+
+ Arguments
+ path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
+ autodownload: Attempt to download dataset if not found locally
+
+ Usage
+ from utils.dataloaders import HUBDatasetStats
+ stats = HUBDatasetStats('coco128.yaml', autodownload=True) # usage 1
+ stats = HUBDatasetStats('path/to/coco128.zip') # usage 2
+ stats.get_json(save=False)
+ stats.process_images()
+ """
+
+ def __init__(self, path='coco128.yaml', autodownload=False):
+ # Initialize class
+ zipped, data_dir, yaml_path = self._unzip(Path(path))
+ try:
+ with open(check_yaml(yaml_path), errors='ignore') as f:
+ data = yaml.safe_load(f) # data dict
+ if zipped:
+ data['path'] = data_dir
+ except Exception as e:
+ raise Exception("error/HUB/dataset_stats/yaml_load") from e
+
+ check_dataset(data, autodownload) # download dataset if missing
+ self.hub_dir = Path(data['path'] + '-hub')
+ self.im_dir = self.hub_dir / 'images'
+ self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images
+ self.stats = {'nc': data['nc'], 'names': list(data['names'].values())} # statistics dictionary
+ self.data = data
+
+ @staticmethod
+ def _find_yaml(dir):
+ # Return data.yaml file
+ files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
+ assert files, f'No *.yaml file found in {dir}'
+ if len(files) > 1:
+ files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
+ assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
+ assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
+ return files[0]
+
+ def _unzip(self, path):
+ # Unzip data.zip
+ if not str(path).endswith('.zip'): # path is data.yaml
+ return False, None, path
+ assert Path(path).is_file(), f'Error unzipping {path}, file not found'
+ unzip_file(path, path=path.parent)
+ dir = path.with_suffix('') # dataset directory == zip name
+ assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
+ return True, str(dir), self._find_yaml(dir) # zipped, data_dir, yaml_path
+
+ def _hub_ops(self, f, max_dim=1920):
+ # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
+ f_new = self.im_dir / Path(f).name # dataset-hub image filename
+ try: # use PIL
+ im = Image.open(f)
+ r = max_dim / max(im.height, im.width) # ratio
+ if r < 1.0: # image too large
+ im = im.resize((int(im.width * r), int(im.height * r)))
+ im.save(f_new, 'JPEG', quality=50, optimize=True) # save
+ except Exception as e: # use OpenCV
+ LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
+ im = cv2.imread(f)
+ im_height, im_width = im.shape[:2]
+ r = max_dim / max(im_height, im_width) # ratio
+ if r < 1.0: # image too large
+ im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
+ cv2.imwrite(str(f_new), im)
+
+ def get_json(self, save=False, verbose=False):
+ # Return dataset JSON for Ultralytics HUB
+ def _round(labels):
+ # Update labels to integer class and 6 decimal place floats
+ return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
+
+ for split in 'train', 'val', 'test':
+ if self.data.get(split) is None:
+ self.stats[split] = None # i.e. no test set
+ continue
+ dataset = LoadImagesAndLabels(self.data[split]) # load dataset
+ x = np.array([
+ np.bincount(label[:, 0].astype(int), minlength=self.data['nc'])
+ for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')]) # shape(128x80)
+ self.stats[split] = {
+ 'instance_stats': {
+ 'total': int(x.sum()),
+ 'per_class': x.sum(0).tolist()},
+ 'image_stats': {
+ 'total': dataset.n,
+ 'unlabelled': int(np.all(x == 0, 1).sum()),
+ 'per_class': (x > 0).sum(0).tolist()},
+ 'labels': [{
+ str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
+
+ # Save, print and return
+ if save:
+ stats_path = self.hub_dir / 'stats.json'
+ print(f'Saving {stats_path.resolve()}...')
+ with open(stats_path, 'w') as f:
+ json.dump(self.stats, f) # save stats.json
+ if verbose:
+ print(json.dumps(self.stats, indent=2, sort_keys=False))
+ return self.stats
+
+ def process_images(self):
+ # Compress images for Ultralytics HUB
+ for split in 'train', 'val', 'test':
+ if self.data.get(split) is None:
+ continue
+ dataset = LoadImagesAndLabels(self.data[split]) # load dataset
+ desc = f'{split} images'
+ for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc):
+ pass
+ print(f'Done. All images saved to {self.im_dir}')
+ return self.im_dir
+
+
+# Classification dataloaders -------------------------------------------------------------------------------------------
+class ClassificationDataset(torchvision.datasets.ImageFolder):
+ """
+ YOLOv5 Classification Dataset.
+ Arguments
+ root: Dataset path
+ transform: torchvision transforms, used by default
+ album_transform: Albumentations transforms, used if installed
+ """
+
+ def __init__(self, root, augment, imgsz, cache=False):
+ super().__init__(root=root)
+ self.torch_transforms = classify_transforms(imgsz)
+ self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
+ self.cache_ram = cache is True or cache == 'ram'
+ self.cache_disk = cache == 'disk'
+ self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im
+
+ def __getitem__(self, i):
+ f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image
+ if self.cache_ram and im is None:
+ im = self.samples[i][3] = cv2.imread(f)
+ elif self.cache_disk:
+ if not fn.exists(): # load npy
+ np.save(fn.as_posix(), cv2.imread(f))
+ im = np.load(fn)
+ else: # read image
+ im = cv2.imread(f) # BGR
+ if self.album_transforms:
+ sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"]
+ else:
+ sample = self.torch_transforms(im)
+ return sample, j
+
+
+def create_classification_dataloader(path,
+ imgsz=224,
+ batch_size=16,
+ augment=True,
+ cache=False,
+ rank=-1,
+ workers=8,
+ shuffle=True):
+ # Returns Dataloader object to be used with YOLOv5 Classifier
+ with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
+ dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
+ batch_size = min(batch_size, len(dataset))
+ nd = torch.cuda.device_count()
+ nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
+ sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+ generator = torch.Generator()
+ generator.manual_seed(6148914691236517205 + RANK)
+ return InfiniteDataLoader(dataset,
+ batch_size=batch_size,
+ shuffle=shuffle and sampler is None,
+ num_workers=nw,
+ sampler=sampler,
+ pin_memory=PIN_MEMORY,
+ worker_init_fn=seed_worker,
+ generator=generator) # or DataLoader(persistent_workers=True)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/downloads.py b/cv/3d_detection/yolov9/pytorch/utils/downloads.py
new file mode 100644
index 0000000000000000000000000000000000000000..a108313b3988a59948b6db609659358ea236ac4e
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/downloads.py
@@ -0,0 +1,103 @@
+import logging
+import os
+import subprocess
+import urllib
+from pathlib import Path
+
+import requests
+import torch
+
+
+def is_url(url, check=True):
+ # Check if string is URL and check if URL exists
+ try:
+ url = str(url)
+ result = urllib.parse.urlparse(url)
+ assert all([result.scheme, result.netloc]) # check if is url
+ return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
+ except (AssertionError, urllib.request.HTTPError):
+ return False
+
+
+def gsutil_getsize(url=''):
+ # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
+ s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
+ return eval(s.split(' ')[0]) if len(s) else 0 # bytes
+
+
+def url_getsize(url='https://ultralytics.com/images/bus.jpg'):
+ # Return downloadable file size in bytes
+ response = requests.head(url, allow_redirects=True)
+ return int(response.headers.get('content-length', -1))
+
+
+def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
+ # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
+ from utils.general import LOGGER
+
+ file = Path(file)
+ assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
+ try: # url1
+ LOGGER.info(f'Downloading {url} to {file}...')
+ torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
+ assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
+ except Exception as e: # url2
+ if file.exists():
+ file.unlink() # remove partial downloads
+ LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
+ os.system(f"curl -# -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
+ finally:
+ if not file.exists() or file.stat().st_size < min_bytes: # check
+ if file.exists():
+ file.unlink() # remove partial downloads
+ LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
+ LOGGER.info('')
+
+
+def attempt_download(file, repo='ultralytics/yolov5', release='v7.0'):
+ # Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v7.0', etc.
+ from utils.general import LOGGER
+
+ def github_assets(repository, version='latest'):
+ # Return GitHub repo tag (i.e. 'v7.0') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
+ if version != 'latest':
+ version = f'tags/{version}' # i.e. tags/v7.0
+ response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api
+ return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
+
+ file = Path(str(file).strip().replace("'", ''))
+ if not file.exists():
+ # URL specified
+ name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
+ if str(file).startswith(('http:/', 'https:/')): # download
+ url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
+ file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
+ if Path(file).is_file():
+ LOGGER.info(f'Found {url} locally at {file}') # file already exists
+ else:
+ safe_download(file=file, url=url, min_bytes=1E5)
+ return file
+
+ # GitHub assets
+ assets = [f'yolov5{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] # default
+ try:
+ tag, assets = github_assets(repo, release)
+ except Exception:
+ try:
+ tag, assets = github_assets(repo) # latest release
+ except Exception:
+ try:
+ tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
+ except Exception:
+ tag = release
+
+ file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
+ if name in assets:
+ url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror
+ safe_download(
+ file,
+ url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
+ min_bytes=1E5,
+ error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
+
+ return str(file)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/general.py b/cv/3d_detection/yolov9/pytorch/utils/general.py
new file mode 100644
index 0000000000000000000000000000000000000000..efe78b29ac69975890b47e6dd47d0c13024771a4
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/general.py
@@ -0,0 +1,1135 @@
+import contextlib
+import glob
+import inspect
+import logging
+import logging.config
+import math
+import os
+import platform
+import random
+import re
+import signal
+import sys
+import time
+import urllib
+from copy import deepcopy
+from datetime import datetime
+from itertools import repeat
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+from subprocess import check_output
+from tarfile import is_tarfile
+from typing import Optional
+from zipfile import ZipFile, is_zipfile
+
+import cv2
+import IPython
+import numpy as np
+import pandas as pd
+import pkg_resources as pkg
+import torch
+import torchvision
+import yaml
+
+from utils import TryExcept, emojis
+from utils.downloads import gsutil_getsize
+from utils.metrics import box_iou, fitness
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1] # YOLO root directory
+RANK = int(os.getenv('RANK', -1))
+
+# Settings
+NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
+DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory
+AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
+VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
+TQDM_BAR_FORMAT = '{l_bar}{bar:10}| {n_fmt}/{total_fmt} {elapsed}' # tqdm bar format
+FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
+
+torch.set_printoptions(linewidth=320, precision=5, profile='long')
+np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
+pd.options.display.max_columns = 10
+cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
+os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
+os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy)
+
+
+def is_ascii(s=''):
+ # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
+ s = str(s) # convert list, tuple, None, etc. to str
+ return len(s.encode().decode('ascii', 'ignore')) == len(s)
+
+
+def is_chinese(s='人工智能'):
+ # Is string composed of any Chinese characters?
+ return bool(re.search('[\u4e00-\u9fff]', str(s)))
+
+
+def is_colab():
+ # Is environment a Google Colab instance?
+ return 'google.colab' in sys.modules
+
+
+def is_notebook():
+ # Is environment a Jupyter notebook? Verified on Colab, Jupyterlab, Kaggle, Paperspace
+ ipython_type = str(type(IPython.get_ipython()))
+ return 'colab' in ipython_type or 'zmqshell' in ipython_type
+
+
+def is_kaggle():
+ # Is environment a Kaggle Notebook?
+ return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
+
+
+def is_docker() -> bool:
+ """Check if the process runs inside a docker container."""
+ if Path("/.dockerenv").exists():
+ return True
+ try: # check if docker is in control groups
+ with open("/proc/self/cgroup") as file:
+ return any("docker" in line for line in file)
+ except OSError:
+ return False
+
+
+def is_writeable(dir, test=False):
+ # Return True if directory has write permissions, test opening a file with write permissions if test=True
+ if not test:
+ return os.access(dir, os.W_OK) # possible issues on Windows
+ file = Path(dir) / 'tmp.txt'
+ try:
+ with open(file, 'w'): # open file with write permissions
+ pass
+ file.unlink() # remove file
+ return True
+ except OSError:
+ return False
+
+
+LOGGING_NAME = "yolov5"
+
+
+def set_logging(name=LOGGING_NAME, verbose=True):
+ # sets up logging for the given name
+ rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
+ level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
+ logging.config.dictConfig({
+ "version": 1,
+ "disable_existing_loggers": False,
+ "formatters": {
+ name: {
+ "format": "%(message)s"}},
+ "handlers": {
+ name: {
+ "class": "logging.StreamHandler",
+ "formatter": name,
+ "level": level,}},
+ "loggers": {
+ name: {
+ "level": level,
+ "handlers": [name],
+ "propagate": False,}}})
+
+
+set_logging(LOGGING_NAME) # run before defining LOGGER
+LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
+if platform.system() == 'Windows':
+ for fn in LOGGER.info, LOGGER.warning:
+ setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
+
+
+def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
+ # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
+ env = os.getenv(env_var)
+ if env:
+ path = Path(env) # use environment variable
+ else:
+ cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
+ path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
+ path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
+ path.mkdir(exist_ok=True) # make if required
+ return path
+
+
+CONFIG_DIR = user_config_dir() # Ultralytics settings dir
+
+
+class Profile(contextlib.ContextDecorator):
+ # YOLO Profile class. Usage: @Profile() decorator or 'with Profile():' context manager
+ def __init__(self, t=0.0):
+ self.t = t
+ self.cuda = torch.cuda.is_available()
+
+ def __enter__(self):
+ self.start = self.time()
+ return self
+
+ def __exit__(self, type, value, traceback):
+ self.dt = self.time() - self.start # delta-time
+ self.t += self.dt # accumulate dt
+
+ def time(self):
+ if self.cuda:
+ torch.cuda.synchronize()
+ return time.time()
+
+
+class Timeout(contextlib.ContextDecorator):
+ # YOLO Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
+ def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
+ self.seconds = int(seconds)
+ self.timeout_message = timeout_msg
+ self.suppress = bool(suppress_timeout_errors)
+
+ def _timeout_handler(self, signum, frame):
+ raise TimeoutError(self.timeout_message)
+
+ def __enter__(self):
+ if platform.system() != 'Windows': # not supported on Windows
+ signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
+ signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
+
+ def __exit__(self, exc_type, exc_val, exc_tb):
+ if platform.system() != 'Windows':
+ signal.alarm(0) # Cancel SIGALRM if it's scheduled
+ if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
+ return True
+
+
+class WorkingDirectory(contextlib.ContextDecorator):
+ # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
+ def __init__(self, new_dir):
+ self.dir = new_dir # new dir
+ self.cwd = Path.cwd().resolve() # current dir
+
+ def __enter__(self):
+ os.chdir(self.dir)
+
+ def __exit__(self, exc_type, exc_val, exc_tb):
+ os.chdir(self.cwd)
+
+
+def methods(instance):
+ # Get class/instance methods
+ return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
+
+
+def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
+ # Print function arguments (optional args dict)
+ x = inspect.currentframe().f_back # previous frame
+ file, _, func, _, _ = inspect.getframeinfo(x)
+ if args is None: # get args automatically
+ args, _, _, frm = inspect.getargvalues(x)
+ args = {k: v for k, v in frm.items() if k in args}
+ try:
+ file = Path(file).resolve().relative_to(ROOT).with_suffix('')
+ except ValueError:
+ file = Path(file).stem
+ s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
+ LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
+
+
+def init_seeds(seed=0, deterministic=False):
+ # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
+ random.seed(seed)
+ np.random.seed(seed)
+ torch.manual_seed(seed)
+ torch.cuda.manual_seed(seed)
+ torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
+ # torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
+ if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
+ torch.use_deterministic_algorithms(True)
+ torch.backends.cudnn.deterministic = True
+ os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
+ os.environ['PYTHONHASHSEED'] = str(seed)
+
+
+def intersect_dicts(da, db, exclude=()):
+ # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
+ return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
+
+
+def get_default_args(func):
+ # Get func() default arguments
+ signature = inspect.signature(func)
+ return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
+
+
+def get_latest_run(search_dir='.'):
+ # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
+ last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
+ return max(last_list, key=os.path.getctime) if last_list else ''
+
+
+def file_age(path=__file__):
+ # Return days since last file update
+ dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta
+ return dt.days # + dt.seconds / 86400 # fractional days
+
+
+def file_date(path=__file__):
+ # Return human-readable file modification date, i.e. '2021-3-26'
+ t = datetime.fromtimestamp(Path(path).stat().st_mtime)
+ return f'{t.year}-{t.month}-{t.day}'
+
+
+def file_size(path):
+ # Return file/dir size (MB)
+ mb = 1 << 20 # bytes to MiB (1024 ** 2)
+ path = Path(path)
+ if path.is_file():
+ return path.stat().st_size / mb
+ elif path.is_dir():
+ return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
+ else:
+ return 0.0
+
+
+def check_online():
+ # Check internet connectivity
+ import socket
+
+ def run_once():
+ # Check once
+ try:
+ socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
+ return True
+ except OSError:
+ return False
+
+ return run_once() or run_once() # check twice to increase robustness to intermittent connectivity issues
+
+
+def git_describe(path=ROOT): # path must be a directory
+ # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
+ try:
+ assert (Path(path) / '.git').is_dir()
+ return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
+ except Exception:
+ return ''
+
+
+@TryExcept()
+@WorkingDirectory(ROOT)
+def check_git_status(repo='WongKinYiu/yolov9', branch='main'):
+ # YOLO status check, recommend 'git pull' if code is out of date
+ url = f'https://github.com/{repo}'
+ msg = f', for updates see {url}'
+ s = colorstr('github: ') # string
+ assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
+ assert check_online(), s + 'skipping check (offline)' + msg
+
+ splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode())
+ matches = [repo in s for s in splits]
+ if any(matches):
+ remote = splits[matches.index(True) - 1]
+ else:
+ remote = 'ultralytics'
+ check_output(f'git remote add {remote} {url}', shell=True)
+ check_output(f'git fetch {remote}', shell=True, timeout=5) # git fetch
+ local_branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
+ n = int(check_output(f'git rev-list {local_branch}..{remote}/{branch} --count', shell=True)) # commits behind
+ if n > 0:
+ pull = 'git pull' if remote == 'origin' else f'git pull {remote} {branch}'
+ s += f"⚠️ YOLO is out of date by {n} commit{'s' * (n > 1)}. Use `{pull}` or `git clone {url}` to update."
+ else:
+ s += f'up to date with {url} ✅'
+ LOGGER.info(s)
+
+
+@WorkingDirectory(ROOT)
+def check_git_info(path='.'):
+ # YOLO git info check, return {remote, branch, commit}
+ check_requirements('gitpython')
+ import git
+ try:
+ repo = git.Repo(path)
+ remote = repo.remotes.origin.url.replace('.git', '') # i.e. 'https://github.com/WongKinYiu/yolov9'
+ commit = repo.head.commit.hexsha # i.e. '3134699c73af83aac2a481435550b968d5792c0d'
+ try:
+ branch = repo.active_branch.name # i.e. 'main'
+ except TypeError: # not on any branch
+ branch = None # i.e. 'detached HEAD' state
+ return {'remote': remote, 'branch': branch, 'commit': commit}
+ except git.exc.InvalidGitRepositoryError: # path is not a git dir
+ return {'remote': None, 'branch': None, 'commit': None}
+
+
+def check_python(minimum='3.7.0'):
+ # Check current python version vs. required python version
+ check_version(platform.python_version(), minimum, name='Python ', hard=True)
+
+
+def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
+ # Check version vs. required version
+ current, minimum = (pkg.parse_version(x) for x in (current, minimum))
+ result = (current == minimum) if pinned else (current >= minimum) # bool
+ s = f'WARNING ⚠️ {name}{minimum} is required by YOLO, but {name}{current} is currently installed' # string
+ if hard:
+ assert result, emojis(s) # assert min requirements met
+ if verbose and not result:
+ LOGGER.warning(s)
+ return result
+
+
+@TryExcept()
+def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=''):
+ # Check installed dependencies meet YOLO requirements (pass *.txt file or list of packages or single package str)
+ prefix = colorstr('red', 'bold', 'requirements:')
+ check_python() # check python version
+ if isinstance(requirements, Path): # requirements.txt file
+ file = requirements.resolve()
+ assert file.exists(), f"{prefix} {file} not found, check failed."
+ with file.open() as f:
+ requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
+ elif isinstance(requirements, str):
+ requirements = [requirements]
+
+ s = ''
+ n = 0
+ for r in requirements:
+ try:
+ pkg.require(r)
+ except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met
+ s += f'"{r}" '
+ n += 1
+
+ if s and install and AUTOINSTALL: # check environment variable
+ LOGGER.info(f"{prefix} YOLO requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
+ try:
+ # assert check_online(), "AutoUpdate skipped (offline)"
+ LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode())
+ source = file if 'file' in locals() else requirements
+ s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
+ f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
+ LOGGER.info(s)
+ except Exception as e:
+ LOGGER.warning(f'{prefix} ❌ {e}')
+
+
+def check_img_size(imgsz, s=32, floor=0):
+ # Verify image size is a multiple of stride s in each dimension
+ if isinstance(imgsz, int): # integer i.e. img_size=640
+ new_size = max(make_divisible(imgsz, int(s)), floor)
+ else: # list i.e. img_size=[640, 480]
+ imgsz = list(imgsz) # convert to list if tuple
+ new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
+ if new_size != imgsz:
+ LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
+ return new_size
+
+
+def check_imshow(warn=False):
+ # Check if environment supports image displays
+ try:
+ assert not is_notebook()
+ assert not is_docker()
+ cv2.imshow('test', np.zeros((1, 1, 3)))
+ cv2.waitKey(1)
+ cv2.destroyAllWindows()
+ cv2.waitKey(1)
+ return True
+ except Exception as e:
+ if warn:
+ LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
+ return False
+
+
+def check_suffix(file='yolo.pt', suffix=('.pt',), msg=''):
+ # Check file(s) for acceptable suffix
+ if file and suffix:
+ if isinstance(suffix, str):
+ suffix = [suffix]
+ for f in file if isinstance(file, (list, tuple)) else [file]:
+ s = Path(f).suffix.lower() # file suffix
+ if len(s):
+ assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
+
+
+def check_yaml(file, suffix=('.yaml', '.yml')):
+ # Search/download YAML file (if necessary) and return path, checking suffix
+ return check_file(file, suffix)
+
+
+def check_file(file, suffix=''):
+ # Search/download file (if necessary) and return path
+ check_suffix(file, suffix) # optional
+ file = str(file) # convert to str()
+ if os.path.isfile(file) or not file: # exists
+ return file
+ elif file.startswith(('http:/', 'https:/')): # download
+ url = file # warning: Pathlib turns :// -> :/
+ file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
+ if os.path.isfile(file):
+ LOGGER.info(f'Found {url} locally at {file}') # file already exists
+ else:
+ LOGGER.info(f'Downloading {url} to {file}...')
+ torch.hub.download_url_to_file(url, file)
+ assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
+ return file
+ elif file.startswith('clearml://'): # ClearML Dataset ID
+ assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
+ return file
+ else: # search
+ files = []
+ for d in 'data', 'models', 'utils': # search directories
+ files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
+ assert len(files), f'File not found: {file}' # assert file was found
+ assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
+ return files[0] # return file
+
+
+def check_font(font=FONT, progress=False):
+ # Download font to CONFIG_DIR if necessary
+ font = Path(font)
+ file = CONFIG_DIR / font.name
+ if not font.exists() and not file.exists():
+ url = f'https://ultralytics.com/assets/{font.name}'
+ LOGGER.info(f'Downloading {url} to {file}...')
+ torch.hub.download_url_to_file(url, str(file), progress=progress)
+
+
+def check_dataset(data, autodownload=True):
+ # Download, check and/or unzip dataset if not found locally
+
+ # Download (optional)
+ extract_dir = ''
+ if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
+ download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1)
+ data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
+ extract_dir, autodownload = data.parent, False
+
+ # Read yaml (optional)
+ if isinstance(data, (str, Path)):
+ data = yaml_load(data) # dictionary
+
+ # Checks
+ for k in 'train', 'val', 'names':
+ assert k in data, emojis(f"data.yaml '{k}:' field missing ❌")
+ if isinstance(data['names'], (list, tuple)): # old array format
+ data['names'] = dict(enumerate(data['names'])) # convert to dict
+ assert all(isinstance(k, int) for k in data['names'].keys()), 'data.yaml names keys must be integers, i.e. 2: car'
+ data['nc'] = len(data['names'])
+
+ # Resolve paths
+ path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
+ if not path.is_absolute():
+ path = (ROOT / path).resolve()
+ data['path'] = path # download scripts
+ for k in 'train', 'val', 'test':
+ if data.get(k): # prepend path
+ if isinstance(data[k], str):
+ x = (path / data[k]).resolve()
+ if not x.exists() and data[k].startswith('../'):
+ x = (path / data[k][3:]).resolve()
+ data[k] = str(x)
+ else:
+ data[k] = [str((path / x).resolve()) for x in data[k]]
+
+ # Parse yaml
+ train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
+ if val:
+ val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
+ if not all(x.exists() for x in val):
+ LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()])
+ if not s or not autodownload:
+ raise Exception('Dataset not found ❌')
+ t = time.time()
+ if s.startswith('http') and s.endswith('.zip'): # URL
+ f = Path(s).name # filename
+ LOGGER.info(f'Downloading {s} to {f}...')
+ torch.hub.download_url_to_file(s, f)
+ Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root
+ unzip_file(f, path=DATASETS_DIR) # unzip
+ Path(f).unlink() # remove zip
+ r = None # success
+ elif s.startswith('bash '): # bash script
+ LOGGER.info(f'Running {s} ...')
+ r = os.system(s)
+ else: # python script
+ r = exec(s, {'yaml': data}) # return None
+ dt = f'({round(time.time() - t, 1)}s)'
+ s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌"
+ LOGGER.info(f"Dataset download {s}")
+ check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
+ return data # dictionary
+
+
+def check_amp(model):
+ # Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
+ from models.common import AutoShape, DetectMultiBackend
+
+ def amp_allclose(model, im):
+ # All close FP32 vs AMP results
+ m = AutoShape(model, verbose=False) # model
+ a = m(im).xywhn[0] # FP32 inference
+ m.amp = True
+ b = m(im).xywhn[0] # AMP inference
+ return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance
+
+ prefix = colorstr('AMP: ')
+ device = next(model.parameters()).device # get model device
+ if device.type in ('cpu', 'mps'):
+ return False # AMP only used on CUDA devices
+ f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check
+ im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
+ try:
+ #assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend('yolo.pt', device), im)
+ LOGGER.info(f'{prefix}checks passed ✅')
+ return True
+ except Exception:
+ help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
+ LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}')
+ return False
+
+
+def yaml_load(file='data.yaml'):
+ # Single-line safe yaml loading
+ with open(file, errors='ignore') as f:
+ return yaml.safe_load(f)
+
+
+def yaml_save(file='data.yaml', data={}):
+ # Single-line safe yaml saving
+ with open(file, 'w') as f:
+ yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
+
+
+def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
+ # Unzip a *.zip file to path/, excluding files containing strings in exclude list
+ if path is None:
+ path = Path(file).parent # default path
+ with ZipFile(file) as zipObj:
+ for f in zipObj.namelist(): # list all archived filenames in the zip
+ if all(x not in f for x in exclude):
+ zipObj.extract(f, path=path)
+
+
+def url2file(url):
+ # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
+ url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
+ return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
+
+
+def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
+ # Multithreaded file download and unzip function, used in data.yaml for autodownload
+ def download_one(url, dir):
+ # Download 1 file
+ success = True
+ if os.path.isfile(url):
+ f = Path(url) # filename
+ else: # does not exist
+ f = dir / Path(url).name
+ LOGGER.info(f'Downloading {url} to {f}...')
+ for i in range(retry + 1):
+ if curl:
+ s = 'sS' if threads > 1 else '' # silent
+ r = os.system(
+ f'curl -# -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue
+ success = r == 0
+ else:
+ torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
+ success = f.is_file()
+ if success:
+ break
+ elif i < retry:
+ LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
+ else:
+ LOGGER.warning(f'❌ Failed to download {url}...')
+
+ if unzip and success and (f.suffix == '.gz' or is_zipfile(f) or is_tarfile(f)):
+ LOGGER.info(f'Unzipping {f}...')
+ if is_zipfile(f):
+ unzip_file(f, dir) # unzip
+ elif is_tarfile(f):
+ os.system(f'tar xf {f} --directory {f.parent}') # unzip
+ elif f.suffix == '.gz':
+ os.system(f'tar xfz {f} --directory {f.parent}') # unzip
+ if delete:
+ f.unlink() # remove zip
+
+ dir = Path(dir)
+ dir.mkdir(parents=True, exist_ok=True) # make directory
+ if threads > 1:
+ pool = ThreadPool(threads)
+ pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded
+ pool.close()
+ pool.join()
+ else:
+ for u in [url] if isinstance(url, (str, Path)) else url:
+ download_one(u, dir)
+
+
+def make_divisible(x, divisor):
+ # Returns nearest x divisible by divisor
+ if isinstance(divisor, torch.Tensor):
+ divisor = int(divisor.max()) # to int
+ return math.ceil(x / divisor) * divisor
+
+
+def clean_str(s):
+ # Cleans a string by replacing special characters with underscore _
+ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
+
+
+def one_cycle(y1=0.0, y2=1.0, steps=100):
+ # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
+ return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
+
+
+def one_flat_cycle(y1=0.0, y2=1.0, steps=100):
+ # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
+ #return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
+ return lambda x: ((1 - math.cos((x - (steps // 2)) * math.pi / (steps // 2))) / 2) * (y2 - y1) + y1 if (x > (steps // 2)) else y1
+
+
+def colorstr(*input):
+ # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
+ *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
+ colors = {
+ 'black': '\033[30m', # basic colors
+ 'red': '\033[31m',
+ 'green': '\033[32m',
+ 'yellow': '\033[33m',
+ 'blue': '\033[34m',
+ 'magenta': '\033[35m',
+ 'cyan': '\033[36m',
+ 'white': '\033[37m',
+ 'bright_black': '\033[90m', # bright colors
+ 'bright_red': '\033[91m',
+ 'bright_green': '\033[92m',
+ 'bright_yellow': '\033[93m',
+ 'bright_blue': '\033[94m',
+ 'bright_magenta': '\033[95m',
+ 'bright_cyan': '\033[96m',
+ 'bright_white': '\033[97m',
+ 'end': '\033[0m', # misc
+ 'bold': '\033[1m',
+ 'underline': '\033[4m'}
+ return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
+
+
+def labels_to_class_weights(labels, nc=80):
+ # Get class weights (inverse frequency) from training labels
+ if labels[0] is None: # no labels loaded
+ return torch.Tensor()
+
+ labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
+ classes = labels[:, 0].astype(int) # labels = [class xywh]
+ weights = np.bincount(classes, minlength=nc) # occurrences per class
+
+ # Prepend gridpoint count (for uCE training)
+ # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
+ # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
+
+ weights[weights == 0] = 1 # replace empty bins with 1
+ weights = 1 / weights # number of targets per class
+ weights /= weights.sum() # normalize
+ return torch.from_numpy(weights).float()
+
+
+def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
+ # Produces image weights based on class_weights and image contents
+ # Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample
+ class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
+ return (class_weights.reshape(1, nc) * class_counts).sum(1)
+
+
+def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
+ # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
+ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
+ # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
+ # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
+ # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
+ return [
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
+ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
+
+
+def xyxy2xywh(x):
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
+ y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
+ y[..., 2] = x[..., 2] - x[..., 0] # width
+ y[..., 3] = x[..., 3] - x[..., 1] # height
+ return y
+
+
+def xywh2xyxy(x):
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
+ y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
+ y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
+ y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
+ return y
+
+
+def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
+ # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
+ y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
+ y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
+ y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
+ return y
+
+
+def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
+ if clip:
+ clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
+ y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
+ y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
+ y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
+ return y
+
+
+def xyn2xy(x, w=640, h=640, padw=0, padh=0):
+ # Convert normalized segments into pixel segments, shape (n,2)
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[..., 0] = w * x[..., 0] + padw # top left x
+ y[..., 1] = h * x[..., 1] + padh # top left y
+ return y
+
+
+def segment2box(segment, width=640, height=640):
+ # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
+ x, y = segment.T # segment xy
+ inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
+ x, y, = x[inside], y[inside]
+ return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
+
+
+def segments2boxes(segments):
+ # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
+ boxes = []
+ for s in segments:
+ x, y = s.T # segment xy
+ boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
+ return xyxy2xywh(np.array(boxes)) # cls, xywh
+
+
+def resample_segments(segments, n=1000):
+ # Up-sample an (n,2) segment
+ for i, s in enumerate(segments):
+ s = np.concatenate((s, s[0:1, :]), axis=0)
+ x = np.linspace(0, len(s) - 1, n)
+ xp = np.arange(len(s))
+ segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
+ return segments
+
+
+def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
+ # Rescale boxes (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0][0]
+ pad = ratio_pad[1]
+
+ boxes[:, [0, 2]] -= pad[0] # x padding
+ boxes[:, [1, 3]] -= pad[1] # y padding
+ boxes[:, :4] /= gain
+ clip_boxes(boxes, img0_shape)
+ return boxes
+
+
+def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0][0]
+ pad = ratio_pad[1]
+
+ segments[:, 0] -= pad[0] # x padding
+ segments[:, 1] -= pad[1] # y padding
+ segments /= gain
+ clip_segments(segments, img0_shape)
+ if normalize:
+ segments[:, 0] /= img0_shape[1] # width
+ segments[:, 1] /= img0_shape[0] # height
+ return segments
+
+
+def clip_boxes(boxes, shape):
+ # Clip boxes (xyxy) to image shape (height, width)
+ if isinstance(boxes, torch.Tensor): # faster individually
+ boxes[:, 0].clamp_(0, shape[1]) # x1
+ boxes[:, 1].clamp_(0, shape[0]) # y1
+ boxes[:, 2].clamp_(0, shape[1]) # x2
+ boxes[:, 3].clamp_(0, shape[0]) # y2
+ else: # np.array (faster grouped)
+ boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
+ boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
+
+
+def clip_segments(segments, shape):
+ # Clip segments (xy1,xy2,...) to image shape (height, width)
+ if isinstance(segments, torch.Tensor): # faster individually
+ segments[:, 0].clamp_(0, shape[1]) # x
+ segments[:, 1].clamp_(0, shape[0]) # y
+ else: # np.array (faster grouped)
+ segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x
+ segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y
+
+
+def non_max_suppression(
+ prediction,
+ conf_thres=0.25,
+ iou_thres=0.45,
+ classes=None,
+ agnostic=False,
+ multi_label=False,
+ labels=(),
+ max_det=300,
+ nm=0, # number of masks
+):
+ """Non-Maximum Suppression (NMS) on inference results to reject overlapping detections
+
+ Returns:
+ list of detections, on (n,6) tensor per image [xyxy, conf, cls]
+ """
+
+ if isinstance(prediction, (list, tuple)): # YOLO model in validation model, output = (inference_out, loss_out)
+ prediction = prediction[0] # select only inference output
+
+ device = prediction.device
+ mps = 'mps' in device.type # Apple MPS
+ if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
+ prediction = prediction.cpu()
+ bs = prediction.shape[0] # batch size
+ nc = prediction.shape[1] - nm - 4 # number of classes
+ mi = 4 + nc # mask start index
+ xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
+
+ # Checks
+ assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
+ assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
+
+ # Settings
+ # min_wh = 2 # (pixels) minimum box width and height
+ max_wh = 7680 # (pixels) maximum box width and height
+ max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
+ time_limit = 2.5 + 0.05 * bs # seconds to quit after
+ redundant = True # require redundant detections
+ multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
+ merge = False # use merge-NMS
+
+ t = time.time()
+ output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
+ for xi, x in enumerate(prediction): # image index, image inference
+ # Apply constraints
+ # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
+ x = x.T[xc[xi]] # confidence
+
+ # Cat apriori labels if autolabelling
+ if labels and len(labels[xi]):
+ lb = labels[xi]
+ v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
+ v[:, :4] = lb[:, 1:5] # box
+ v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls
+ x = torch.cat((x, v), 0)
+
+ # If none remain process next image
+ if not x.shape[0]:
+ continue
+
+ # Detections matrix nx6 (xyxy, conf, cls)
+ box, cls, mask = x.split((4, nc, nm), 1)
+ box = xywh2xyxy(box) # center_x, center_y, width, height) to (x1, y1, x2, y2)
+ if multi_label:
+ i, j = (cls > conf_thres).nonzero(as_tuple=False).T
+ x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
+ else: # best class only
+ conf, j = cls.max(1, keepdim=True)
+ x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
+
+ # Filter by class
+ if classes is not None:
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+ # Apply finite constraint
+ # if not torch.isfinite(x).all():
+ # x = x[torch.isfinite(x).all(1)]
+
+ # Check shape
+ n = x.shape[0] # number of boxes
+ if not n: # no boxes
+ continue
+ elif n > max_nms: # excess boxes
+ x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
+ else:
+ x = x[x[:, 4].argsort(descending=True)] # sort by confidence
+
+ # Batched NMS
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
+ if i.shape[0] > max_det: # limit detections
+ i = i[:max_det]
+ if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
+ weights = iou * scores[None] # box weights
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
+ if redundant:
+ i = i[iou.sum(1) > 1] # require redundancy
+
+ output[xi] = x[i]
+ if mps:
+ output[xi] = output[xi].to(device)
+ if (time.time() - t) > time_limit:
+ LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
+ break # time limit exceeded
+
+ return output
+
+
+def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
+ # Strip optimizer from 'f' to finalize training, optionally save as 's'
+ x = torch.load(f, map_location=torch.device('cpu'))
+ if x.get('ema'):
+ x['model'] = x['ema'] # replace model with ema
+ for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys
+ x[k] = None
+ x['epoch'] = -1
+ x['model'].half() # to FP16
+ for p in x['model'].parameters():
+ p.requires_grad = False
+ torch.save(x, s or f)
+ mb = os.path.getsize(s or f) / 1E6 # filesize
+ LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
+
+
+def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
+ evolve_csv = save_dir / 'evolve.csv'
+ evolve_yaml = save_dir / 'hyp_evolve.yaml'
+ keys = tuple(keys) + tuple(hyp.keys()) # [results + hyps]
+ keys = tuple(x.strip() for x in keys)
+ vals = results + tuple(hyp.values())
+ n = len(keys)
+
+ # Download (optional)
+ if bucket:
+ url = f'gs://{bucket}/evolve.csv'
+ if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
+ os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
+
+ # Log to evolve.csv
+ s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
+ with open(evolve_csv, 'a') as f:
+ f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
+
+ # Save yaml
+ with open(evolve_yaml, 'w') as f:
+ data = pd.read_csv(evolve_csv)
+ data = data.rename(columns=lambda x: x.strip()) # strip keys
+ i = np.argmax(fitness(data.values[:, :4])) #
+ generations = len(data)
+ f.write('# YOLO Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
+ f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
+ '\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
+ yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
+
+ # Print to screen
+ LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
+ ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
+ for x in vals) + '\n\n')
+
+ if bucket:
+ os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
+
+
+def apply_classifier(x, model, img, im0):
+ # Apply a second stage classifier to YOLO outputs
+ # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
+ im0 = [im0] if isinstance(im0, np.ndarray) else im0
+ for i, d in enumerate(x): # per image
+ if d is not None and len(d):
+ d = d.clone()
+
+ # Reshape and pad cutouts
+ b = xyxy2xywh(d[:, :4]) # boxes
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
+ b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
+ d[:, :4] = xywh2xyxy(b).long()
+
+ # Rescale boxes from img_size to im0 size
+ scale_boxes(img.shape[2:], d[:, :4], im0[i].shape)
+
+ # Classes
+ pred_cls1 = d[:, 5].long()
+ ims = []
+ for a in d:
+ cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
+ im = cv2.resize(cutout, (224, 224)) # BGR
+
+ im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ ims.append(im)
+
+ pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
+ x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
+
+ return x
+
+
+def increment_path(path, exist_ok=False, sep='', mkdir=False):
+ # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
+ path = Path(path) # os-agnostic
+ if path.exists() and not exist_ok:
+ path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
+
+ # Method 1
+ for n in range(2, 9999):
+ p = f'{path}{sep}{n}{suffix}' # increment path
+ if not os.path.exists(p): #
+ break
+ path = Path(p)
+
+ # Method 2 (deprecated)
+ # dirs = glob.glob(f"{path}{sep}*") # similar paths
+ # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
+ # i = [int(m.groups()[0]) for m in matches if m] # indices
+ # n = max(i) + 1 if i else 2 # increment number
+ # path = Path(f"{path}{sep}{n}{suffix}") # increment path
+
+ if mkdir:
+ path.mkdir(parents=True, exist_ok=True) # make directory
+
+ return path
+
+
+# OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------
+imshow_ = cv2.imshow # copy to avoid recursion errors
+
+
+def imread(path, flags=cv2.IMREAD_COLOR):
+ return cv2.imdecode(np.fromfile(path, np.uint8), flags)
+
+
+def imwrite(path, im):
+ try:
+ cv2.imencode(Path(path).suffix, im)[1].tofile(path)
+ return True
+ except Exception:
+ return False
+
+
+def imshow(path, im):
+ imshow_(path.encode('unicode_escape').decode(), im)
+
+
+cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine
+
+# Variables ------------------------------------------------------------------------------------------------------------
diff --git a/cv/3d_detection/yolov9/pytorch/utils/lion.py b/cv/3d_detection/yolov9/pytorch/utils/lion.py
new file mode 100644
index 0000000000000000000000000000000000000000..63651cff24e3d00e7e15a2cff2a81d1da46b8c5e
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/lion.py
@@ -0,0 +1,67 @@
+"""PyTorch implementation of the Lion optimizer."""
+import torch
+from torch.optim.optimizer import Optimizer
+
+
+class Lion(Optimizer):
+ r"""Implements Lion algorithm."""
+
+ def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0):
+ """Initialize the hyperparameters.
+ Args:
+ params (iterable): iterable of parameters to optimize or dicts defining
+ parameter groups
+ lr (float, optional): learning rate (default: 1e-4)
+ betas (Tuple[float, float], optional): coefficients used for computing
+ running averages of gradient and its square (default: (0.9, 0.99))
+ weight_decay (float, optional): weight decay coefficient (default: 0)
+ """
+
+ if not 0.0 <= lr:
+ raise ValueError('Invalid learning rate: {}'.format(lr))
+ if not 0.0 <= betas[0] < 1.0:
+ raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
+ if not 0.0 <= betas[1] < 1.0:
+ raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
+ defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
+ super().__init__(params, defaults)
+
+ @torch.no_grad()
+ def step(self, closure=None):
+ """Performs a single optimization step.
+ Args:
+ closure (callable, optional): A closure that reevaluates the model
+ and returns the loss.
+ Returns:
+ the loss.
+ """
+ loss = None
+ if closure is not None:
+ with torch.enable_grad():
+ loss = closure()
+
+ for group in self.param_groups:
+ for p in group['params']:
+ if p.grad is None:
+ continue
+
+ # Perform stepweight decay
+ p.data.mul_(1 - group['lr'] * group['weight_decay'])
+
+ grad = p.grad
+ state = self.state[p]
+ # State initialization
+ if len(state) == 0:
+ # Exponential moving average of gradient values
+ state['exp_avg'] = torch.zeros_like(p)
+
+ exp_avg = state['exp_avg']
+ beta1, beta2 = group['betas']
+
+ # Weight update
+ update = exp_avg * beta1 + grad * (1 - beta1)
+ p.add_(torch.sign(update), alpha=-group['lr'])
+ # Decay the momentum running average coefficient
+ exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
+
+ return loss
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8fc8377ab60987a0903de62ef0b20a946289ea8f
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/__init__.py
@@ -0,0 +1,399 @@
+import os
+import warnings
+from pathlib import Path
+
+import pkg_resources as pkg
+import torch
+from torch.utils.tensorboard import SummaryWriter
+
+from utils.general import LOGGER, colorstr, cv2
+from utils.loggers.clearml.clearml_utils import ClearmlLogger
+from utils.loggers.wandb.wandb_utils import WandbLogger
+from utils.plots import plot_images, plot_labels, plot_results
+from utils.torch_utils import de_parallel
+
+LOGGERS = ('csv', 'tb', 'wandb', 'clearml', 'comet') # *.csv, TensorBoard, Weights & Biases, ClearML
+RANK = int(os.getenv('RANK', -1))
+
+try:
+ import wandb
+
+ assert hasattr(wandb, '__version__') # verify package import not local dir
+ if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
+ try:
+ wandb_login_success = wandb.login(timeout=30)
+ except wandb.errors.UsageError: # known non-TTY terminal issue
+ wandb_login_success = False
+ if not wandb_login_success:
+ wandb = None
+except (ImportError, AssertionError):
+ wandb = None
+
+try:
+ import clearml
+
+ assert hasattr(clearml, '__version__') # verify package import not local dir
+except (ImportError, AssertionError):
+ clearml = None
+
+try:
+ if RANK not in [0, -1]:
+ comet_ml = None
+ else:
+ import comet_ml
+
+ assert hasattr(comet_ml, '__version__') # verify package import not local dir
+ from utils.loggers.comet import CometLogger
+
+except (ModuleNotFoundError, ImportError, AssertionError):
+ comet_ml = None
+
+
+class Loggers():
+ # YOLO Loggers class
+ def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
+ self.save_dir = save_dir
+ self.weights = weights
+ self.opt = opt
+ self.hyp = hyp
+ self.plots = not opt.noplots # plot results
+ self.logger = logger # for printing results to console
+ self.include = include
+ self.keys = [
+ 'train/box_loss',
+ 'train/cls_loss',
+ 'train/dfl_loss', # train loss
+ 'metrics/precision',
+ 'metrics/recall',
+ 'metrics/mAP_0.5',
+ 'metrics/mAP_0.5:0.95', # metrics
+ 'val/box_loss',
+ 'val/cls_loss',
+ 'val/dfl_loss', # val loss
+ 'x/lr0',
+ 'x/lr1',
+ 'x/lr2'] # params
+ self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
+ for k in LOGGERS:
+ setattr(self, k, None) # init empty logger dictionary
+ self.csv = True # always log to csv
+
+ # Messages
+ # if not wandb:
+ # prefix = colorstr('Weights & Biases: ')
+ # s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLO 🚀 runs in Weights & Biases"
+ # self.logger.info(s)
+ if not clearml:
+ prefix = colorstr('ClearML: ')
+ s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLO 🚀 in ClearML"
+ self.logger.info(s)
+ if not comet_ml:
+ prefix = colorstr('Comet: ')
+ s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLO 🚀 runs in Comet"
+ self.logger.info(s)
+ # TensorBoard
+ s = self.save_dir
+ if 'tb' in self.include and not self.opt.evolve:
+ prefix = colorstr('TensorBoard: ')
+ self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
+ self.tb = SummaryWriter(str(s))
+
+ # W&B
+ if wandb and 'wandb' in self.include:
+ wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
+ run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
+ self.opt.hyp = self.hyp # add hyperparameters
+ self.wandb = WandbLogger(self.opt, run_id)
+ # temp warn. because nested artifacts not supported after 0.12.10
+ # if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
+ # s = "YOLO temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
+ # self.logger.warning(s)
+ else:
+ self.wandb = None
+
+ # ClearML
+ if clearml and 'clearml' in self.include:
+ self.clearml = ClearmlLogger(self.opt, self.hyp)
+ else:
+ self.clearml = None
+
+ # Comet
+ if comet_ml and 'comet' in self.include:
+ if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
+ run_id = self.opt.resume.split("/")[-1]
+ self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
+
+ else:
+ self.comet_logger = CometLogger(self.opt, self.hyp)
+
+ else:
+ self.comet_logger = None
+
+ @property
+ def remote_dataset(self):
+ # Get data_dict if custom dataset artifact link is provided
+ data_dict = None
+ if self.clearml:
+ data_dict = self.clearml.data_dict
+ if self.wandb:
+ data_dict = self.wandb.data_dict
+ if self.comet_logger:
+ data_dict = self.comet_logger.data_dict
+
+ return data_dict
+
+ def on_train_start(self):
+ if self.comet_logger:
+ self.comet_logger.on_train_start()
+
+ def on_pretrain_routine_start(self):
+ if self.comet_logger:
+ self.comet_logger.on_pretrain_routine_start()
+
+ def on_pretrain_routine_end(self, labels, names):
+ # Callback runs on pre-train routine end
+ if self.plots:
+ plot_labels(labels, names, self.save_dir)
+ paths = self.save_dir.glob('*labels*.jpg') # training labels
+ if self.wandb:
+ self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
+ # if self.clearml:
+ # pass # ClearML saves these images automatically using hooks
+ if self.comet_logger:
+ self.comet_logger.on_pretrain_routine_end(paths)
+
+ def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
+ log_dict = dict(zip(self.keys[0:3], vals))
+ # Callback runs on train batch end
+ # ni: number integrated batches (since train start)
+ if self.plots:
+ if ni < 3:
+ f = self.save_dir / f'train_batch{ni}.jpg' # filename
+ plot_images(imgs, targets, paths, f)
+ if ni == 0 and self.tb and not self.opt.sync_bn:
+ log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
+ if ni == 10 and (self.wandb or self.clearml):
+ files = sorted(self.save_dir.glob('train*.jpg'))
+ if self.wandb:
+ self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
+ if self.clearml:
+ self.clearml.log_debug_samples(files, title='Mosaics')
+
+ if self.comet_logger:
+ self.comet_logger.on_train_batch_end(log_dict, step=ni)
+
+ def on_train_epoch_end(self, epoch):
+ # Callback runs on train epoch end
+ if self.wandb:
+ self.wandb.current_epoch = epoch + 1
+
+ if self.comet_logger:
+ self.comet_logger.on_train_epoch_end(epoch)
+
+ def on_val_start(self):
+ if self.comet_logger:
+ self.comet_logger.on_val_start()
+
+ def on_val_image_end(self, pred, predn, path, names, im):
+ # Callback runs on val image end
+ if self.wandb:
+ self.wandb.val_one_image(pred, predn, path, names, im)
+ if self.clearml:
+ self.clearml.log_image_with_boxes(path, pred, names, im)
+
+ def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
+ if self.comet_logger:
+ self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
+
+ def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
+ # Callback runs on val end
+ if self.wandb or self.clearml:
+ files = sorted(self.save_dir.glob('val*.jpg'))
+ if self.wandb:
+ self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
+ if self.clearml:
+ self.clearml.log_debug_samples(files, title='Validation')
+
+ if self.comet_logger:
+ self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
+
+ def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
+ # Callback runs at the end of each fit (train+val) epoch
+ x = dict(zip(self.keys, vals))
+ if self.csv:
+ file = self.save_dir / 'results.csv'
+ n = len(x) + 1 # number of cols
+ s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
+ with open(file, 'a') as f:
+ f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
+
+ if self.tb:
+ for k, v in x.items():
+ self.tb.add_scalar(k, v, epoch)
+ elif self.clearml: # log to ClearML if TensorBoard not used
+ for k, v in x.items():
+ title, series = k.split('/')
+ self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
+
+ if self.wandb:
+ if best_fitness == fi:
+ best_results = [epoch] + vals[3:7]
+ for i, name in enumerate(self.best_keys):
+ self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
+ self.wandb.log(x)
+ self.wandb.end_epoch(best_result=best_fitness == fi)
+
+ if self.clearml:
+ self.clearml.current_epoch_logged_images = set() # reset epoch image limit
+ self.clearml.current_epoch += 1
+
+ if self.comet_logger:
+ self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
+
+ def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
+ # Callback runs on model save event
+ if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
+ if self.wandb:
+ self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
+ if self.clearml:
+ self.clearml.task.update_output_model(model_path=str(last),
+ model_name='Latest Model',
+ auto_delete_file=False)
+
+ if self.comet_logger:
+ self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
+
+ def on_train_end(self, last, best, epoch, results):
+ # Callback runs on training end, i.e. saving best model
+ if self.plots:
+ plot_results(file=self.save_dir / 'results.csv') # save results.png
+ files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
+ files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
+ self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
+
+ if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
+ for f in files:
+ self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
+
+ if self.wandb:
+ self.wandb.log(dict(zip(self.keys[3:10], results)))
+ self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
+ # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
+ if not self.opt.evolve:
+ wandb.log_artifact(str(best if best.exists() else last),
+ type='model',
+ name=f'run_{self.wandb.wandb_run.id}_model',
+ aliases=['latest', 'best', 'stripped'])
+ self.wandb.finish_run()
+
+ if self.clearml and not self.opt.evolve:
+ self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
+ name='Best Model',
+ auto_delete_file=False)
+
+ if self.comet_logger:
+ final_results = dict(zip(self.keys[3:10], results))
+ self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
+
+ def on_params_update(self, params: dict):
+ # Update hyperparams or configs of the experiment
+ if self.wandb:
+ self.wandb.wandb_run.config.update(params, allow_val_change=True)
+ if self.comet_logger:
+ self.comet_logger.on_params_update(params)
+
+
+class GenericLogger:
+ """
+ YOLO General purpose logger for non-task specific logging
+ Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
+ Arguments
+ opt: Run arguments
+ console_logger: Console logger
+ include: loggers to include
+ """
+
+ def __init__(self, opt, console_logger, include=('tb', 'wandb')):
+ # init default loggers
+ self.save_dir = Path(opt.save_dir)
+ self.include = include
+ self.console_logger = console_logger
+ self.csv = self.save_dir / 'results.csv' # CSV logger
+ if 'tb' in self.include:
+ prefix = colorstr('TensorBoard: ')
+ self.console_logger.info(
+ f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
+ self.tb = SummaryWriter(str(self.save_dir))
+
+ if wandb and 'wandb' in self.include:
+ self.wandb = wandb.init(project=web_project_name(str(opt.project)),
+ name=None if opt.name == "exp" else opt.name,
+ config=opt)
+ else:
+ self.wandb = None
+
+ def log_metrics(self, metrics, epoch):
+ # Log metrics dictionary to all loggers
+ if self.csv:
+ keys, vals = list(metrics.keys()), list(metrics.values())
+ n = len(metrics) + 1 # number of cols
+ s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
+ with open(self.csv, 'a') as f:
+ f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
+
+ if self.tb:
+ for k, v in metrics.items():
+ self.tb.add_scalar(k, v, epoch)
+
+ if self.wandb:
+ self.wandb.log(metrics, step=epoch)
+
+ def log_images(self, files, name='Images', epoch=0):
+ # Log images to all loggers
+ files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
+ files = [f for f in files if f.exists()] # filter by exists
+
+ if self.tb:
+ for f in files:
+ self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
+
+ if self.wandb:
+ self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
+
+ def log_graph(self, model, imgsz=(640, 640)):
+ # Log model graph to all loggers
+ if self.tb:
+ log_tensorboard_graph(self.tb, model, imgsz)
+
+ def log_model(self, model_path, epoch=0, metadata={}):
+ # Log model to all loggers
+ if self.wandb:
+ art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
+ art.add_file(str(model_path))
+ wandb.log_artifact(art)
+
+ def update_params(self, params):
+ # Update the paramters logged
+ if self.wandb:
+ wandb.run.config.update(params, allow_val_change=True)
+
+
+def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
+ # Log model graph to TensorBoard
+ try:
+ p = next(model.parameters()) # for device, type
+ imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
+ im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
+ with warnings.catch_warnings():
+ warnings.simplefilter('ignore') # suppress jit trace warning
+ tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
+ except Exception as e:
+ LOGGER.warning(f'WARNING ⚠️ TensorBoard graph visualization failure {e}')
+
+
+def web_project_name(project):
+ # Convert local project name to web project name
+ if not project.startswith('runs/train'):
+ return project
+ suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else ''
+ return f'YOLO{suffix}'
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/clearml/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/clearml/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/clearml/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/clearml/clearml_utils.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/clearml/clearml_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe5f597a87a635b15dbfe5d7ed5a6c285ebff6bd
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/clearml/clearml_utils.py
@@ -0,0 +1,157 @@
+"""Main Logger class for ClearML experiment tracking."""
+import glob
+import re
+from pathlib import Path
+
+import numpy as np
+import yaml
+
+from utils.plots import Annotator, colors
+
+try:
+ import clearml
+ from clearml import Dataset, Task
+
+ assert hasattr(clearml, '__version__') # verify package import not local dir
+except (ImportError, AssertionError):
+ clearml = None
+
+
+def construct_dataset(clearml_info_string):
+ """Load in a clearml dataset and fill the internal data_dict with its contents.
+ """
+ dataset_id = clearml_info_string.replace('clearml://', '')
+ dataset = Dataset.get(dataset_id=dataset_id)
+ dataset_root_path = Path(dataset.get_local_copy())
+
+ # We'll search for the yaml file definition in the dataset
+ yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
+ if len(yaml_filenames) > 1:
+ raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
+ 'the dataset definition this way.')
+ elif len(yaml_filenames) == 0:
+ raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
+ 'inside the dataset root path.')
+ with open(yaml_filenames[0]) as f:
+ dataset_definition = yaml.safe_load(f)
+
+ assert set(dataset_definition.keys()).issuperset(
+ {'train', 'test', 'val', 'nc', 'names'}
+ ), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
+
+ data_dict = dict()
+ data_dict['train'] = str(
+ (dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
+ data_dict['test'] = str(
+ (dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
+ data_dict['val'] = str(
+ (dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
+ data_dict['nc'] = dataset_definition['nc']
+ data_dict['names'] = dataset_definition['names']
+
+ return data_dict
+
+
+class ClearmlLogger:
+ """Log training runs, datasets, models, and predictions to ClearML.
+
+ This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
+ this information includes hyperparameters, system configuration and metrics, model metrics, code information and
+ basic data metrics and analyses.
+
+ By providing additional command line arguments to train.py, datasets,
+ models and predictions can also be logged.
+ """
+
+ def __init__(self, opt, hyp):
+ """
+ - Initialize ClearML Task, this object will capture the experiment
+ - Upload dataset version to ClearML Data if opt.upload_dataset is True
+
+ arguments:
+ opt (namespace) -- Commandline arguments for this run
+ hyp (dict) -- Hyperparameters for this run
+
+ """
+ self.current_epoch = 0
+ # Keep tracked of amount of logged images to enforce a limit
+ self.current_epoch_logged_images = set()
+ # Maximum number of images to log to clearML per epoch
+ self.max_imgs_to_log_per_epoch = 16
+ # Get the interval of epochs when bounding box images should be logged
+ self.bbox_interval = opt.bbox_interval
+ self.clearml = clearml
+ self.task = None
+ self.data_dict = None
+ if self.clearml:
+ self.task = Task.init(
+ project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5',
+ task_name=opt.name if opt.name != 'exp' else 'Training',
+ tags=['YOLOv5'],
+ output_uri=True,
+ auto_connect_frameworks={'pytorch': False}
+ # We disconnect pytorch auto-detection, because we added manual model save points in the code
+ )
+ # ClearML's hooks will already grab all general parameters
+ # Only the hyperparameters coming from the yaml config file
+ # will have to be added manually!
+ self.task.connect(hyp, name='Hyperparameters')
+
+ # Get ClearML Dataset Version if requested
+ if opt.data.startswith('clearml://'):
+ # data_dict should have the following keys:
+ # names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
+ self.data_dict = construct_dataset(opt.data)
+ # Set data to data_dict because wandb will crash without this information and opt is the best way
+ # to give it to them
+ opt.data = self.data_dict
+
+ def log_debug_samples(self, files, title='Debug Samples'):
+ """
+ Log files (images) as debug samples in the ClearML task.
+
+ arguments:
+ files (List(PosixPath)) a list of file paths in PosixPath format
+ title (str) A title that groups together images with the same values
+ """
+ for f in files:
+ if f.exists():
+ it = re.search(r'_batch(\d+)', f.name)
+ iteration = int(it.groups()[0]) if it else 0
+ self.task.get_logger().report_image(title=title,
+ series=f.name.replace(it.group(), ''),
+ local_path=str(f),
+ iteration=iteration)
+
+ def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
+ """
+ Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
+
+ arguments:
+ image_path (PosixPath) the path the original image file
+ boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
+ class_names (dict): dict containing mapping of class int to class name
+ image (Tensor): A torch tensor containing the actual image data
+ """
+ if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
+ # Log every bbox_interval times and deduplicate for any intermittend extra eval runs
+ if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
+ im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
+ annotator = Annotator(im=im, pil=True)
+ for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
+ color = colors(i)
+
+ class_name = class_names[int(class_nr)]
+ confidence_percentage = round(float(conf) * 100, 2)
+ label = f"{class_name}: {confidence_percentage}%"
+
+ if conf > conf_threshold:
+ annotator.rectangle(box.cpu().numpy(), outline=color)
+ annotator.box_label(box.cpu().numpy(), label=label, color=color)
+
+ annotated_image = annotator.result()
+ self.task.get_logger().report_image(title='Bounding Boxes',
+ series=image_path.name,
+ iteration=self.current_epoch,
+ image=annotated_image)
+ self.current_epoch_logged_images.add(image_path)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/clearml/hpo.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/clearml/hpo.py
new file mode 100644
index 0000000000000000000000000000000000000000..ee518b0fbfc89ee811b51bbf85341eee4f685be1
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/clearml/hpo.py
@@ -0,0 +1,84 @@
+from clearml import Task
+# Connecting ClearML with the current process,
+# from here on everything is logged automatically
+from clearml.automation import HyperParameterOptimizer, UniformParameterRange
+from clearml.automation.optuna import OptimizerOptuna
+
+task = Task.init(project_name='Hyper-Parameter Optimization',
+ task_name='YOLOv5',
+ task_type=Task.TaskTypes.optimizer,
+ reuse_last_task_id=False)
+
+# Example use case:
+optimizer = HyperParameterOptimizer(
+ # This is the experiment we want to optimize
+ base_task_id='',
+ # here we define the hyper-parameters to optimize
+ # Notice: The parameter name should exactly match what you see in the UI: /
+ # For Example, here we see in the base experiment a section Named: "General"
+ # under it a parameter named "batch_size", this becomes "General/batch_size"
+ # If you have `argparse` for example, then arguments will appear under the "Args" section,
+ # and you should instead pass "Args/batch_size"
+ hyper_parameters=[
+ UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1),
+ UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0),
+ UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98),
+ UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001),
+ UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0),
+ UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95),
+ UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2),
+ UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2),
+ UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0),
+ UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0),
+ UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0),
+ UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0),
+ UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7),
+ UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0),
+ UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0),
+ UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1),
+ UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9),
+ UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9),
+ UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0),
+ UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9),
+ UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9),
+ UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0),
+ UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001),
+ UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0),
+ UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0),
+ UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0),
+ UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0),
+ UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)],
+ # this is the objective metric we want to maximize/minimize
+ objective_metric_title='metrics',
+ objective_metric_series='mAP_0.5',
+ # now we decide if we want to maximize it or minimize it (accuracy we maximize)
+ objective_metric_sign='max',
+ # let us limit the number of concurrent experiments,
+ # this in turn will make sure we do dont bombard the scheduler with experiments.
+ # if we have an auto-scaler connected, this, by proxy, will limit the number of machine
+ max_number_of_concurrent_tasks=1,
+ # this is the optimizer class (actually doing the optimization)
+ # Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
+ optimizer_class=OptimizerOptuna,
+ # If specified only the top K performing Tasks will be kept, the others will be automatically archived
+ save_top_k_tasks_only=5, # 5,
+ compute_time_limit=None,
+ total_max_jobs=20,
+ min_iteration_per_job=None,
+ max_iteration_per_job=None,
+)
+
+# report every 10 seconds, this is way too often, but we are testing here
+optimizer.set_report_period(10 / 60)
+# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
+# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
+# set the time limit for the optimization process (2 hours)
+optimizer.set_time_limit(in_minutes=120.0)
+# Start the optimization process in the local environment
+optimizer.start_locally()
+# wait until process is done (notice we are controlling the optimization process in the background)
+optimizer.wait()
+# make sure background optimization stopped
+optimizer.stop()
+
+print('We are done, good bye')
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b0318f88d6a63a6ba37fd2bf7ec4869084a45966
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/__init__.py
@@ -0,0 +1,508 @@
+import glob
+import json
+import logging
+import os
+import sys
+from pathlib import Path
+
+logger = logging.getLogger(__name__)
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3] # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+
+try:
+ import comet_ml
+
+ # Project Configuration
+ config = comet_ml.config.get_config()
+ COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
+except (ModuleNotFoundError, ImportError):
+ comet_ml = None
+ COMET_PROJECT_NAME = None
+
+import PIL
+import torch
+import torchvision.transforms as T
+import yaml
+
+from utils.dataloaders import img2label_paths
+from utils.general import check_dataset, scale_boxes, xywh2xyxy
+from utils.metrics import box_iou
+
+COMET_PREFIX = "comet://"
+
+COMET_MODE = os.getenv("COMET_MODE", "online")
+
+# Model Saving Settings
+COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
+
+# Dataset Artifact Settings
+COMET_UPLOAD_DATASET = os.getenv("COMET_UPLOAD_DATASET", "false").lower() == "true"
+
+# Evaluation Settings
+COMET_LOG_CONFUSION_MATRIX = os.getenv("COMET_LOG_CONFUSION_MATRIX", "true").lower() == "true"
+COMET_LOG_PREDICTIONS = os.getenv("COMET_LOG_PREDICTIONS", "true").lower() == "true"
+COMET_MAX_IMAGE_UPLOADS = int(os.getenv("COMET_MAX_IMAGE_UPLOADS", 100))
+
+# Confusion Matrix Settings
+CONF_THRES = float(os.getenv("CONF_THRES", 0.001))
+IOU_THRES = float(os.getenv("IOU_THRES", 0.6))
+
+# Batch Logging Settings
+COMET_LOG_BATCH_METRICS = os.getenv("COMET_LOG_BATCH_METRICS", "false").lower() == "true"
+COMET_BATCH_LOGGING_INTERVAL = os.getenv("COMET_BATCH_LOGGING_INTERVAL", 1)
+COMET_PREDICTION_LOGGING_INTERVAL = os.getenv("COMET_PREDICTION_LOGGING_INTERVAL", 1)
+COMET_LOG_PER_CLASS_METRICS = os.getenv("COMET_LOG_PER_CLASS_METRICS", "false").lower() == "true"
+
+RANK = int(os.getenv("RANK", -1))
+
+to_pil = T.ToPILImage()
+
+
+class CometLogger:
+ """Log metrics, parameters, source code, models and much more
+ with Comet
+ """
+
+ def __init__(self, opt, hyp, run_id=None, job_type="Training", **experiment_kwargs) -> None:
+ self.job_type = job_type
+ self.opt = opt
+ self.hyp = hyp
+
+ # Comet Flags
+ self.comet_mode = COMET_MODE
+
+ self.save_model = opt.save_period > -1
+ self.model_name = COMET_MODEL_NAME
+
+ # Batch Logging Settings
+ self.log_batch_metrics = COMET_LOG_BATCH_METRICS
+ self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL
+
+ # Dataset Artifact Settings
+ self.upload_dataset = self.opt.upload_dataset if self.opt.upload_dataset else COMET_UPLOAD_DATASET
+ self.resume = self.opt.resume
+
+ # Default parameters to pass to Experiment objects
+ self.default_experiment_kwargs = {
+ "log_code": False,
+ "log_env_gpu": True,
+ "log_env_cpu": True,
+ "project_name": COMET_PROJECT_NAME,}
+ self.default_experiment_kwargs.update(experiment_kwargs)
+ self.experiment = self._get_experiment(self.comet_mode, run_id)
+
+ self.data_dict = self.check_dataset(self.opt.data)
+ self.class_names = self.data_dict["names"]
+ self.num_classes = self.data_dict["nc"]
+
+ self.logged_images_count = 0
+ self.max_images = COMET_MAX_IMAGE_UPLOADS
+
+ if run_id is None:
+ self.experiment.log_other("Created from", "YOLOv5")
+ if not isinstance(self.experiment, comet_ml.OfflineExperiment):
+ workspace, project_name, experiment_id = self.experiment.url.split("/")[-3:]
+ self.experiment.log_other(
+ "Run Path",
+ f"{workspace}/{project_name}/{experiment_id}",
+ )
+ self.log_parameters(vars(opt))
+ self.log_parameters(self.opt.hyp)
+ self.log_asset_data(
+ self.opt.hyp,
+ name="hyperparameters.json",
+ metadata={"type": "hyp-config-file"},
+ )
+ self.log_asset(
+ f"{self.opt.save_dir}/opt.yaml",
+ metadata={"type": "opt-config-file"},
+ )
+
+ self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX
+
+ if hasattr(self.opt, "conf_thres"):
+ self.conf_thres = self.opt.conf_thres
+ else:
+ self.conf_thres = CONF_THRES
+ if hasattr(self.opt, "iou_thres"):
+ self.iou_thres = self.opt.iou_thres
+ else:
+ self.iou_thres = IOU_THRES
+
+ self.log_parameters({"val_iou_threshold": self.iou_thres, "val_conf_threshold": self.conf_thres})
+
+ self.comet_log_predictions = COMET_LOG_PREDICTIONS
+ if self.opt.bbox_interval == -1:
+ self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10
+ else:
+ self.comet_log_prediction_interval = self.opt.bbox_interval
+
+ if self.comet_log_predictions:
+ self.metadata_dict = {}
+ self.logged_image_names = []
+
+ self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS
+
+ self.experiment.log_others({
+ "comet_mode": COMET_MODE,
+ "comet_max_image_uploads": COMET_MAX_IMAGE_UPLOADS,
+ "comet_log_per_class_metrics": COMET_LOG_PER_CLASS_METRICS,
+ "comet_log_batch_metrics": COMET_LOG_BATCH_METRICS,
+ "comet_log_confusion_matrix": COMET_LOG_CONFUSION_MATRIX,
+ "comet_model_name": COMET_MODEL_NAME,})
+
+ # Check if running the Experiment with the Comet Optimizer
+ if hasattr(self.opt, "comet_optimizer_id"):
+ self.experiment.log_other("optimizer_id", self.opt.comet_optimizer_id)
+ self.experiment.log_other("optimizer_objective", self.opt.comet_optimizer_objective)
+ self.experiment.log_other("optimizer_metric", self.opt.comet_optimizer_metric)
+ self.experiment.log_other("optimizer_parameters", json.dumps(self.hyp))
+
+ def _get_experiment(self, mode, experiment_id=None):
+ if mode == "offline":
+ if experiment_id is not None:
+ return comet_ml.ExistingOfflineExperiment(
+ previous_experiment=experiment_id,
+ **self.default_experiment_kwargs,
+ )
+
+ return comet_ml.OfflineExperiment(**self.default_experiment_kwargs,)
+
+ else:
+ try:
+ if experiment_id is not None:
+ return comet_ml.ExistingExperiment(
+ previous_experiment=experiment_id,
+ **self.default_experiment_kwargs,
+ )
+
+ return comet_ml.Experiment(**self.default_experiment_kwargs)
+
+ except ValueError:
+ logger.warning("COMET WARNING: "
+ "Comet credentials have not been set. "
+ "Comet will default to offline logging. "
+ "Please set your credentials to enable online logging.")
+ return self._get_experiment("offline", experiment_id)
+
+ return
+
+ def log_metrics(self, log_dict, **kwargs):
+ self.experiment.log_metrics(log_dict, **kwargs)
+
+ def log_parameters(self, log_dict, **kwargs):
+ self.experiment.log_parameters(log_dict, **kwargs)
+
+ def log_asset(self, asset_path, **kwargs):
+ self.experiment.log_asset(asset_path, **kwargs)
+
+ def log_asset_data(self, asset, **kwargs):
+ self.experiment.log_asset_data(asset, **kwargs)
+
+ def log_image(self, img, **kwargs):
+ self.experiment.log_image(img, **kwargs)
+
+ def log_model(self, path, opt, epoch, fitness_score, best_model=False):
+ if not self.save_model:
+ return
+
+ model_metadata = {
+ "fitness_score": fitness_score[-1],
+ "epochs_trained": epoch + 1,
+ "save_period": opt.save_period,
+ "total_epochs": opt.epochs,}
+
+ model_files = glob.glob(f"{path}/*.pt")
+ for model_path in model_files:
+ name = Path(model_path).name
+
+ self.experiment.log_model(
+ self.model_name,
+ file_or_folder=model_path,
+ file_name=name,
+ metadata=model_metadata,
+ overwrite=True,
+ )
+
+ def check_dataset(self, data_file):
+ with open(data_file) as f:
+ data_config = yaml.safe_load(f)
+
+ if data_config['path'].startswith(COMET_PREFIX):
+ path = data_config['path'].replace(COMET_PREFIX, "")
+ data_dict = self.download_dataset_artifact(path)
+
+ return data_dict
+
+ self.log_asset(self.opt.data, metadata={"type": "data-config-file"})
+
+ return check_dataset(data_file)
+
+ def log_predictions(self, image, labelsn, path, shape, predn):
+ if self.logged_images_count >= self.max_images:
+ return
+ detections = predn[predn[:, 4] > self.conf_thres]
+ iou = box_iou(labelsn[:, 1:], detections[:, :4])
+ mask, _ = torch.where(iou > self.iou_thres)
+ if len(mask) == 0:
+ return
+
+ filtered_detections = detections[mask]
+ filtered_labels = labelsn[mask]
+
+ image_id = path.split("/")[-1].split(".")[0]
+ image_name = f"{image_id}_curr_epoch_{self.experiment.curr_epoch}"
+ if image_name not in self.logged_image_names:
+ native_scale_image = PIL.Image.open(path)
+ self.log_image(native_scale_image, name=image_name)
+ self.logged_image_names.append(image_name)
+
+ metadata = []
+ for cls, *xyxy in filtered_labels.tolist():
+ metadata.append({
+ "label": f"{self.class_names[int(cls)]}-gt",
+ "score": 100,
+ "box": {
+ "x": xyxy[0],
+ "y": xyxy[1],
+ "x2": xyxy[2],
+ "y2": xyxy[3]},})
+ for *xyxy, conf, cls in filtered_detections.tolist():
+ metadata.append({
+ "label": f"{self.class_names[int(cls)]}",
+ "score": conf * 100,
+ "box": {
+ "x": xyxy[0],
+ "y": xyxy[1],
+ "x2": xyxy[2],
+ "y2": xyxy[3]},})
+
+ self.metadata_dict[image_name] = metadata
+ self.logged_images_count += 1
+
+ return
+
+ def preprocess_prediction(self, image, labels, shape, pred):
+ nl, _ = labels.shape[0], pred.shape[0]
+
+ # Predictions
+ if self.opt.single_cls:
+ pred[:, 5] = 0
+
+ predn = pred.clone()
+ scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
+
+ labelsn = None
+ if nl:
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
+ scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
+ scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred
+
+ return predn, labelsn
+
+ def add_assets_to_artifact(self, artifact, path, asset_path, split):
+ img_paths = sorted(glob.glob(f"{asset_path}/*"))
+ label_paths = img2label_paths(img_paths)
+
+ for image_file, label_file in zip(img_paths, label_paths):
+ image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])
+
+ try:
+ artifact.add(image_file, logical_path=image_logical_path, metadata={"split": split})
+ artifact.add(label_file, logical_path=label_logical_path, metadata={"split": split})
+ except ValueError as e:
+ logger.error('COMET ERROR: Error adding file to Artifact. Skipping file.')
+ logger.error(f"COMET ERROR: {e}")
+ continue
+
+ return artifact
+
+ def upload_dataset_artifact(self):
+ dataset_name = self.data_dict.get("dataset_name", "yolov5-dataset")
+ path = str((ROOT / Path(self.data_dict["path"])).resolve())
+
+ metadata = self.data_dict.copy()
+ for key in ["train", "val", "test"]:
+ split_path = metadata.get(key)
+ if split_path is not None:
+ metadata[key] = split_path.replace(path, "")
+
+ artifact = comet_ml.Artifact(name=dataset_name, artifact_type="dataset", metadata=metadata)
+ for key in metadata.keys():
+ if key in ["train", "val", "test"]:
+ if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
+ continue
+
+ asset_path = self.data_dict.get(key)
+ if asset_path is not None:
+ artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)
+
+ self.experiment.log_artifact(artifact)
+
+ return
+
+ def download_dataset_artifact(self, artifact_path):
+ logged_artifact = self.experiment.get_artifact(artifact_path)
+ artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
+ logged_artifact.download(artifact_save_dir)
+
+ metadata = logged_artifact.metadata
+ data_dict = metadata.copy()
+ data_dict["path"] = artifact_save_dir
+
+ metadata_names = metadata.get("names")
+ if type(metadata_names) == dict:
+ data_dict["names"] = {int(k): v for k, v in metadata.get("names").items()}
+ elif type(metadata_names) == list:
+ data_dict["names"] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
+ else:
+ raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"
+
+ data_dict = self.update_data_paths(data_dict)
+ return data_dict
+
+ def update_data_paths(self, data_dict):
+ path = data_dict.get("path", "")
+
+ for split in ["train", "val", "test"]:
+ if data_dict.get(split):
+ split_path = data_dict.get(split)
+ data_dict[split] = (f"{path}/{split_path}" if isinstance(split, str) else [
+ f"{path}/{x}" for x in split_path])
+
+ return data_dict
+
+ def on_pretrain_routine_end(self, paths):
+ if self.opt.resume:
+ return
+
+ for path in paths:
+ self.log_asset(str(path))
+
+ if self.upload_dataset:
+ if not self.resume:
+ self.upload_dataset_artifact()
+
+ return
+
+ def on_train_start(self):
+ self.log_parameters(self.hyp)
+
+ def on_train_epoch_start(self):
+ return
+
+ def on_train_epoch_end(self, epoch):
+ self.experiment.curr_epoch = epoch
+
+ return
+
+ def on_train_batch_start(self):
+ return
+
+ def on_train_batch_end(self, log_dict, step):
+ self.experiment.curr_step = step
+ if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
+ self.log_metrics(log_dict, step=step)
+
+ return
+
+ def on_train_end(self, files, save_dir, last, best, epoch, results):
+ if self.comet_log_predictions:
+ curr_epoch = self.experiment.curr_epoch
+ self.experiment.log_asset_data(self.metadata_dict, "image-metadata.json", epoch=curr_epoch)
+
+ for f in files:
+ self.log_asset(f, metadata={"epoch": epoch})
+ self.log_asset(f"{save_dir}/results.csv", metadata={"epoch": epoch})
+
+ if not self.opt.evolve:
+ model_path = str(best if best.exists() else last)
+ name = Path(model_path).name
+ if self.save_model:
+ self.experiment.log_model(
+ self.model_name,
+ file_or_folder=model_path,
+ file_name=name,
+ overwrite=True,
+ )
+
+ # Check if running Experiment with Comet Optimizer
+ if hasattr(self.opt, 'comet_optimizer_id'):
+ metric = results.get(self.opt.comet_optimizer_metric)
+ self.experiment.log_other('optimizer_metric_value', metric)
+
+ self.finish_run()
+
+ def on_val_start(self):
+ return
+
+ def on_val_batch_start(self):
+ return
+
+ def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
+ if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
+ return
+
+ for si, pred in enumerate(outputs):
+ if len(pred) == 0:
+ continue
+
+ image = images[si]
+ labels = targets[targets[:, 0] == si, 1:]
+ shape = shapes[si]
+ path = paths[si]
+ predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
+ if labelsn is not None:
+ self.log_predictions(image, labelsn, path, shape, predn)
+
+ return
+
+ def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
+ if self.comet_log_per_class_metrics:
+ if self.num_classes > 1:
+ for i, c in enumerate(ap_class):
+ class_name = self.class_names[c]
+ self.experiment.log_metrics(
+ {
+ 'mAP@.5': ap50[i],
+ 'mAP@.5:.95': ap[i],
+ 'precision': p[i],
+ 'recall': r[i],
+ 'f1': f1[i],
+ 'true_positives': tp[i],
+ 'false_positives': fp[i],
+ 'support': nt[c]},
+ prefix=class_name)
+
+ if self.comet_log_confusion_matrix:
+ epoch = self.experiment.curr_epoch
+ class_names = list(self.class_names.values())
+ class_names.append("background")
+ num_classes = len(class_names)
+
+ self.experiment.log_confusion_matrix(
+ matrix=confusion_matrix.matrix,
+ max_categories=num_classes,
+ labels=class_names,
+ epoch=epoch,
+ column_label='Actual Category',
+ row_label='Predicted Category',
+ file_name=f"confusion-matrix-epoch-{epoch}.json",
+ )
+
+ def on_fit_epoch_end(self, result, epoch):
+ self.log_metrics(result, epoch=epoch)
+
+ def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
+ if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
+ self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
+
+ def on_params_update(self, params):
+ self.log_parameters(params)
+
+ def finish_run(self):
+ self.experiment.end()
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/comet_utils.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/comet_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..3cbd45156b576d09024fd11ea9dce83d4a6e5143
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/comet_utils.py
@@ -0,0 +1,150 @@
+import logging
+import os
+from urllib.parse import urlparse
+
+try:
+ import comet_ml
+except (ModuleNotFoundError, ImportError):
+ comet_ml = None
+
+import yaml
+
+logger = logging.getLogger(__name__)
+
+COMET_PREFIX = "comet://"
+COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
+COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv("COMET_DEFAULT_CHECKPOINT_FILENAME", "last.pt")
+
+
+def download_model_checkpoint(opt, experiment):
+ model_dir = f"{opt.project}/{experiment.name}"
+ os.makedirs(model_dir, exist_ok=True)
+
+ model_name = COMET_MODEL_NAME
+ model_asset_list = experiment.get_model_asset_list(model_name)
+
+ if len(model_asset_list) == 0:
+ logger.error(f"COMET ERROR: No checkpoints found for model name : {model_name}")
+ return
+
+ model_asset_list = sorted(
+ model_asset_list,
+ key=lambda x: x["step"],
+ reverse=True,
+ )
+ logged_checkpoint_map = {asset["fileName"]: asset["assetId"] for asset in model_asset_list}
+
+ resource_url = urlparse(opt.weights)
+ checkpoint_filename = resource_url.query
+
+ if checkpoint_filename:
+ asset_id = logged_checkpoint_map.get(checkpoint_filename)
+ else:
+ asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME)
+ checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME
+
+ if asset_id is None:
+ logger.error(f"COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment")
+ return
+
+ try:
+ logger.info(f"COMET INFO: Downloading checkpoint {checkpoint_filename}")
+ asset_filename = checkpoint_filename
+
+ model_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
+ model_download_path = f"{model_dir}/{asset_filename}"
+ with open(model_download_path, "wb") as f:
+ f.write(model_binary)
+
+ opt.weights = model_download_path
+
+ except Exception as e:
+ logger.warning("COMET WARNING: Unable to download checkpoint from Comet")
+ logger.exception(e)
+
+
+def set_opt_parameters(opt, experiment):
+ """Update the opts Namespace with parameters
+ from Comet's ExistingExperiment when resuming a run
+
+ Args:
+ opt (argparse.Namespace): Namespace of command line options
+ experiment (comet_ml.APIExperiment): Comet API Experiment object
+ """
+ asset_list = experiment.get_asset_list()
+ resume_string = opt.resume
+
+ for asset in asset_list:
+ if asset["fileName"] == "opt.yaml":
+ asset_id = asset["assetId"]
+ asset_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
+ opt_dict = yaml.safe_load(asset_binary)
+ for key, value in opt_dict.items():
+ setattr(opt, key, value)
+ opt.resume = resume_string
+
+ # Save hyperparameters to YAML file
+ # Necessary to pass checks in training script
+ save_dir = f"{opt.project}/{experiment.name}"
+ os.makedirs(save_dir, exist_ok=True)
+
+ hyp_yaml_path = f"{save_dir}/hyp.yaml"
+ with open(hyp_yaml_path, "w") as f:
+ yaml.dump(opt.hyp, f)
+ opt.hyp = hyp_yaml_path
+
+
+def check_comet_weights(opt):
+ """Downloads model weights from Comet and updates the
+ weights path to point to saved weights location
+
+ Args:
+ opt (argparse.Namespace): Command Line arguments passed
+ to YOLOv5 training script
+
+ Returns:
+ None/bool: Return True if weights are successfully downloaded
+ else return None
+ """
+ if comet_ml is None:
+ return
+
+ if isinstance(opt.weights, str):
+ if opt.weights.startswith(COMET_PREFIX):
+ api = comet_ml.API()
+ resource = urlparse(opt.weights)
+ experiment_path = f"{resource.netloc}{resource.path}"
+ experiment = api.get(experiment_path)
+ download_model_checkpoint(opt, experiment)
+ return True
+
+ return None
+
+
+def check_comet_resume(opt):
+ """Restores run parameters to its original state based on the model checkpoint
+ and logged Experiment parameters.
+
+ Args:
+ opt (argparse.Namespace): Command Line arguments passed
+ to YOLOv5 training script
+
+ Returns:
+ None/bool: Return True if the run is restored successfully
+ else return None
+ """
+ if comet_ml is None:
+ return
+
+ if isinstance(opt.resume, str):
+ if opt.resume.startswith(COMET_PREFIX):
+ api = comet_ml.API()
+ resource = urlparse(opt.resume)
+ experiment_path = f"{resource.netloc}{resource.path}"
+ experiment = api.get(experiment_path)
+ set_opt_parameters(opt, experiment)
+ download_model_checkpoint(opt, experiment)
+
+ return True
+
+ return None
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/hpo.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/hpo.py
new file mode 100644
index 0000000000000000000000000000000000000000..7dd5c92e8de170222b3cd3eae858f4f3cfddaff6
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/hpo.py
@@ -0,0 +1,118 @@
+import argparse
+import json
+import logging
+import os
+import sys
+from pathlib import Path
+
+import comet_ml
+
+logger = logging.getLogger(__name__)
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3] # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+
+from train import train
+from utils.callbacks import Callbacks
+from utils.general import increment_path
+from utils.torch_utils import select_device
+
+# Project Configuration
+config = comet_ml.config.get_config()
+COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
+
+
+def get_args(known=False):
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+ parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
+ parser.add_argument('--epochs', type=int, default=300, help='total training epochs')
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+ parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+ parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+ parser.add_argument('--noplots', action='store_true', help='save no plot files')
+ parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+ parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
+ parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+ parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+ parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+
+ # Weights & Biases arguments
+ parser.add_argument('--entity', default=None, help='W&B: Entity')
+ parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
+ parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
+ parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
+
+ # Comet Arguments
+ parser.add_argument("--comet_optimizer_config", type=str, help="Comet: Path to a Comet Optimizer Config File.")
+ parser.add_argument("--comet_optimizer_id", type=str, help="Comet: ID of the Comet Optimizer sweep.")
+ parser.add_argument("--comet_optimizer_objective", type=str, help="Comet: Set to 'minimize' or 'maximize'.")
+ parser.add_argument("--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize.")
+ parser.add_argument("--comet_optimizer_workers",
+ type=int,
+ default=1,
+ help="Comet: Number of Parallel Workers to use with the Comet Optimizer.")
+
+ return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def run(parameters, opt):
+ hyp_dict = {k: v for k, v in parameters.items() if k not in ["epochs", "batch_size"]}
+
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
+ opt.batch_size = parameters.get("batch_size")
+ opt.epochs = parameters.get("epochs")
+
+ device = select_device(opt.device, batch_size=opt.batch_size)
+ train(hyp_dict, opt, device, callbacks=Callbacks())
+
+
+if __name__ == "__main__":
+ opt = get_args(known=True)
+
+ opt.weights = str(opt.weights)
+ opt.cfg = str(opt.cfg)
+ opt.data = str(opt.data)
+ opt.project = str(opt.project)
+
+ optimizer_id = os.getenv("COMET_OPTIMIZER_ID")
+ if optimizer_id is None:
+ with open(opt.comet_optimizer_config) as f:
+ optimizer_config = json.load(f)
+ optimizer = comet_ml.Optimizer(optimizer_config)
+ else:
+ optimizer = comet_ml.Optimizer(optimizer_id)
+
+ opt.comet_optimizer_id = optimizer.id
+ status = optimizer.status()
+
+ opt.comet_optimizer_objective = status["spec"]["objective"]
+ opt.comet_optimizer_metric = status["spec"]["metric"]
+
+ logger.info("COMET INFO: Starting Hyperparameter Sweep")
+ for parameter in optimizer.get_parameters():
+ run(parameter["parameters"], opt)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/optimizer_config.json b/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/optimizer_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..83ddddab6f2084b4bdf84dca1e61696de200d1b8
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/comet/optimizer_config.json
@@ -0,0 +1,209 @@
+{
+ "algorithm": "random",
+ "parameters": {
+ "anchor_t": {
+ "type": "discrete",
+ "values": [
+ 2,
+ 8
+ ]
+ },
+ "batch_size": {
+ "type": "discrete",
+ "values": [
+ 16,
+ 32,
+ 64
+ ]
+ },
+ "box": {
+ "type": "discrete",
+ "values": [
+ 0.02,
+ 0.2
+ ]
+ },
+ "cls": {
+ "type": "discrete",
+ "values": [
+ 0.2
+ ]
+ },
+ "cls_pw": {
+ "type": "discrete",
+ "values": [
+ 0.5
+ ]
+ },
+ "copy_paste": {
+ "type": "discrete",
+ "values": [
+ 1
+ ]
+ },
+ "degrees": {
+ "type": "discrete",
+ "values": [
+ 0,
+ 45
+ ]
+ },
+ "epochs": {
+ "type": "discrete",
+ "values": [
+ 5
+ ]
+ },
+ "fl_gamma": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "fliplr": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "flipud": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "hsv_h": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "hsv_s": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "hsv_v": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "iou_t": {
+ "type": "discrete",
+ "values": [
+ 0.7
+ ]
+ },
+ "lr0": {
+ "type": "discrete",
+ "values": [
+ 1e-05,
+ 0.1
+ ]
+ },
+ "lrf": {
+ "type": "discrete",
+ "values": [
+ 0.01,
+ 1
+ ]
+ },
+ "mixup": {
+ "type": "discrete",
+ "values": [
+ 1
+ ]
+ },
+ "momentum": {
+ "type": "discrete",
+ "values": [
+ 0.6
+ ]
+ },
+ "mosaic": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "obj": {
+ "type": "discrete",
+ "values": [
+ 0.2
+ ]
+ },
+ "obj_pw": {
+ "type": "discrete",
+ "values": [
+ 0.5
+ ]
+ },
+ "optimizer": {
+ "type": "categorical",
+ "values": [
+ "SGD",
+ "Adam",
+ "AdamW"
+ ]
+ },
+ "perspective": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "scale": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "shear": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "translate": {
+ "type": "discrete",
+ "values": [
+ 0
+ ]
+ },
+ "warmup_bias_lr": {
+ "type": "discrete",
+ "values": [
+ 0,
+ 0.2
+ ]
+ },
+ "warmup_epochs": {
+ "type": "discrete",
+ "values": [
+ 5
+ ]
+ },
+ "warmup_momentum": {
+ "type": "discrete",
+ "values": [
+ 0,
+ 0.95
+ ]
+ },
+ "weight_decay": {
+ "type": "discrete",
+ "values": [
+ 0,
+ 0.001
+ ]
+ }
+ },
+ "spec": {
+ "maxCombo": 0,
+ "metric": "metrics/mAP_0.5",
+ "objective": "maximize"
+ },
+ "trials": 1
+}
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/log_dataset.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/log_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..06e81fb693072c99703e5c52b169892b7fd9a8cc
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/log_dataset.py
@@ -0,0 +1,27 @@
+import argparse
+
+from wandb_utils import WandbLogger
+
+from utils.general import LOGGER
+
+WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
+
+
+def create_dataset_artifact(opt):
+ logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused
+ if not logger.wandb:
+ LOGGER.info("install wandb using `pip install wandb` to log the dataset")
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
+ parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
+ parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
+ parser.add_argument('--entity', default=None, help='W&B entity')
+ parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
+
+ opt = parser.parse_args()
+ opt.resume = False # Explicitly disallow resume check for dataset upload job
+
+ create_dataset_artifact(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/sweep.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/sweep.py
new file mode 100644
index 0000000000000000000000000000000000000000..d49ea6f2778b2e87d0f535c2b3595ccceebab459
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/sweep.py
@@ -0,0 +1,41 @@
+import sys
+from pathlib import Path
+
+import wandb
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3] # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+
+from train import parse_opt, train
+from utils.callbacks import Callbacks
+from utils.general import increment_path
+from utils.torch_utils import select_device
+
+
+def sweep():
+ wandb.init()
+ # Get hyp dict from sweep agent. Copy because train() modifies parameters which confused wandb.
+ hyp_dict = vars(wandb.config).get("_items").copy()
+
+ # Workaround: get necessary opt args
+ opt = parse_opt(known=True)
+ opt.batch_size = hyp_dict.get("batch_size")
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
+ opt.epochs = hyp_dict.get("epochs")
+ opt.nosave = True
+ opt.data = hyp_dict.get("data")
+ opt.weights = str(opt.weights)
+ opt.cfg = str(opt.cfg)
+ opt.data = str(opt.data)
+ opt.hyp = str(opt.hyp)
+ opt.project = str(opt.project)
+ device = select_device(opt.device, batch_size=opt.batch_size)
+
+ # train
+ train(hyp_dict, opt, device, callbacks=Callbacks())
+
+
+if __name__ == "__main__":
+ sweep()
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/sweep.yaml b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/sweep.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..688b1ea0285f42e779d301ba910bf4e9fe50305c
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/sweep.yaml
@@ -0,0 +1,143 @@
+# Hyperparameters for training
+# To set range-
+# Provide min and max values as:
+# parameter:
+#
+# min: scalar
+# max: scalar
+# OR
+#
+# Set a specific list of search space-
+# parameter:
+# values: [scalar1, scalar2, scalar3...]
+#
+# You can use grid, bayesian and hyperopt search strategy
+# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
+
+program: utils/loggers/wandb/sweep.py
+method: random
+metric:
+ name: metrics/mAP_0.5
+ goal: maximize
+
+parameters:
+ # hyperparameters: set either min, max range or values list
+ data:
+ value: "data/coco128.yaml"
+ batch_size:
+ values: [64]
+ epochs:
+ values: [10]
+
+ lr0:
+ distribution: uniform
+ min: 1e-5
+ max: 1e-1
+ lrf:
+ distribution: uniform
+ min: 0.01
+ max: 1.0
+ momentum:
+ distribution: uniform
+ min: 0.6
+ max: 0.98
+ weight_decay:
+ distribution: uniform
+ min: 0.0
+ max: 0.001
+ warmup_epochs:
+ distribution: uniform
+ min: 0.0
+ max: 5.0
+ warmup_momentum:
+ distribution: uniform
+ min: 0.0
+ max: 0.95
+ warmup_bias_lr:
+ distribution: uniform
+ min: 0.0
+ max: 0.2
+ box:
+ distribution: uniform
+ min: 0.02
+ max: 0.2
+ cls:
+ distribution: uniform
+ min: 0.2
+ max: 4.0
+ cls_pw:
+ distribution: uniform
+ min: 0.5
+ max: 2.0
+ obj:
+ distribution: uniform
+ min: 0.2
+ max: 4.0
+ obj_pw:
+ distribution: uniform
+ min: 0.5
+ max: 2.0
+ iou_t:
+ distribution: uniform
+ min: 0.1
+ max: 0.7
+ anchor_t:
+ distribution: uniform
+ min: 2.0
+ max: 8.0
+ fl_gamma:
+ distribution: uniform
+ min: 0.0
+ max: 4.0
+ hsv_h:
+ distribution: uniform
+ min: 0.0
+ max: 0.1
+ hsv_s:
+ distribution: uniform
+ min: 0.0
+ max: 0.9
+ hsv_v:
+ distribution: uniform
+ min: 0.0
+ max: 0.9
+ degrees:
+ distribution: uniform
+ min: 0.0
+ max: 45.0
+ translate:
+ distribution: uniform
+ min: 0.0
+ max: 0.9
+ scale:
+ distribution: uniform
+ min: 0.0
+ max: 0.9
+ shear:
+ distribution: uniform
+ min: 0.0
+ max: 10.0
+ perspective:
+ distribution: uniform
+ min: 0.0
+ max: 0.001
+ flipud:
+ distribution: uniform
+ min: 0.0
+ max: 1.0
+ fliplr:
+ distribution: uniform
+ min: 0.0
+ max: 1.0
+ mosaic:
+ distribution: uniform
+ min: 0.0
+ max: 1.0
+ mixup:
+ distribution: uniform
+ min: 0.0
+ max: 1.0
+ copy_paste:
+ distribution: uniform
+ min: 0.0
+ max: 1.0
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/wandb_utils.py b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/wandb_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..238f4edbf2a0ddf34c024fbb6775c71dd19e18aa
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loggers/wandb/wandb_utils.py
@@ -0,0 +1,589 @@
+"""Utilities and tools for tracking runs with Weights & Biases."""
+
+import logging
+import os
+import sys
+from contextlib import contextmanager
+from pathlib import Path
+from typing import Dict
+
+import yaml
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3] # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+
+from utils.dataloaders import LoadImagesAndLabels, img2label_paths
+from utils.general import LOGGER, check_dataset, check_file
+
+try:
+ import wandb
+
+ assert hasattr(wandb, '__version__') # verify package import not local dir
+except (ImportError, AssertionError):
+ wandb = None
+
+RANK = int(os.getenv('RANK', -1))
+WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
+
+
+def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
+ return from_string[len(prefix):]
+
+
+def check_wandb_config_file(data_config_file):
+ wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
+ if Path(wandb_config).is_file():
+ return wandb_config
+ return data_config_file
+
+
+def check_wandb_dataset(data_file):
+ is_trainset_wandb_artifact = False
+ is_valset_wandb_artifact = False
+ if isinstance(data_file, dict):
+ # In that case another dataset manager has already processed it and we don't have to
+ return data_file
+ if check_file(data_file) and data_file.endswith('.yaml'):
+ with open(data_file, errors='ignore') as f:
+ data_dict = yaml.safe_load(f)
+ is_trainset_wandb_artifact = isinstance(data_dict['train'],
+ str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX)
+ is_valset_wandb_artifact = isinstance(data_dict['val'],
+ str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX)
+ if is_trainset_wandb_artifact or is_valset_wandb_artifact:
+ return data_dict
+ else:
+ return check_dataset(data_file)
+
+
+def get_run_info(run_path):
+ run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
+ run_id = run_path.stem
+ project = run_path.parent.stem
+ entity = run_path.parent.parent.stem
+ model_artifact_name = 'run_' + run_id + '_model'
+ return entity, project, run_id, model_artifact_name
+
+
+def check_wandb_resume(opt):
+ process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
+ if isinstance(opt.resume, str):
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ if RANK not in [-1, 0]: # For resuming DDP runs
+ entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
+ api = wandb.Api()
+ artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
+ modeldir = artifact.download()
+ opt.weights = str(Path(modeldir) / "last.pt")
+ return True
+ return None
+
+
+def process_wandb_config_ddp_mode(opt):
+ with open(check_file(opt.data), errors='ignore') as f:
+ data_dict = yaml.safe_load(f) # data dict
+ train_dir, val_dir = None, None
+ if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
+ api = wandb.Api()
+ train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
+ train_dir = train_artifact.download()
+ train_path = Path(train_dir) / 'data/images/'
+ data_dict['train'] = str(train_path)
+
+ if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
+ api = wandb.Api()
+ val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
+ val_dir = val_artifact.download()
+ val_path = Path(val_dir) / 'data/images/'
+ data_dict['val'] = str(val_path)
+ if train_dir or val_dir:
+ ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
+ with open(ddp_data_path, 'w') as f:
+ yaml.safe_dump(data_dict, f)
+ opt.data = ddp_data_path
+
+
+class WandbLogger():
+ """Log training runs, datasets, models, and predictions to Weights & Biases.
+
+ This logger sends information to W&B at wandb.ai. By default, this information
+ includes hyperparameters, system configuration and metrics, model metrics,
+ and basic data metrics and analyses.
+
+ By providing additional command line arguments to train.py, datasets,
+ models and predictions can also be logged.
+
+ For more on how this logger is used, see the Weights & Biases documentation:
+ https://docs.wandb.com/guides/integrations/yolov5
+ """
+
+ def __init__(self, opt, run_id=None, job_type='Training'):
+ """
+ - Initialize WandbLogger instance
+ - Upload dataset if opt.upload_dataset is True
+ - Setup training processes if job_type is 'Training'
+
+ arguments:
+ opt (namespace) -- Commandline arguments for this run
+ run_id (str) -- Run ID of W&B run to be resumed
+ job_type (str) -- To set the job_type for this run
+
+ """
+ # Temporary-fix
+ if opt.upload_dataset:
+ opt.upload_dataset = False
+ # LOGGER.info("Uploading Dataset functionality is not being supported temporarily due to a bug.")
+
+ # Pre-training routine --
+ self.job_type = job_type
+ self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
+ self.val_artifact, self.train_artifact = None, None
+ self.train_artifact_path, self.val_artifact_path = None, None
+ self.result_artifact = None
+ self.val_table, self.result_table = None, None
+ self.bbox_media_panel_images = []
+ self.val_table_path_map = None
+ self.max_imgs_to_log = 16
+ self.wandb_artifact_data_dict = None
+ self.data_dict = None
+ # It's more elegant to stick to 1 wandb.init call,
+ # but useful config data is overwritten in the WandbLogger's wandb.init call
+ if isinstance(opt.resume, str): # checks resume from artifact
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
+ model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
+ assert wandb, 'install wandb to resume wandb runs'
+ # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
+ self.wandb_run = wandb.init(id=run_id,
+ project=project,
+ entity=entity,
+ resume='allow',
+ allow_val_change=True)
+ opt.resume = model_artifact_name
+ elif self.wandb:
+ self.wandb_run = wandb.init(config=opt,
+ resume="allow",
+ project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
+ entity=opt.entity,
+ name=opt.name if opt.name != 'exp' else None,
+ job_type=job_type,
+ id=run_id,
+ allow_val_change=True) if not wandb.run else wandb.run
+ if self.wandb_run:
+ if self.job_type == 'Training':
+ if opt.upload_dataset:
+ if not opt.resume:
+ self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
+
+ if isinstance(opt.data, dict):
+ # This means another dataset manager has already processed the dataset info (e.g. ClearML)
+ # and they will have stored the already processed dict in opt.data
+ self.data_dict = opt.data
+ elif opt.resume:
+ # resume from artifact
+ if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ self.data_dict = dict(self.wandb_run.config.data_dict)
+ else: # local resume
+ self.data_dict = check_wandb_dataset(opt.data)
+ else:
+ self.data_dict = check_wandb_dataset(opt.data)
+ self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
+
+ # write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
+ self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, allow_val_change=True)
+ self.setup_training(opt)
+
+ if self.job_type == 'Dataset Creation':
+ self.wandb_run.config.update({"upload_dataset": True})
+ self.data_dict = self.check_and_upload_dataset(opt)
+
+ def check_and_upload_dataset(self, opt):
+ """
+ Check if the dataset format is compatible and upload it as W&B artifact
+
+ arguments:
+ opt (namespace)-- Commandline arguments for current run
+
+ returns:
+ Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
+ """
+ assert wandb, 'Install wandb to upload dataset'
+ config_path = self.log_dataset_artifact(opt.data, opt.single_cls,
+ 'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
+ with open(config_path, errors='ignore') as f:
+ wandb_data_dict = yaml.safe_load(f)
+ return wandb_data_dict
+
+ def setup_training(self, opt):
+ """
+ Setup the necessary processes for training YOLO models:
+ - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
+ - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
+ - Setup log_dict, initialize bbox_interval
+
+ arguments:
+ opt (namespace) -- commandline arguments for this run
+
+ """
+ self.log_dict, self.current_epoch = {}, 0
+ self.bbox_interval = opt.bbox_interval
+ if isinstance(opt.resume, str):
+ modeldir, _ = self.download_model_artifact(opt)
+ if modeldir:
+ self.weights = Path(modeldir) / "last.pt"
+ config = self.wandb_run.config
+ opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
+ self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\
+ config.hyp, config.imgsz
+ data_dict = self.data_dict
+ if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
+ self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(
+ data_dict.get('train'), opt.artifact_alias)
+ self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(
+ data_dict.get('val'), opt.artifact_alias)
+
+ if self.train_artifact_path is not None:
+ train_path = Path(self.train_artifact_path) / 'data/images/'
+ data_dict['train'] = str(train_path)
+ if self.val_artifact_path is not None:
+ val_path = Path(self.val_artifact_path) / 'data/images/'
+ data_dict['val'] = str(val_path)
+
+ if self.val_artifact is not None:
+ self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
+ columns = ["epoch", "id", "ground truth", "prediction"]
+ columns.extend(self.data_dict['names'])
+ self.result_table = wandb.Table(columns)
+ self.val_table = self.val_artifact.get("val")
+ if self.val_table_path_map is None:
+ self.map_val_table_path()
+ if opt.bbox_interval == -1:
+ self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
+ if opt.evolve or opt.noplots:
+ self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
+ train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
+ # Update the the data_dict to point to local artifacts dir
+ if train_from_artifact:
+ self.data_dict = data_dict
+
+ def download_dataset_artifact(self, path, alias):
+ """
+ download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
+
+ arguments:
+ path -- path of the dataset to be used for training
+ alias (str)-- alias of the artifact to be download/used for training
+
+ returns:
+ (str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
+ is found otherwise returns (None, None)
+ """
+ if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
+ artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
+ dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
+ assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
+ datadir = dataset_artifact.download()
+ return datadir, dataset_artifact
+ return None, None
+
+ def download_model_artifact(self, opt):
+ """
+ download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
+
+ arguments:
+ opt (namespace) -- Commandline arguments for this run
+ """
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
+ assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
+ modeldir = model_artifact.download()
+ # epochs_trained = model_artifact.metadata.get('epochs_trained')
+ total_epochs = model_artifact.metadata.get('total_epochs')
+ is_finished = total_epochs is None
+ assert not is_finished, 'training is finished, can only resume incomplete runs.'
+ return modeldir, model_artifact
+ return None, None
+
+ def log_model(self, path, opt, epoch, fitness_score, best_model=False):
+ """
+ Log the model checkpoint as W&B artifact
+
+ arguments:
+ path (Path) -- Path of directory containing the checkpoints
+ opt (namespace) -- Command line arguments for this run
+ epoch (int) -- Current epoch number
+ fitness_score (float) -- fitness score for current epoch
+ best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
+ """
+ model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
+ type='model',
+ metadata={
+ 'original_url': str(path),
+ 'epochs_trained': epoch + 1,
+ 'save period': opt.save_period,
+ 'project': opt.project,
+ 'total_epochs': opt.epochs,
+ 'fitness_score': fitness_score})
+ model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
+ wandb.log_artifact(model_artifact,
+ aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
+ LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
+
+ def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
+ """
+ Log the dataset as W&B artifact and return the new data file with W&B links
+
+ arguments:
+ data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
+ single_class (boolean) -- train multi-class data as single-class
+ project (str) -- project name. Used to construct the artifact path
+ overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
+ file with _wandb postfix. Eg -> data_wandb.yaml
+
+ returns:
+ the new .yaml file with artifact links. it can be used to start training directly from artifacts
+ """
+ upload_dataset = self.wandb_run.config.upload_dataset
+ log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val'
+ self.data_dict = check_dataset(data_file) # parse and check
+ data = dict(self.data_dict)
+ nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
+ names = {k: v for k, v in enumerate(names)} # to index dictionary
+
+ # log train set
+ if not log_val_only:
+ self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(data['train'], rect=True, batch_size=1),
+ names,
+ name='train') if data.get('train') else None
+ if data.get('train'):
+ data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
+
+ self.val_artifact = self.create_dataset_table(
+ LoadImagesAndLabels(data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
+ if data.get('val'):
+ data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
+
+ path = Path(data_file)
+ # create a _wandb.yaml file with artifacts links if both train and test set are logged
+ if not log_val_only:
+ path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml' # updated data.yaml path
+ path = ROOT / 'data' / path
+ data.pop('download', None)
+ data.pop('path', None)
+ with open(path, 'w') as f:
+ yaml.safe_dump(data, f)
+ LOGGER.info(f"Created dataset config file {path}")
+
+ if self.job_type == 'Training': # builds correct artifact pipeline graph
+ if not log_val_only:
+ self.wandb_run.log_artifact(
+ self.train_artifact) # calling use_artifact downloads the dataset. NOT NEEDED!
+ self.wandb_run.use_artifact(self.val_artifact)
+ self.val_artifact.wait()
+ self.val_table = self.val_artifact.get('val')
+ self.map_val_table_path()
+ else:
+ self.wandb_run.log_artifact(self.train_artifact)
+ self.wandb_run.log_artifact(self.val_artifact)
+ return path
+
+ def map_val_table_path(self):
+ """
+ Map the validation dataset Table like name of file -> it's id in the W&B Table.
+ Useful for - referencing artifacts for evaluation.
+ """
+ self.val_table_path_map = {}
+ LOGGER.info("Mapping dataset")
+ for i, data in enumerate(tqdm(self.val_table.data)):
+ self.val_table_path_map[data[3]] = data[0]
+
+ def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'):
+ """
+ Create and return W&B artifact containing W&B Table of the dataset.
+
+ arguments:
+ dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
+ class_to_id -- hash map that maps class ids to labels
+ name -- name of the artifact
+
+ returns:
+ dataset artifact to be logged or used
+ """
+ # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
+ artifact = wandb.Artifact(name=name, type="dataset")
+ img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
+ img_files = tqdm(dataset.im_files) if not img_files else img_files
+ for img_file in img_files:
+ if Path(img_file).is_dir():
+ artifact.add_dir(img_file, name='data/images')
+ labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
+ artifact.add_dir(labels_path, name='data/labels')
+ else:
+ artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
+ label_file = Path(img2label_paths([img_file])[0])
+ artifact.add_file(str(label_file), name='data/labels/' +
+ label_file.name) if label_file.exists() else None
+ table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
+ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
+ for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
+ box_data, img_classes = [], {}
+ for cls, *xywh in labels[:, 1:].tolist():
+ cls = int(cls)
+ box_data.append({
+ "position": {
+ "middle": [xywh[0], xywh[1]],
+ "width": xywh[2],
+ "height": xywh[3]},
+ "class_id": cls,
+ "box_caption": "%s" % (class_to_id[cls])})
+ img_classes[cls] = class_to_id[cls]
+ boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
+ table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
+ Path(paths).name)
+ artifact.add(table, name)
+ return artifact
+
+ def log_training_progress(self, predn, path, names):
+ """
+ Build evaluation Table. Uses reference from validation dataset table.
+
+ arguments:
+ predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
+ path (str): local path of the current evaluation image
+ names (dict(int, str)): hash map that maps class ids to labels
+ """
+ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
+ box_data = []
+ avg_conf_per_class = [0] * len(self.data_dict['names'])
+ pred_class_count = {}
+ for *xyxy, conf, cls in predn.tolist():
+ if conf >= 0.25:
+ cls = int(cls)
+ box_data.append({
+ "position": {
+ "minX": xyxy[0],
+ "minY": xyxy[1],
+ "maxX": xyxy[2],
+ "maxY": xyxy[3]},
+ "class_id": cls,
+ "box_caption": f"{names[cls]} {conf:.3f}",
+ "scores": {
+ "class_score": conf},
+ "domain": "pixel"})
+ avg_conf_per_class[cls] += conf
+
+ if cls in pred_class_count:
+ pred_class_count[cls] += 1
+ else:
+ pred_class_count[cls] = 1
+
+ for pred_class in pred_class_count.keys():
+ avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class]
+
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
+ id = self.val_table_path_map[Path(path).name]
+ self.result_table.add_data(self.current_epoch, id, self.val_table.data[id][1],
+ wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
+ *avg_conf_per_class)
+
+ def val_one_image(self, pred, predn, path, names, im):
+ """
+ Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
+
+ arguments:
+ pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
+ predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
+ path (str): local path of the current evaluation image
+ """
+ if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
+ self.log_training_progress(predn, path, names)
+
+ if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
+ if self.current_epoch % self.bbox_interval == 0:
+ box_data = [{
+ "position": {
+ "minX": xyxy[0],
+ "minY": xyxy[1],
+ "maxX": xyxy[2],
+ "maxY": xyxy[3]},
+ "class_id": int(cls),
+ "box_caption": f"{names[int(cls)]} {conf:.3f}",
+ "scores": {
+ "class_score": conf},
+ "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
+ self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
+
+ def log(self, log_dict):
+ """
+ save the metrics to the logging dictionary
+
+ arguments:
+ log_dict (Dict) -- metrics/media to be logged in current step
+ """
+ if self.wandb_run:
+ for key, value in log_dict.items():
+ self.log_dict[key] = value
+
+ def end_epoch(self, best_result=False):
+ """
+ commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
+
+ arguments:
+ best_result (boolean): Boolean representing if the result of this evaluation is best or not
+ """
+ if self.wandb_run:
+ with all_logging_disabled():
+ if self.bbox_media_panel_images:
+ self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
+ try:
+ wandb.log(self.log_dict)
+ except BaseException as e:
+ LOGGER.info(
+ f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
+ )
+ self.wandb_run.finish()
+ self.wandb_run = None
+
+ self.log_dict = {}
+ self.bbox_media_panel_images = []
+ if self.result_artifact:
+ self.result_artifact.add(self.result_table, 'result')
+ wandb.log_artifact(self.result_artifact,
+ aliases=[
+ 'latest', 'last', 'epoch ' + str(self.current_epoch),
+ ('best' if best_result else '')])
+
+ wandb.log({"evaluation": self.result_table})
+ columns = ["epoch", "id", "ground truth", "prediction"]
+ columns.extend(self.data_dict['names'])
+ self.result_table = wandb.Table(columns)
+ self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
+
+ def finish_run(self):
+ """
+ Log metrics if any and finish the current W&B run
+ """
+ if self.wandb_run:
+ if self.log_dict:
+ with all_logging_disabled():
+ wandb.log(self.log_dict)
+ wandb.run.finish()
+
+
+@contextmanager
+def all_logging_disabled(highest_level=logging.CRITICAL):
+ """ source - https://gist.github.com/simon-weber/7853144
+ A context manager that will prevent any logging messages triggered during the body from being processed.
+ :param highest_level: the maximum logging level in use.
+ This would only need to be changed if a custom level greater than CRITICAL is defined.
+ """
+ previous_level = logging.root.manager.disable
+ logging.disable(highest_level)
+ try:
+ yield
+ finally:
+ logging.disable(previous_level)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loss.py b/cv/3d_detection/yolov9/pytorch/utils/loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ec21f8ae7950656084b0529343922ed74d4e4df
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loss.py
@@ -0,0 +1,363 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.metrics import bbox_iou
+from utils.torch_utils import de_parallel
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class BCEBlurWithLogitsLoss(nn.Module):
+ # BCEwithLogitLoss() with reduced missing label effects.
+ def __init__(self, alpha=0.05):
+ super().__init__()
+ self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
+ self.alpha = alpha
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ pred = torch.sigmoid(pred) # prob from logits
+ dx = pred - true # reduce only missing label effects
+ # dx = (pred - true).abs() # reduce missing label and false label effects
+ alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
+ loss *= alpha_factor
+ return loss.mean()
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super().__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == 'mean':
+ return loss.mean()
+ elif self.reduction == 'sum':
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class QFocalLoss(nn.Module):
+ # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super().__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = torch.abs(true - pred_prob) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == 'mean':
+ return loss.mean()
+ elif self.reduction == 'sum':
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class ComputeLoss:
+ sort_obj_iou = False
+
+ # Compute losses
+ def __init__(self, model, autobalance=False):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h['fl_gamma'] # focal loss gamma
+ if g > 0:
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
+ self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.anchors = m.anchors
+ self.device = device
+
+ def __call__(self, p, targets): # predictions, targets
+ bs = p[0].shape[0] # batch size
+ loss = torch.zeros(3, device=self.device) # [box, obj, cls] losses
+ tcls, tbox, indices = self.build_targets(p, targets) # targets
+
+ # Losses
+ for i, pi in enumerate(p): # layer index, layer predictions
+ b, gj, gi = indices[i] # image, anchor, gridy, gridx
+ tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) # tgt obj
+
+ n_labels = b.shape[0] # number of labels
+ if n_labels:
+ # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
+ pxy, pwh, _, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
+
+ # Regression
+ # pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
+ # pwh = (0.0 + (pwh - 1.09861).sigmoid() * 4) * anchors[i]
+ # pwh = (0.33333 + (pwh - 1.09861).sigmoid() * 2.66667) * anchors[i]
+ # pwh = (0.25 + (pwh - 1.38629).sigmoid() * 3.75) * anchors[i]
+ # pwh = (0.20 + (pwh - 1.60944).sigmoid() * 4.8) * anchors[i]
+ # pwh = (0.16667 + (pwh - 1.79175).sigmoid() * 5.83333) * anchors[i]
+ pxy = pxy.sigmoid() * 1.6 - 0.3
+ pwh = (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]
+ pbox = torch.cat((pxy, pwh), 1) # predicted box
+ iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
+ loss[0] += (1.0 - iou).mean() # box loss
+
+ # Objectness
+ iou = iou.detach().clamp(0).type(tobj.dtype)
+ if self.sort_obj_iou:
+ j = iou.argsort()
+ b, gj, gi, iou = b[j], gj[j], gi[j], iou[j]
+ if self.gr < 1:
+ iou = (1.0 - self.gr) + self.gr * iou
+ tobj[b, gj, gi] = iou # iou ratio
+
+ # Classification
+ if self.nc > 1: # cls loss (only if multiple classes)
+ t = torch.full_like(pcls, self.cn, device=self.device) # targets
+ t[range(n_labels), tcls[i]] = self.cp
+ loss[2] += self.BCEcls(pcls, t) # cls loss
+
+ obji = self.BCEobj(pi[:, 4], tobj)
+ loss[1] += obji * self.balance[i] # obj loss
+ if self.autobalance:
+ self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+ if self.autobalance:
+ self.balance = [x / self.balance[self.ssi] for x in self.balance]
+ loss[0] *= self.hyp['box']
+ loss[1] *= self.hyp['obj']
+ loss[2] *= self.hyp['cls']
+ return loss.sum() * bs, loss.detach() # [box, obj, cls] losses
+
+ def build_targets(self, p, targets):
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+ nt = targets.shape[0] # number of anchors, targets
+ tcls, tbox, indices = [], [], []
+ gain = torch.ones(6, device=self.device) # normalized to gridspace gain
+
+ g = 0.3 # bias
+ off = torch.tensor(
+ [
+ [0, 0],
+ [1, 0],
+ [0, 1],
+ [-1, 0],
+ [0, -1], # j,k,l,m
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
+ ],
+ device=self.device).float() * g # offsets
+
+ for i in range(self.nl):
+ shape = p[i].shape
+ gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
+
+ # Match targets to anchors
+ t = targets * gain # shape(3,n,7)
+ if nt:
+ # Matches
+ r = t[..., 4:6] / self.anchors[i] # wh ratio
+ j = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] # compare
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+ t = t[j] # filter
+
+ # Offsets
+ gxy = t[:, 2:4] # grid xy
+ gxi = gain[[2, 3]] - gxy # inverse
+ j, k = ((gxy % 1 < g) & (gxy > 1)).T
+ l, m = ((gxi % 1 < g) & (gxi > 1)).T
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
+ t = t.repeat((5, 1, 1))[j]
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+ else:
+ t = targets[0]
+ offsets = 0
+
+ # Define
+ bc, gxy, gwh = t.chunk(3, 1) # (image, class), grid xy, grid wh
+ b, c = bc.long().T # image, class
+ gij = (gxy - offsets).long()
+ gi, gj = gij.T # grid indices
+
+ # Append
+ indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, grid_y, grid_x indices
+ tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
+ tcls.append(c) # class
+
+ return tcls, tbox, indices
+
+
+class ComputeLoss_NEW:
+ sort_obj_iou = False
+
+ # Compute losses
+ def __init__(self, model, autobalance=False):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h['fl_gamma'] # focal loss gamma
+ if g > 0:
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
+ self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.anchors = m.anchors
+ self.device = device
+ self.BCE_base = nn.BCEWithLogitsLoss(reduction='none')
+
+ def __call__(self, p, targets): # predictions, targets
+ tcls, tbox, indices = self.build_targets(p, targets) # targets
+ bs = p[0].shape[0] # batch size
+ n_labels = targets.shape[0] # number of labels
+ loss = torch.zeros(3, device=self.device) # [box, obj, cls] losses
+
+ # Compute all losses
+ all_loss = []
+ for i, pi in enumerate(p): # layer index, layer predictions
+ b, gj, gi = indices[i] # image, anchor, gridy, gridx
+ if n_labels:
+ pxy, pwh, pobj, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 2) # target-subset of predictions
+
+ # Regression
+ pbox = torch.cat((pxy.sigmoid() * 1.6 - 0.3, (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]), 2)
+ iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(predicted_box, target_box)
+ obj_target = iou.detach().clamp(0).type(pi.dtype) # objectness targets
+
+ all_loss.append([(1.0 - iou) * self.hyp['box'],
+ self.BCE_base(pobj.squeeze(), torch.ones_like(obj_target)) * self.hyp['obj'],
+ self.BCE_base(pcls, F.one_hot(tcls[i], self.nc).float()).mean(2) * self.hyp['cls'],
+ obj_target,
+ tbox[i][..., 2] > 0.0]) # valid
+
+ # Lowest 3 losses per label
+ n_assign = 4 # top n matches
+ cat_loss = [torch.cat(x, 1) for x in zip(*all_loss)]
+ ij = torch.zeros_like(cat_loss[0]).bool() # top 3 mask
+ sum_loss = cat_loss[0] + cat_loss[2]
+ for col in torch.argsort(sum_loss, dim=1).T[:n_assign]:
+ # ij[range(n_labels), col] = True
+ ij[range(n_labels), col] = cat_loss[4][range(n_labels), col]
+ loss[0] = cat_loss[0][ij].mean() * self.nl # box loss
+ loss[2] = cat_loss[2][ij].mean() * self.nl # cls loss
+
+ # Obj loss
+ for i, (h, pi) in enumerate(zip(ij.chunk(self.nl, 1), p)): # layer index, layer predictions
+ b, gj, gi = indices[i] # image, anchor, gridy, gridx
+ tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) # obj
+ if n_labels: # if any labels
+ tobj[b[h], gj[h], gi[h]] = all_loss[i][3][h]
+ loss[1] += self.BCEobj(pi[:, 4], tobj) * (self.balance[i] * self.hyp['obj'])
+
+ return loss.sum() * bs, loss.detach() # [box, obj, cls] losses
+
+ def build_targets(self, p, targets):
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+ nt = targets.shape[0] # number of anchors, targets
+ tcls, tbox, indices = [], [], []
+ gain = torch.ones(6, device=self.device) # normalized to gridspace gain
+
+ g = 0.3 # bias
+ off = torch.tensor(
+ [
+ [0, 0],
+ [1, 0],
+ [0, 1],
+ [-1, 0],
+ [0, -1], # j,k,l,m
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
+ ],
+ device=self.device).float() # offsets
+
+ for i in range(self.nl):
+ shape = p[i].shape
+ gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
+
+ # Match targets to anchors
+ t = targets * gain # shape(3,n,7)
+ if nt:
+ # # Matches
+ r = t[..., 4:6] / self.anchors[i] # wh ratio
+ a = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] # compare
+ # a = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+ # t = t[a] # filter
+
+ # # Offsets
+ gxy = t[:, 2:4] # grid xy
+ gxi = gain[[2, 3]] - gxy # inverse
+ j, k = ((gxy % 1 < g) & (gxy > 1)).T
+ l, m = ((gxi % 1 < g) & (gxi > 1)).T
+ j = torch.stack((torch.ones_like(j), j, k, l, m)) & a
+ t = t.repeat((5, 1, 1))
+ offsets = torch.zeros_like(gxy)[None] + off[:, None]
+ t[..., 4:6][~j] = 0.0 # move unsuitable targets far away
+ else:
+ t = targets[0]
+ offsets = 0
+
+ # Define
+ bc, gxy, gwh = t.chunk(3, 2) # (image, class), grid xy, grid wh
+ b, c = bc.long().transpose(0, 2).contiguous() # image, class
+ gij = (gxy - offsets).long()
+ gi, gj = gij.transpose(0, 2).contiguous() # grid indices
+
+ # Append
+ indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, grid_y, grid_x indices
+ tbox.append(torch.cat((gxy - gij, gwh), 2).permute(1, 0, 2).contiguous()) # box
+ tcls.append(c) # class
+
+ # # Unique
+ # n1 = torch.cat((b.view(-1, 1), tbox[i].view(-1, 4)), 1).shape[0]
+ # n2 = tbox[i].view(-1, 4).unique(dim=0).shape[0]
+ # print(f'targets-unique {n1}-{n2} diff={n1-n2}')
+
+ return tcls, tbox, indices
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loss_tal.py b/cv/3d_detection/yolov9/pytorch/utils/loss_tal.py
new file mode 100644
index 0000000000000000000000000000000000000000..9f20c787b1c4ec801de946fc1cfea95c8adfd27d
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loss_tal.py
@@ -0,0 +1,215 @@
+import os
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.general import xywh2xyxy
+from utils.metrics import bbox_iou
+from utils.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
+from utils.tal.assigner import TaskAlignedAssigner
+from utils.torch_utils import de_parallel
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class VarifocalLoss(nn.Module):
+ # Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
+ weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
+ reduction="none") * weight).sum()
+ return loss
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super().__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = "none" # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == "mean":
+ return loss.mean()
+ elif self.reduction == "sum":
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, reg_max, use_dfl=False):
+ super().__init__()
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
+ pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
+ target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
+ bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
+
+ iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
+ loss_iou = 1.0 - iou
+
+ loss_iou *= bbox_weight
+ loss_iou = loss_iou.sum() / target_scores_sum
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
+ loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = torch.tensor(0.0).to(pred_dist.device)
+
+ return loss_iou, loss_dfl, iou
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
+ reduction="none").view(target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, use_dfl=True):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h["fl_gamma"] # focal loss gamma
+ if g > 0:
+ BCEcls = FocalLoss(BCEcls, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.BCEcls = BCEcls
+ self.hyp = h
+ self.stride = m.stride # model strides
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.no = m.no
+ self.reg_max = m.reg_max
+ self.device = device
+
+ self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
+ self.use_dfl = use_dfl
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ if targets.shape[0] == 0:
+ out = torch.zeros(batch_size, 0, 5, device=self.device)
+ else:
+ i = targets[:, 0] # image index
+ _, counts = i.unique(return_counts=True)
+ out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
+ for j in range(batch_size):
+ matches = i == j
+ n = matches.sum()
+ if n:
+ out[j, :n] = targets[matches, 1:]
+ out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
+ return out
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ b, a, c = pred_dist.shape # batch, anchors, channels
+ pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
+ return dist2bbox(pred_dist, anchor_points, xywh=False)
+
+ def __call__(self, p, targets, img=None, epoch=0):
+ loss = torch.zeros(3, device=self.device) # box, cls, dfl
+ feats = p[1] if isinstance(p, tuple) else p
+ pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores = pred_scores.permute(0, 2, 1).contiguous()
+ pred_distri = pred_distri.permute(0, 2, 1).contiguous()
+
+ dtype = pred_scores.dtype
+ batch_size, grid_size = pred_scores.shape[:2]
+ imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
+ anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
+
+ # targets
+ targets = self.preprocess(targets, batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
+ gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
+ mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
+
+ # pboxes
+ pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
+
+ target_labels, target_bboxes, target_scores, fg_mask = self.assigner(
+ pred_scores.detach().sigmoid(),
+ (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_bboxes /= stride_tensor
+ target_scores_sum = max(target_scores.sum(), 1)
+
+ # cls loss
+ # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
+ loss[1] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+
+ # bbox loss
+ if fg_mask.sum():
+ loss[0], loss[2], iou = self.bbox_loss(pred_distri,
+ pred_bboxes,
+ anchor_points,
+ target_bboxes,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+
+ loss[0] *= 7.5 # box gain
+ loss[1] *= 0.5 # cls gain
+ loss[2] *= 1.5 # dfl gain
+
+ return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loss_tal_dual.py b/cv/3d_detection/yolov9/pytorch/utils/loss_tal_dual.py
new file mode 100644
index 0000000000000000000000000000000000000000..259e7888d17c70e97efc31db66dfa8a2bd1faef7
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loss_tal_dual.py
@@ -0,0 +1,385 @@
+import os
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.general import xywh2xyxy
+from utils.metrics import bbox_iou
+from utils.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
+from utils.tal.assigner import TaskAlignedAssigner
+from utils.torch_utils import de_parallel
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class VarifocalLoss(nn.Module):
+ # Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
+ weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
+ reduction="none") * weight).sum()
+ return loss
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super().__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = "none" # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == "mean":
+ return loss.mean()
+ elif self.reduction == "sum":
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, reg_max, use_dfl=False):
+ super().__init__()
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
+ pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
+ target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
+ bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
+
+ iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
+ loss_iou = 1.0 - iou
+
+ loss_iou *= bbox_weight
+ loss_iou = loss_iou.sum() / target_scores_sum
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
+ loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = torch.tensor(0.0).to(pred_dist.device)
+
+ return loss_iou, loss_dfl, iou
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
+ reduction="none").view(target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, use_dfl=True):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h["fl_gamma"] # focal loss gamma
+ if g > 0:
+ BCEcls = FocalLoss(BCEcls, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.BCEcls = BCEcls
+ self.hyp = h
+ self.stride = m.stride # model strides
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.no = m.no
+ self.reg_max = m.reg_max
+ self.device = device
+
+ self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.assigner2 = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.bbox_loss2 = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
+ self.use_dfl = use_dfl
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ if targets.shape[0] == 0:
+ out = torch.zeros(batch_size, 0, 5, device=self.device)
+ else:
+ i = targets[:, 0] # image index
+ _, counts = i.unique(return_counts=True)
+ out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
+ for j in range(batch_size):
+ matches = i == j
+ n = matches.sum()
+ if n:
+ out[j, :n] = targets[matches, 1:]
+ out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
+ return out
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ b, a, c = pred_dist.shape # batch, anchors, channels
+ pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
+ return dist2bbox(pred_dist, anchor_points, xywh=False)
+
+ def __call__(self, p, targets, img=None, epoch=0):
+ loss = torch.zeros(3, device=self.device) # box, cls, dfl
+ feats = p[1][0] if isinstance(p, tuple) else p[0]
+ feats2 = p[1][1] if isinstance(p, tuple) else p[1]
+
+ pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores = pred_scores.permute(0, 2, 1).contiguous()
+ pred_distri = pred_distri.permute(0, 2, 1).contiguous()
+
+ pred_distri2, pred_scores2 = torch.cat([xi.view(feats2[0].shape[0], self.no, -1) for xi in feats2], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
+ pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
+
+ dtype = pred_scores.dtype
+ batch_size, grid_size = pred_scores.shape[:2]
+ imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
+ anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
+
+ # targets
+ targets = self.preprocess(targets, batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
+ gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
+ mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
+
+ # pboxes
+ pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
+ pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2) # xyxy, (b, h*w, 4)
+
+ target_labels, target_bboxes, target_scores, fg_mask = self.assigner(
+ pred_scores.detach().sigmoid(),
+ (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+ target_labels2, target_bboxes2, target_scores2, fg_mask2 = self.assigner2(
+ pred_scores2.detach().sigmoid(),
+ (pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_bboxes /= stride_tensor
+ target_scores_sum = max(target_scores.sum(), 1)
+ target_bboxes2 /= stride_tensor
+ target_scores_sum2 = max(target_scores2.sum(), 1)
+
+ # cls loss
+ # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
+ loss[1] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+ loss[1] *= 0.25
+ loss[1] += self.BCEcls(pred_scores2, target_scores2.to(dtype)).sum() / target_scores_sum2 # BCE
+
+ # bbox loss
+ if fg_mask.sum():
+ loss[0], loss[2], iou = self.bbox_loss(pred_distri,
+ pred_bboxes,
+ anchor_points,
+ target_bboxes,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+ loss[0] *= 0.25
+ loss[2] *= 0.25
+ if fg_mask2.sum():
+ loss0_, loss2_, iou2 = self.bbox_loss2(pred_distri2,
+ pred_bboxes2,
+ anchor_points,
+ target_bboxes2,
+ target_scores2,
+ target_scores_sum2,
+ fg_mask2)
+ loss[0] += loss0_
+ loss[2] += loss2_
+
+ loss[0] *= 7.5 # box gain
+ loss[1] *= 0.5 # cls gain
+ loss[2] *= 1.5 # dfl gain
+
+ return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
+
+
+class ComputeLossLH:
+ # Compute losses
+ def __init__(self, model, use_dfl=True):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h["fl_gamma"] # focal loss gamma
+ if g > 0:
+ BCEcls = FocalLoss(BCEcls, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.BCEcls = BCEcls
+ self.hyp = h
+ self.stride = m.stride # model strides
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.no = m.no
+ self.reg_max = m.reg_max
+ self.device = device
+
+ self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
+ self.use_dfl = use_dfl
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ if targets.shape[0] == 0:
+ out = torch.zeros(batch_size, 0, 5, device=self.device)
+ else:
+ i = targets[:, 0] # image index
+ _, counts = i.unique(return_counts=True)
+ out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
+ for j in range(batch_size):
+ matches = i == j
+ n = matches.sum()
+ if n:
+ out[j, :n] = targets[matches, 1:]
+ out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
+ return out
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ b, a, c = pred_dist.shape # batch, anchors, channels
+ pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
+ return dist2bbox(pred_dist, anchor_points, xywh=False)
+
+ def __call__(self, p, targets, img=None, epoch=0):
+ loss = torch.zeros(3, device=self.device) # box, cls, dfl
+ feats = p[1][0] if isinstance(p, tuple) else p[0]
+ feats2 = p[1][1] if isinstance(p, tuple) else p[1]
+
+ pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores = pred_scores.permute(0, 2, 1).contiguous()
+ pred_distri = pred_distri.permute(0, 2, 1).contiguous()
+
+ pred_distri2, pred_scores2 = torch.cat([xi.view(feats2[0].shape[0], self.no, -1) for xi in feats2], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
+ pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
+
+ dtype = pred_scores.dtype
+ batch_size, grid_size = pred_scores.shape[:2]
+ imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
+ anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
+
+ # targets
+ targets = self.preprocess(targets, batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
+ gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
+ mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
+
+ # pboxes
+ pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
+ pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2) # xyxy, (b, h*w, 4)
+
+ target_labels, target_bboxes, target_scores, fg_mask = self.assigner(
+ pred_scores2.detach().sigmoid(),
+ (pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_bboxes /= stride_tensor
+ target_scores_sum = target_scores.sum()
+
+ # cls loss
+ # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
+ loss[1] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+ loss[1] *= 0.25
+ loss[1] += self.BCEcls(pred_scores2, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+
+ # bbox loss
+ if fg_mask.sum():
+ loss[0], loss[2], iou = self.bbox_loss(pred_distri,
+ pred_bboxes,
+ anchor_points,
+ target_bboxes,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+ loss[0] *= 0.25
+ loss[2] *= 0.25
+ if fg_mask.sum():
+ loss0_, loss2_, iou2 = self.bbox_loss(pred_distri2,
+ pred_bboxes2,
+ anchor_points,
+ target_bboxes,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+ loss[0] += loss0_
+ loss[2] += loss2_
+
+ loss[0] *= 7.5 # box gain
+ loss[1] *= 0.5 # cls gain
+ loss[2] *= 1.5 # dfl gain
+
+ return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/loss_tal_triple.py b/cv/3d_detection/yolov9/pytorch/utils/loss_tal_triple.py
new file mode 100644
index 0000000000000000000000000000000000000000..1ed821983e0a959dfff70575adacb2aed8ae6a5c
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/loss_tal_triple.py
@@ -0,0 +1,282 @@
+import os
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.general import xywh2xyxy
+from utils.metrics import bbox_iou
+from utils.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
+from utils.tal.assigner import TaskAlignedAssigner
+from utils.torch_utils import de_parallel
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class VarifocalLoss(nn.Module):
+ # Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
+ weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
+ reduction="none") * weight).sum()
+ return loss
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super().__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = "none" # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == "mean":
+ return loss.mean()
+ elif self.reduction == "sum":
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, reg_max, use_dfl=False):
+ super().__init__()
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
+ pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
+ target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
+ bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
+
+ iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
+ loss_iou = 1.0 - iou
+
+ loss_iou *= bbox_weight
+ loss_iou = loss_iou.sum() / target_scores_sum
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
+ loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = torch.tensor(0.0).to(pred_dist.device)
+
+ return loss_iou, loss_dfl, iou
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
+ reduction="none").view(target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, use_dfl=True):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h["fl_gamma"] # focal loss gamma
+ if g > 0:
+ BCEcls = FocalLoss(BCEcls, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.BCEcls = BCEcls
+ self.hyp = h
+ self.stride = m.stride # model strides
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.no = m.no
+ self.reg_max = m.reg_max
+ self.device = device
+
+ self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.assigner2 = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.assigner3 = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.bbox_loss2 = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.bbox_loss3 = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
+ self.use_dfl = use_dfl
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ if targets.shape[0] == 0:
+ out = torch.zeros(batch_size, 0, 5, device=self.device)
+ else:
+ i = targets[:, 0] # image index
+ _, counts = i.unique(return_counts=True)
+ out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
+ for j in range(batch_size):
+ matches = i == j
+ n = matches.sum()
+ if n:
+ out[j, :n] = targets[matches, 1:]
+ out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
+ return out
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ b, a, c = pred_dist.shape # batch, anchors, channels
+ pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
+ return dist2bbox(pred_dist, anchor_points, xywh=False)
+
+ def __call__(self, p, targets, img=None, epoch=0):
+ loss = torch.zeros(3, device=self.device) # box, cls, dfl
+ feats = p[1][0] if isinstance(p, tuple) else p[0]
+ feats2 = p[1][1] if isinstance(p, tuple) else p[1]
+ feats3 = p[1][2] if isinstance(p, tuple) else p[2]
+
+ pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores = pred_scores.permute(0, 2, 1).contiguous()
+ pred_distri = pred_distri.permute(0, 2, 1).contiguous()
+
+ pred_distri2, pred_scores2 = torch.cat([xi.view(feats2[0].shape[0], self.no, -1) for xi in feats2], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
+ pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
+
+ pred_distri3, pred_scores3 = torch.cat([xi.view(feats3[0].shape[0], self.no, -1) for xi in feats3], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores3 = pred_scores3.permute(0, 2, 1).contiguous()
+ pred_distri3 = pred_distri3.permute(0, 2, 1).contiguous()
+
+ dtype = pred_scores.dtype
+ batch_size, grid_size = pred_scores.shape[:2]
+ imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
+ anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
+
+ # targets
+ targets = self.preprocess(targets, batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
+ gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
+ mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
+
+ # pboxes
+ pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
+ pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2) # xyxy, (b, h*w, 4)
+ pred_bboxes3 = self.bbox_decode(anchor_points, pred_distri3) # xyxy, (b, h*w, 4)
+
+ target_labels, target_bboxes, target_scores, fg_mask = self.assigner(
+ pred_scores.detach().sigmoid(),
+ (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+ target_labels2, target_bboxes2, target_scores2, fg_mask2 = self.assigner2(
+ pred_scores2.detach().sigmoid(),
+ (pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+ target_labels3, target_bboxes3, target_scores3, fg_mask3 = self.assigner3(
+ pred_scores3.detach().sigmoid(),
+ (pred_bboxes3.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_bboxes /= stride_tensor
+ target_scores_sum = max(target_scores.sum(), 1)
+ target_bboxes2 /= stride_tensor
+ target_scores_sum2 = max(target_scores2.sum(), 1)
+ target_bboxes3 /= stride_tensor
+ target_scores_sum3 = max(target_scores3.sum(), 1)
+
+ # cls loss
+ # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
+ loss[1] = 0.25 * self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+ loss[1] += 0.25 * self.BCEcls(pred_scores2, target_scores2.to(dtype)).sum() / target_scores_sum2 # BCE
+ loss[1] += self.BCEcls(pred_scores3, target_scores3.to(dtype)).sum() / target_scores_sum3 # BCE
+
+ # bbox loss
+ if fg_mask.sum():
+ loss[0], loss[2], iou = self.bbox_loss(pred_distri,
+ pred_bboxes,
+ anchor_points,
+ target_bboxes,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+ loss[0] *= 0.25
+ loss[2] *= 0.25
+ if fg_mask2.sum():
+ loss0_, loss2_, iou2 = self.bbox_loss2(pred_distri2,
+ pred_bboxes2,
+ anchor_points,
+ target_bboxes2,
+ target_scores2,
+ target_scores_sum2,
+ fg_mask2)
+ loss[0] += 0.25 * loss0_
+ loss[2] += 0.25 * loss2_
+ if fg_mask3.sum():
+ loss0__, loss2__, iou3 = self.bbox_loss3(pred_distri3,
+ pred_bboxes3,
+ anchor_points,
+ target_bboxes3,
+ target_scores3,
+ target_scores_sum3,
+ fg_mask3)
+ loss[0] += loss0__
+ loss[2] += loss2__
+
+ loss[0] *= 7.5 # box gain
+ loss[1] *= 0.5 # cls gain
+ loss[2] *= 1.5 # dfl gain
+
+ return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/metrics.py b/cv/3d_detection/yolov9/pytorch/utils/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..1229f2b10d9754ec82c71881ddc54e8b0313161a
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/metrics.py
@@ -0,0 +1,397 @@
+import math
+import warnings
+from pathlib import Path
+
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+
+from utils import TryExcept, threaded
+
+
+def fitness(x):
+ # Model fitness as a weighted combination of metrics
+ w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+ return (x[:, :4] * w).sum(1)
+
+
+def smooth(y, f=0.05):
+ # Box filter of fraction f
+ nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
+ p = np.ones(nf // 2) # ones padding
+ yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
+ return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
+
+
+def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""):
+ """ Compute the average precision, given the recall and precision curves.
+ Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
+ # Arguments
+ tp: True positives (nparray, nx1 or nx10).
+ conf: Objectness value from 0-1 (nparray).
+ pred_cls: Predicted object classes (nparray).
+ target_cls: True object classes (nparray).
+ plot: Plot precision-recall curve at mAP@0.5
+ save_dir: Plot save directory
+ # Returns
+ The average precision as computed in py-faster-rcnn.
+ """
+
+ # Sort by objectness
+ i = np.argsort(-conf)
+ tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
+
+ # Find unique classes
+ unique_classes, nt = np.unique(target_cls, return_counts=True)
+ nc = unique_classes.shape[0] # number of classes, number of detections
+
+ # Create Precision-Recall curve and compute AP for each class
+ px, py = np.linspace(0, 1, 1000), [] # for plotting
+ ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
+ for ci, c in enumerate(unique_classes):
+ i = pred_cls == c
+ n_l = nt[ci] # number of labels
+ n_p = i.sum() # number of predictions
+ if n_p == 0 or n_l == 0:
+ continue
+
+ # Accumulate FPs and TPs
+ fpc = (1 - tp[i]).cumsum(0)
+ tpc = tp[i].cumsum(0)
+
+ # Recall
+ recall = tpc / (n_l + eps) # recall curve
+ r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
+
+ # Precision
+ precision = tpc / (tpc + fpc) # precision curve
+ p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
+
+ # AP from recall-precision curve
+ for j in range(tp.shape[1]):
+ ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
+ if plot and j == 0:
+ py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
+
+ # Compute F1 (harmonic mean of precision and recall)
+ f1 = 2 * p * r / (p + r + eps)
+ names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
+ names = dict(enumerate(names)) # to dict
+ if plot:
+ plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
+ plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
+ plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
+ plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
+
+ i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
+ p, r, f1 = p[:, i], r[:, i], f1[:, i]
+ tp = (r * nt).round() # true positives
+ fp = (tp / (p + eps) - tp).round() # false positives
+ return tp, fp, p, r, f1, ap, unique_classes.astype(int)
+
+
+def compute_ap(recall, precision):
+ """ Compute the average precision, given the recall and precision curves
+ # Arguments
+ recall: The recall curve (list)
+ precision: The precision curve (list)
+ # Returns
+ Average precision, precision curve, recall curve
+ """
+
+ # Append sentinel values to beginning and end
+ mrec = np.concatenate(([0.0], recall, [1.0]))
+ mpre = np.concatenate(([1.0], precision, [0.0]))
+
+ # Compute the precision envelope
+ mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
+
+ # Integrate area under curve
+ method = 'interp' # methods: 'continuous', 'interp'
+ if method == 'interp':
+ x = np.linspace(0, 1, 101) # 101-point interp (COCO)
+ ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
+ else: # 'continuous'
+ i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
+
+ return ap, mpre, mrec
+
+
+class ConfusionMatrix:
+ # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
+ def __init__(self, nc, conf=0.25, iou_thres=0.45):
+ self.matrix = np.zeros((nc + 1, nc + 1))
+ self.nc = nc # number of classes
+ self.conf = conf
+ self.iou_thres = iou_thres
+
+ def process_batch(self, detections, labels):
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (Array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ None, updates confusion matrix accordingly
+ """
+ if detections is None:
+ gt_classes = labels.int()
+ for gc in gt_classes:
+ self.matrix[self.nc, gc] += 1 # background FN
+ return
+
+ detections = detections[detections[:, 4] > self.conf]
+ gt_classes = labels[:, 0].int()
+ detection_classes = detections[:, 5].int()
+ iou = box_iou(labels[:, 1:], detections[:, :4])
+
+ x = torch.where(iou > self.iou_thres)
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ else:
+ matches = np.zeros((0, 3))
+
+ n = matches.shape[0] > 0
+ m0, m1, _ = matches.transpose().astype(int)
+ for i, gc in enumerate(gt_classes):
+ j = m0 == i
+ if n and sum(j) == 1:
+ self.matrix[detection_classes[m1[j]], gc] += 1 # correct
+ else:
+ self.matrix[self.nc, gc] += 1 # true background
+
+ if n:
+ for i, dc in enumerate(detection_classes):
+ if not any(m1 == i):
+ self.matrix[dc, self.nc] += 1 # predicted background
+
+ def matrix(self):
+ return self.matrix
+
+ def tp_fp(self):
+ tp = self.matrix.diagonal() # true positives
+ fp = self.matrix.sum(1) - tp # false positives
+ # fn = self.matrix.sum(0) - tp # false negatives (missed detections)
+ return tp[:-1], fp[:-1] # remove background class
+
+ @TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
+ def plot(self, normalize=True, save_dir='', names=()):
+ import seaborn as sn
+
+ array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
+ array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
+
+ fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
+ nc, nn = self.nc, len(names) # number of classes, names
+ sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
+ labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
+ ticklabels = (names + ['background']) if labels else "auto"
+ with warnings.catch_warnings():
+ warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
+ sn.heatmap(array,
+ ax=ax,
+ annot=nc < 30,
+ annot_kws={
+ "size": 8},
+ cmap='Blues',
+ fmt='.2f',
+ square=True,
+ vmin=0.0,
+ xticklabels=ticklabels,
+ yticklabels=ticklabels).set_facecolor((1, 1, 1))
+ ax.set_ylabel('True')
+ ax.set_ylabel('Predicted')
+ ax.set_title('Confusion Matrix')
+ fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
+ plt.close(fig)
+
+ def print(self):
+ for i in range(self.nc + 1):
+ print(' '.join(map(str, self.matrix[i])))
+
+
+class WIoU_Scale:
+ ''' monotonous: {
+ None: origin v1
+ True: monotonic FM v2
+ False: non-monotonic FM v3
+ }
+ momentum: The momentum of running mean'''
+
+ iou_mean = 1.
+ monotonous = False
+ _momentum = 1 - 0.5 ** (1 / 7000)
+ _is_train = True
+
+ def __init__(self, iou):
+ self.iou = iou
+ self._update(self)
+
+ @classmethod
+ def _update(cls, self):
+ if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
+ cls._momentum * self.iou.detach().mean().item()
+
+ @classmethod
+ def _scaled_loss(cls, self, gamma=1.9, delta=3):
+ if isinstance(self.monotonous, bool):
+ if self.monotonous:
+ return (self.iou.detach() / self.iou_mean).sqrt()
+ else:
+ beta = self.iou.detach() / self.iou_mean
+ alpha = delta * torch.pow(gamma, beta - delta)
+ return beta / alpha
+ return 1
+
+
+def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, MDPIoU=False, feat_h=640, feat_w=640, eps=1e-7):
+ # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
+
+ # Get the coordinates of bounding boxes
+ if xywh: # transform from xywh to xyxy
+ (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
+ w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
+ b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
+ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
+ else: # x1, y1, x2, y2 = box1
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
+ w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
+ w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
+
+ # Intersection area
+ inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
+ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
+
+ # Union Area
+ union = w1 * h1 + w2 * h2 - inter + eps
+
+ # IoU
+ iou = inter / union
+ if CIoU or DIoU or GIoU:
+ cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
+ ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
+ if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
+ c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
+ rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
+ if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
+ v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
+ with torch.no_grad():
+ alpha = v / (v - iou + (1 + eps))
+ return iou - (rho2 / c2 + v * alpha) # CIoU
+ return iou - rho2 / c2 # DIoU
+ c_area = cw * ch + eps # convex area
+ return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
+ elif MDPIoU:
+ d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2
+ d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2
+ mpdiou_hw_pow = feat_h ** 2 + feat_w ** 2
+ return iou - d1 / mpdiou_hw_pow - d2 / mpdiou_hw_pow # MPDIoU
+ return iou # IoU
+
+
+def box_iou(box1, box2, eps=1e-7):
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ box1 (Tensor[N, 4])
+ box2 (Tensor[M, 4])
+ Returns:
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
+ IoU values for every element in boxes1 and boxes2
+ """
+
+ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
+ (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
+ inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
+
+ # IoU = inter / (area1 + area2 - inter)
+ return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
+
+
+def bbox_ioa(box1, box2, eps=1e-7):
+ """Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
+ box1: np.array of shape(nx4)
+ box2: np.array of shape(mx4)
+ returns: np.array of shape(nxm)
+ """
+
+ # Get the coordinates of bounding boxes
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
+
+ # Intersection area
+ inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
+ (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
+
+ # box2 area
+ box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
+
+ # Intersection over box2 area
+ return inter_area / box2_area
+
+
+def wh_iou(wh1, wh2, eps=1e-7):
+ # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
+ wh1 = wh1[:, None] # [N,1,2]
+ wh2 = wh2[None] # [1,M,2]
+ inter = torch.min(wh1, wh2).prod(2) # [N,M]
+ return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter)
+
+
+# Plots ----------------------------------------------------------------------------------------------------------------
+
+
+@threaded
+def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
+ # Precision-recall curve
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+ py = np.stack(py, axis=1)
+
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
+ for i, y in enumerate(py.T):
+ ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
+ else:
+ ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
+
+ ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
+ ax.set_xlabel('Recall')
+ ax.set_ylabel('Precision')
+ ax.set_xlim(0, 1)
+ ax.set_ylim(0, 1)
+ ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+ ax.set_title('Precision-Recall Curve')
+ fig.savefig(save_dir, dpi=250)
+ plt.close(fig)
+
+
+@threaded
+def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
+ # Metric-confidence curve
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
+ for i, y in enumerate(py):
+ ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
+ else:
+ ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
+
+ y = smooth(py.mean(0), 0.05)
+ ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
+ ax.set_xlabel(xlabel)
+ ax.set_ylabel(ylabel)
+ ax.set_xlim(0, 1)
+ ax.set_ylim(0, 1)
+ ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+ ax.set_title(f'{ylabel}-Confidence Curve')
+ fig.savefig(save_dir, dpi=250)
+ plt.close(fig)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/augmentations.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/augmentations.py
new file mode 100644
index 0000000000000000000000000000000000000000..8e0a95cb840a4101bde8daa8248cddcbd10ac7c3
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/augmentations.py
@@ -0,0 +1,183 @@
+import math
+import random
+
+import cv2
+import numpy as np
+
+from ..augmentations import box_candidates
+from ..general import resample_segments, segment2box
+from ..metrics import bbox_ioa
+
+
+def mixup(im, labels, segments, seg_cls, semantic_masks, im2, labels2, segments2, seg_cls2, semantic_masks2):
+ # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
+ r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
+ im = (im * r + im2 * (1 - r)).astype(np.uint8)
+ labels = np.concatenate((labels, labels2), 0)
+ segments = np.concatenate((segments, segments2), 0)
+ seg_cls = np.concatenate((seg_cls, seg_cls2), 0)
+ semantic_masks = np.concatenate((semantic_masks, semantic_masks2), 0)
+ return im, labels, segments, seg_cls, semantic_masks
+
+
+def random_perspective(im,
+ targets=(),
+ segments=(),
+ semantic_masks = (),
+ degrees=10,
+ translate=.1,
+ scale=.1,
+ shear=10,
+ perspective=0.0,
+ border=(0, 0)):
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
+ # targets = [cls, xyxy]
+
+ height = im.shape[0] + border[0] * 2 # shape(h,w,c)
+ width = im.shape[1] + border[1] * 2
+
+ # Center
+ C = np.eye(3)
+ C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
+ C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
+
+ # Perspective
+ P = np.eye(3)
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
+
+ # Rotation and Scale
+ R = np.eye(3)
+ a = random.uniform(-degrees, degrees)
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
+ s = random.uniform(1 - scale, 1 + scale)
+ # s = 2 ** random.uniform(-scale, scale)
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+ # Shear
+ S = np.eye(3)
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
+
+ # Translation
+ T = np.eye(3)
+ T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width) # x translation (pixels)
+ T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height) # y translation (pixels)
+
+ # Combined rotation matrix
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
+ if perspective:
+ im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
+ else: # affine
+ im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+ # Visualize
+ # import matplotlib.pyplot as plt
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+ # ax[0].imshow(im[:, :, ::-1]) # base
+ # ax[1].imshow(im2[:, :, ::-1]) # warped
+
+ # Transform label coordinates
+ n = len(targets)
+ new_segments = []
+ new_semantic_masks = []
+ if n:
+ new = np.zeros((n, 4))
+ segments = resample_segments(segments) # upsample
+ for i, segment in enumerate(segments):
+ xy = np.ones((len(segment), 3))
+ xy[:, :2] = segment
+ xy = xy @ M.T # transform
+ xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine
+
+ # clip
+ new[i] = segment2box(xy, width, height)
+ new_segments.append(xy)
+
+ semantic_masks = resample_segments(semantic_masks)
+ for i, semantic_mask in enumerate(semantic_masks):
+ #if i < n:
+ # xy = np.ones((len(segments[i]), 3))
+ # xy[:, :2] = segments[i]
+ # xy = xy @ M.T # transform
+ # xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine
+
+ # new[i] = segment2box(xy, width, height)
+ # new_segments.append(xy)
+
+ xy_s = np.ones((len(semantic_mask), 3))
+ xy_s[:, :2] = semantic_mask
+ xy_s = xy_s @ M.T # transform
+ xy_s = (xy_s[:, :2] / xy_s[:, 2:3] if perspective else xy_s[:, :2]) # perspective rescale or affine
+
+ new_semantic_masks.append(xy_s)
+
+ # filter candidates
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
+ targets = targets[i]
+ targets[:, 1:5] = new[i]
+ new_segments = np.array(new_segments)[i]
+ new_semantic_masks = np.array(new_semantic_masks)
+
+ return im, targets, new_segments, new_semantic_masks
+
+
+def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
+ # Resize and pad image while meeting stride-multiple constraints
+ shape = im.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+ if not scaleup: # only scale down, do not scale up (for better val mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ ratio = r, r # width, height ratios
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+ if auto: # minimum rectangle
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
+ elif scaleFill: # stretch
+ dw, dh = 0.0, 0.0
+ new_unpad = (new_shape[1], new_shape[0])
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ if shape[::-1] != new_unpad: # resize
+ im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+ return im, ratio, (dw, dh)
+
+
+def copy_paste(im, labels, segments, seg_cls, semantic_masks, p=0.5):
+ # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+ n = len(segments)
+ if p and n:
+ h, w, _ = im.shape # height, width, channels
+ im_new = np.zeros(im.shape, np.uint8)
+
+ # calculate ioa first then select indexes randomly
+ boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4)
+ ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area
+ indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
+ n = len(indexes)
+ for j in random.sample(list(indexes), k=round(p * n)):
+ l, box, s = labels[j], boxes[j], segments[j]
+ labels = np.concatenate((labels, [[l[0], *box]]), 0)
+ segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
+ seg_cls.append(l[0].astype(int))
+ semantic_masks.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
+ cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
+
+ result = cv2.flip(im, 1) # augment segments (flip left-right)
+ i = cv2.flip(im_new, 1).astype(bool)
+ im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
+
+ return im, labels, segments, seg_cls, semantic_masks
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/dataloaders.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/dataloaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..6f2b1d72bb05c02c482a0eac52d3aae4d698b57f
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/dataloaders.py
@@ -0,0 +1,478 @@
+import os
+import random
+
+import pickle
+from pathlib import Path
+
+from itertools import repeat
+from multiprocessing.pool import Pool, ThreadPool
+
+import cv2
+import numpy as np
+import torch
+from torch.utils.data import DataLoader, distributed
+from tqdm import tqdm
+
+from ..augmentations import augment_hsv
+from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, seed_worker, get_hash, verify_image_label, HELP_URL, TQDM_BAR_FORMAT, LOCAL_RANK
+from ..general import NUM_THREADS, LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
+from ..torch_utils import torch_distributed_zero_first
+from ..coco_utils import annToMask, getCocoIds
+from .augmentations import mixup, random_perspective, copy_paste, letterbox
+
+RANK = int(os.getenv('RANK', -1))
+
+
+def create_dataloader(path,
+ imgsz,
+ batch_size,
+ stride,
+ single_cls=False,
+ hyp=None,
+ augment=False,
+ cache=False,
+ pad=0.0,
+ rect=False,
+ rank=-1,
+ workers=8,
+ image_weights=False,
+ close_mosaic=False,
+ quad=False,
+ prefix='',
+ shuffle=False,
+ mask_downsample_ratio=1,
+ overlap_mask=False):
+ if rect and shuffle:
+ LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
+ shuffle = False
+ with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
+ dataset = LoadImagesAndLabelsAndMasks(
+ path,
+ imgsz,
+ batch_size,
+ augment=augment, # augmentation
+ hyp=hyp, # hyperparameters
+ rect=rect, # rectangular batches
+ cache_images=cache,
+ single_cls=single_cls,
+ stride=int(stride),
+ pad=pad,
+ image_weights=image_weights,
+ prefix=prefix,
+ downsample_ratio=mask_downsample_ratio,
+ overlap=overlap_mask)
+
+ batch_size = min(batch_size, len(dataset))
+ nd = torch.cuda.device_count() # number of CUDA devices
+ nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
+ sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+ #loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
+ loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader
+ generator = torch.Generator()
+ generator.manual_seed(6148914691236517205 + RANK)
+ return loader(
+ dataset,
+ batch_size=batch_size,
+ shuffle=shuffle and sampler is None,
+ num_workers=nw,
+ sampler=sampler,
+ pin_memory=True,
+ collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
+ worker_init_fn=seed_worker,
+ generator=generator,
+ ), dataset
+
+def img2stuff_paths(img_paths):
+ # Define label paths as a function of image paths
+ sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}stuff{os.sep}' # /images/, /segmentations/ substrings
+ return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
+
+
+class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): # for training/testing
+
+ def __init__(
+ self,
+ path,
+ img_size=640,
+ batch_size=16,
+ augment=False,
+ hyp=None,
+ rect=False,
+ image_weights=False,
+ cache_images=False,
+ single_cls=False,
+ stride=32,
+ pad=0,
+ min_items=0,
+ prefix="",
+ downsample_ratio=1,
+ overlap=False,
+ ):
+ super().__init__(
+ path,
+ img_size,
+ batch_size,
+ augment,
+ hyp,
+ rect,
+ image_weights,
+ cache_images,
+ single_cls,
+ stride,
+ pad,
+ min_items,
+ prefix)
+ self.downsample_ratio = downsample_ratio
+ self.overlap = overlap
+
+ # semantic segmentation
+ self.coco_ids = getCocoIds()
+
+ # Check cache
+ self.seg_files = img2stuff_paths(self.im_files) # labels
+ p = Path(path)
+ cache_path = (p.with_suffix('') if p.is_file() else Path(self.seg_files[0]).parent)
+ cache_path = Path(str(cache_path) + '_stuff').with_suffix('.cache')
+ try:
+ cache, exists = np.load(cache_path, allow_pickle = True).item(), True # load dict
+ #assert cache['version'] == self.cache_version # matches current version
+ #assert cache['hash'] == get_hash(self.seg_files + self.im_files) # identical hash
+ except Exception:
+ cache, exists = self.cache_seg_labels(cache_path, prefix), False # run cache ops
+
+ # Display cache
+ nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
+ if exists and LOCAL_RANK in {-1, 0}:
+ d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
+ tqdm(None, desc = (prefix + d), total = n, initial = n, bar_format = TQDM_BAR_FORMAT) # display cache results
+ if cache['msgs']:
+ LOGGER.info('\n'.join(cache['msgs'])) # display warnings
+ assert (0 < nf) or (not augment), f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
+
+ # Read cache
+ [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
+ seg_labels, _, self.semantic_masks = zip(*cache.values())
+ nl = len(np.concatenate(seg_labels, 0)) # number of labels
+ assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}'
+
+ # Update labels
+ self.seg_cls = []
+ include_class = [] # filter labels to include only these classes (optional)
+ include_class_array = np.array(include_class).reshape(1, -1)
+ for i, (label, semantic_masks) in enumerate(zip(seg_labels, self.semantic_masks)):
+ self.seg_cls.append((label[:, 0].astype(int)).tolist())
+ if include_class:
+ j = (label[:, 0:1] == include_class_array).any(1)
+ if semantic_masks:
+ self.semantic_masks[i] = semantic_masks[j]
+ if single_cls: # single-class training, merge all classes into 0
+ if semantic_masks:
+ self.semantic_masks[i][:, 0] = 0
+
+ def __getitem__(self, index):
+ index = self.indices[index] # linear, shuffled, or image_weights
+
+ hyp = self.hyp
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
+ masks = []
+ if mosaic:
+ # Load mosaic
+ img, labels, segments, seg_cls, semantic_masks = self.load_mosaic(index)
+ shapes = None
+
+ # MixUp augmentation
+ if random.random() < hyp["mixup"]:
+ img, labels, segments, seg_cls, semantic_masks = mixup(img, labels, segments, seg_cls, semantic_masks,
+ *self.load_mosaic(random.randint(0, self.n - 1)))
+
+ else:
+ # Load image
+ img, (h0, w0), (h, w) = self.load_image(index)
+
+ # Letterbox
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
+
+ labels = self.labels[index].copy()
+ # [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
+ segments = self.segments[index].copy()
+ if len(segments):
+ for i_s in range(len(segments)):
+ segments[i_s] = xyn2xy(
+ segments[i_s],
+ ratio[0] * w,
+ ratio[1] * h,
+ padw=pad[0],
+ padh=pad[1],
+ )
+
+ seg_cls = self.seg_cls[index].copy()
+ semantic_masks = self.semantic_masks[index].copy()
+ #semantic_masks = [xyn2xy(x, ratio[0] * w, ratio[1] * h, padw = pad[0], padh = pad[1]) for x in semantic_masks]
+ if len(semantic_masks):
+ for ss in range(len(semantic_masks)):
+ semantic_masks[ss] = xyn2xy(
+ semantic_masks[ss],
+ ratio[0] * w,
+ ratio[1] * h,
+ padw = pad[0],
+ padh = pad[1],
+ )
+
+ if labels.size: # normalized xywh to pixel xyxy format
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+ if self.augment:
+ img, labels, segments, semantic_masks = random_perspective(
+ img,
+ labels,
+ segments=segments,
+ semantic_masks = semantic_masks,
+ degrees=hyp["degrees"],
+ translate=hyp["translate"],
+ scale=hyp["scale"],
+ shear=hyp["shear"],
+ perspective=hyp["perspective"])
+
+ nl = len(labels) # number of labels
+ if nl:
+ labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
+ if self.overlap:
+ masks, sorted_idx = polygons2masks_overlap(img.shape[:2],
+ segments,
+ downsample_ratio=self.downsample_ratio)
+ masks = masks[None] # (640, 640) -> (1, 640, 640)
+ labels = labels[sorted_idx]
+ else:
+ masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
+
+ masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] //
+ self.downsample_ratio, img.shape[1] //
+ self.downsample_ratio))
+ semantic_masks = polygons2masks(img.shape[:2], semantic_masks, color = 1, downsample_ratio=self.downsample_ratio)
+ #semantic_masks = polygons2masks(img.shape[:2], semantic_masks, color = 1, downsample_ratio=1)
+ semantic_masks = torch.from_numpy(semantic_masks)
+ # TODO: albumentations support
+ if self.augment:
+ # Albumentations
+ # there are some augmentation that won't change boxes and masks,
+ # so just be it for now.
+ img, labels = self.albumentations(img, labels)
+ nl = len(labels) # update after albumentations
+ ns = len(semantic_masks)
+
+ # HSV color-space
+ augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
+
+ # Flip up-down
+ if random.random() < hyp["flipud"]:
+ img = np.flipud(img)
+ if nl:
+ labels[:, 2] = 1 - labels[:, 2]
+ masks = torch.flip(masks, dims=[1])
+ if ns:
+ semantic_masks = torch.flip(semantic_masks, dims = [1])
+
+ # Flip left-right
+ if random.random() < hyp["fliplr"]:
+ img = np.fliplr(img)
+ if nl:
+ labels[:, 1] = 1 - labels[:, 1]
+ masks = torch.flip(masks, dims=[2])
+ if ns:
+ semantic_masks = torch.flip(semantic_masks, dims = [2])
+
+ # Cutouts # labels = cutout(img, labels, p=0.5)
+
+ labels_out = torch.zeros((nl, 6))
+ if nl:
+ labels_out[:, 1:] = torch.from_numpy(labels)
+
+ # Combine semantic masks
+ semantic_seg_masks = torch.zeros((len(self.coco_ids), img.shape[0] // self.downsample_ratio,
+ img.shape[1] // self.downsample_ratio), dtype = torch.uint8)
+ #semantic_seg_masks = torch.zeros((len(self.coco_ids), img.shape[0], img.shape[1]), dtype = torch.uint8)
+ for cls_id, semantic_mask in zip(seg_cls, semantic_masks):
+ semantic_seg_masks[cls_id] = (semantic_seg_masks[cls_id].logical_or(semantic_mask)).int()
+
+
+ # Convert
+ img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
+ img = np.ascontiguousarray(img)
+
+ return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks, semantic_seg_masks)
+
+ def load_mosaic(self, index):
+ # YOLO 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
+ labels4, segments4, seg_cls, semantic_masks4 = [], [], [], []
+ s = self.img_size
+ yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
+
+ # 3 additional image indices
+ indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = self.load_image(index)
+
+ # place img in img4
+ if i == 0: # top left
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
+ elif i == 1: # top right
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+ elif i == 2: # bottom left
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+ elif i == 3: # bottom right
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ padw = x1a - x1b
+ padh = y1a - y1b
+
+ labels, segments, semantic_masks = self.labels[index].copy(), self.segments[index].copy(), self.semantic_masks[index].copy()
+
+ if labels.size:
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
+ segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+ semantic_masks = [xyn2xy(x, w, h, padw, padh) for x in semantic_masks]
+ labels4.append(labels)
+ segments4.extend(segments)
+ seg_cls.extend(self.seg_cls[index].copy())
+ semantic_masks4.extend(semantic_masks)
+
+ # Concat/clip labels
+ labels4 = np.concatenate(labels4, 0)
+ for i in range(len(semantic_masks4)):
+ if i < len(segments4):
+ np.clip(labels4[:, 1:][i], 0, 2 * s, out = labels4[:, 1:][i])
+ np.clip(segments4[i], 0, 2 * s, out = segments4[i])
+ np.clip(semantic_masks4[i], 0, 2 * s, out = semantic_masks4[i])
+ # img4, labels4 = replicate(img4, labels4) # replicate
+
+ # 3 additional image indices
+ # Augment
+ img4, labels4, segments4, seg_cls, semantic_masks4 = copy_paste(img4, labels4, segments4, seg_cls, semantic_masks4, p=self.hyp["copy_paste"])
+ img4, labels4, segments4, semantic_masks4 = random_perspective(img4,
+ labels4,
+ segments4,
+ semantic_masks4,
+ degrees=self.hyp["degrees"],
+ translate=self.hyp["translate"],
+ scale=self.hyp["scale"],
+ shear=self.hyp["shear"],
+ perspective=self.hyp["perspective"],
+ border=self.mosaic_border) # border to remove
+
+ return img4, labels4, segments4, seg_cls, semantic_masks4
+
+ def cache_seg_labels(self, path = Path('./labels_stuff.cache'), prefix = ''):
+ # Cache dataset labels, check images and read shapes
+ x = {} # dict
+ nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
+ desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
+ with Pool(NUM_THREADS) as pool:
+ pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.seg_files, repeat(prefix))),
+ desc = desc,
+ total = len(self.im_files),
+ bar_format = TQDM_BAR_FORMAT)
+ for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
+ nm += nm_f
+ nf += nf_f
+ ne += ne_f
+ nc += nc_f
+ if im_file:
+ x[im_file] = [lb, shape, segments]
+ if msg:
+ msgs.append(msg)
+ pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
+
+ pbar.close()
+ if msgs:
+ LOGGER.info('\n'.join(msgs))
+ if nf == 0:
+ LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. {HELP_URL}')
+ x['hash'] = get_hash(self.seg_files + self.im_files)
+ x['results'] = nf, nm, ne, nc, len(self.im_files)
+ x['msgs'] = msgs # warnings
+ x['version'] = self.cache_version # cache version
+ try:
+ np.save(path, x) # save cache for next time
+ path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
+ LOGGER.info(f'{prefix}New cache created: {path}')
+ except Exception as e:
+ LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # not writeable
+ return x
+
+ @staticmethod
+ def collate_fn(batch):
+ img, label, path, shapes, masks, semantic_masks = zip(*batch) # transposed
+ batched_masks = torch.cat(masks, 0)
+ for i, l in enumerate(label):
+ l[:, 0] = i # add target image index for build_targets()
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks, torch.stack(semantic_masks, 0)
+
+
+
+def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
+ """
+ Args:
+ img_size (tuple): The image size.
+ polygons (np.ndarray): [N, M], N is the number of polygons,
+ M is the number of points(Be divided by 2).
+ """
+ mask = np.zeros(img_size, dtype=np.uint8)
+ polygons = np.asarray(polygons)
+ polygons = polygons.astype(np.int32)
+ shape = polygons.shape
+ polygons = polygons.reshape(shape[0], -1, 2)
+ cv2.fillPoly(mask, polygons, color=color)
+ nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
+ # NOTE: fillPoly firstly then resize is trying the keep the same way
+ # of loss calculation when mask-ratio=1.
+ mask = cv2.resize(mask, (nw, nh))
+ return mask
+
+
+def polygons2masks(img_size, polygons, color, downsample_ratio=1):
+ """
+ Args:
+ img_size (tuple): The image size.
+ polygons (list[np.ndarray]): each polygon is [N, M],
+ N is the number of polygons,
+ M is the number of points(Be divided by 2).
+ """
+ masks = []
+ for si in range(len(polygons)):
+ mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
+ masks.append(mask)
+ return np.array(masks)
+
+
+def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
+ """Return a (640, 640) overlap mask."""
+ masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
+ dtype=np.int32 if len(segments) > 255 else np.uint8)
+ areas = []
+ ms = []
+ for si in range(len(segments)):
+ mask = polygon2mask(
+ img_size,
+ [segments[si].reshape(-1)],
+ downsample_ratio=downsample_ratio,
+ color=1,
+ )
+ ms.append(mask)
+ areas.append(mask.sum())
+ areas = np.asarray(areas)
+ index = np.argsort(-areas)
+ ms = np.array(ms)[index]
+ for i in range(len(segments)):
+ mask = ms[i] * (i + 1)
+ masks = masks + mask
+ masks = np.clip(masks, a_min=0, a_max=i + 1)
+ return masks, index
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/general.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/general.py
new file mode 100644
index 0000000000000000000000000000000000000000..b526333dc5a1b8625d7e6a51ee6ba41818c62adb
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/general.py
@@ -0,0 +1,137 @@
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+
+def crop_mask(masks, boxes):
+ """
+ "Crop" predicted masks by zeroing out everything not in the predicted bbox.
+ Vectorized by Chong (thanks Chong).
+
+ Args:
+ - masks should be a size [h, w, n] tensor of masks
+ - boxes should be a size [n, 4] tensor of bbox coords in relative point form
+ """
+
+ n, h, w = masks.shape
+ x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
+ r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
+ c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
+
+ return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
+
+
+def process_mask_upsample(protos, masks_in, bboxes, shape):
+ """
+ Crop after upsample.
+ proto_out: [mask_dim, mask_h, mask_w]
+ out_masks: [n, mask_dim], n is number of masks after nms
+ bboxes: [n, 4], n is number of masks after nms
+ shape:input_image_size, (h, w)
+
+ return: h, w, n
+ """
+
+ c, mh, mw = protos.shape # CHW
+ masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
+ masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
+ masks = crop_mask(masks, bboxes) # CHW
+ return masks.gt_(0.5)
+
+
+def process_mask(protos, masks_in, bboxes, shape, upsample=False):
+ """
+ Crop before upsample.
+ proto_out: [mask_dim, mask_h, mask_w]
+ out_masks: [n, mask_dim], n is number of masks after nms
+ bboxes: [n, 4], n is number of masks after nms
+ shape:input_image_size, (h, w)
+
+ return: h, w, n
+ """
+
+ c, mh, mw = protos.shape # CHW
+ ih, iw = shape
+ masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
+
+ downsampled_bboxes = bboxes.clone()
+ downsampled_bboxes[:, 0] *= mw / iw
+ downsampled_bboxes[:, 2] *= mw / iw
+ downsampled_bboxes[:, 3] *= mh / ih
+ downsampled_bboxes[:, 1] *= mh / ih
+
+ masks = crop_mask(masks, downsampled_bboxes) # CHW
+ if upsample:
+ masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
+ return masks.gt_(0.5)
+
+
+def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
+ """
+ img1_shape: model input shape, [h, w]
+ img0_shape: origin pic shape, [h, w, 3]
+ masks: [h, w, num]
+ """
+ # Rescale coordinates (xyxy) from im1_shape to im0_shape
+ if ratio_pad is None: # calculate from im0_shape
+ gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
+ pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
+ else:
+ pad = ratio_pad[1]
+ top, left = int(pad[1]), int(pad[0]) # y, x
+ bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
+
+ if len(masks.shape) < 2:
+ raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
+ masks = masks[top:bottom, left:right]
+ # masks = masks.permute(2, 0, 1).contiguous()
+ # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
+ # masks = masks.permute(1, 2, 0).contiguous()
+ masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
+
+ if len(masks.shape) == 2:
+ masks = masks[:, :, None]
+ return masks
+
+
+def mask_iou(mask1, mask2, eps=1e-7):
+ """
+ mask1: [N, n] m1 means number of predicted objects
+ mask2: [M, n] m2 means number of gt objects
+ Note: n means image_w x image_h
+
+ return: masks iou, [N, M]
+ """
+ intersection = torch.matmul(mask1, mask2.t()).clamp(0)
+ union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
+ return intersection / (union + eps)
+
+
+def masks_iou(mask1, mask2, eps=1e-7):
+ """
+ mask1: [N, n] m1 means number of predicted objects
+ mask2: [N, n] m2 means number of gt objects
+ Note: n means image_w x image_h
+
+ return: masks iou, (N, )
+ """
+ intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
+ union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
+ return intersection / (union + eps)
+
+
+def masks2segments(masks, strategy='largest'):
+ # Convert masks(n,160,160) into segments(n,xy)
+ segments = []
+ for x in masks.int().cpu().numpy().astype('uint8'):
+ c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
+ if c:
+ if strategy == 'concat': # concatenate all segments
+ c = np.concatenate([x.reshape(-1, 2) for x in c])
+ elif strategy == 'largest': # select largest segment
+ c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
+ else:
+ c = np.zeros((0, 2)) # no segments found
+ segments.append(c.astype('float32'))
+ return segments
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/loss.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..b45b2c27e0a05c275cbc50064288aece3ae3e856
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/loss.py
@@ -0,0 +1,186 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ..general import xywh2xyxy
+from ..loss import FocalLoss, smooth_BCE
+from ..metrics import bbox_iou
+from ..torch_utils import de_parallel
+from .general import crop_mask
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, autobalance=False, overlap=False):
+ self.sort_obj_iou = False
+ self.overlap = overlap
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+ self.device = device
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h['fl_gamma'] # focal loss gamma
+ if g > 0:
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
+ self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+ self.na = m.na # number of anchors
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.nm = m.nm # number of masks
+ self.anchors = m.anchors
+ self.device = device
+
+ def __call__(self, preds, targets, masks): # predictions, targets, model
+ p, proto = preds
+ bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
+ lcls = torch.zeros(1, device=self.device)
+ lbox = torch.zeros(1, device=self.device)
+ lobj = torch.zeros(1, device=self.device)
+ lseg = torch.zeros(1, device=self.device)
+ tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets) # targets
+
+ # Losses
+ for i, pi in enumerate(p): # layer index, layer predictions
+ b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
+ tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
+
+ n = b.shape[0] # number of targets
+ if n:
+ pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1) # subset of predictions
+
+ # Box regression
+ pxy = pxy.sigmoid() * 2 - 0.5
+ pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
+ pbox = torch.cat((pxy, pwh), 1) # predicted box
+ iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
+ lbox += (1.0 - iou).mean() # iou loss
+
+ # Objectness
+ iou = iou.detach().clamp(0).type(tobj.dtype)
+ if self.sort_obj_iou:
+ j = iou.argsort()
+ b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
+ if self.gr < 1:
+ iou = (1.0 - self.gr) + self.gr * iou
+ tobj[b, a, gj, gi] = iou # iou ratio
+
+ # Classification
+ if self.nc > 1: # cls loss (only if multiple classes)
+ t = torch.full_like(pcls, self.cn, device=self.device) # targets
+ t[range(n), tcls[i]] = self.cp
+ lcls += self.BCEcls(pcls, t) # BCE
+
+ # Mask regression
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
+ marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized
+ mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
+ for bi in b.unique():
+ j = b == bi # matching index
+ if self.overlap:
+ mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
+ else:
+ mask_gti = masks[tidxs[i]][j]
+ lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
+
+ obji = self.BCEobj(pi[..., 4], tobj)
+ lobj += obji * self.balance[i] # obj loss
+ if self.autobalance:
+ self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+ if self.autobalance:
+ self.balance = [x / self.balance[self.ssi] for x in self.balance]
+ lbox *= self.hyp["box"]
+ lobj *= self.hyp["obj"]
+ lcls *= self.hyp["cls"]
+ lseg *= self.hyp["box"] / bs
+
+ loss = lbox + lobj + lcls + lseg
+ return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
+
+ def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
+ # Mask loss for one image
+ pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
+ loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
+ return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
+
+ def build_targets(self, p, targets):
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+ na, nt = self.na, targets.shape[0] # number of anchors, targets
+ tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
+ gain = torch.ones(8, device=self.device) # normalized to gridspace gain
+ ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
+ if self.overlap:
+ batch = p[0].shape[0]
+ ti = []
+ for i in range(batch):
+ num = (targets[:, 0] == i).sum() # find number of targets of each image
+ ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num)
+ ti = torch.cat(ti, 1) # (na, nt)
+ else:
+ ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
+ targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices
+
+ g = 0.5 # bias
+ off = torch.tensor(
+ [
+ [0, 0],
+ [1, 0],
+ [0, 1],
+ [-1, 0],
+ [0, -1], # j,k,l,m
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
+ ],
+ device=self.device).float() * g # offsets
+
+ for i in range(self.nl):
+ anchors, shape = self.anchors[i], p[i].shape
+ gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
+
+ # Match targets to anchors
+ t = targets * gain # shape(3,n,7)
+ if nt:
+ # Matches
+ r = t[..., 4:6] / anchors[:, None] # wh ratio
+ j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+ t = t[j] # filter
+
+ # Offsets
+ gxy = t[:, 2:4] # grid xy
+ gxi = gain[[2, 3]] - gxy # inverse
+ j, k = ((gxy % 1 < g) & (gxy > 1)).T
+ l, m = ((gxi % 1 < g) & (gxi > 1)).T
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
+ t = t.repeat((5, 1, 1))[j]
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+ else:
+ t = targets[0]
+ offsets = 0
+
+ # Define
+ bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
+ (a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class
+ gij = (gxy - offsets).long()
+ gi, gj = gij.T # grid indices
+
+ # Append
+ indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
+ tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
+ anch.append(anchors[a]) # anchors
+ tcls.append(c) # class
+ tidxs.append(tidx)
+ xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized
+
+ return tcls, tbox, indices, anch, tidxs, xywhn
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/loss_tal.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/loss_tal.py
new file mode 100644
index 0000000000000000000000000000000000000000..d8594395d4beada966859d578c6dc5476f948034
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/loss_tal.py
@@ -0,0 +1,285 @@
+import os
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from torchvision.ops import sigmoid_focal_loss
+
+from utils.general import xywh2xyxy, xyxy2xywh
+from utils.metrics import bbox_iou
+from utils.panoptic.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
+from utils.panoptic.tal.assigner import TaskAlignedAssigner
+from utils.torch_utils import de_parallel
+from utils.panoptic.general import crop_mask
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class VarifocalLoss(nn.Module):
+ # Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
+ weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
+ reduction="none") * weight).sum()
+ return loss
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super().__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = "none" # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == "mean":
+ return loss.mean()
+ elif self.reduction == "sum":
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, reg_max, use_dfl=False):
+ super().__init__()
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
+ pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
+ target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
+ bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
+
+ iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
+ loss_iou = 1.0 - iou
+
+ #### wiou
+ #iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, WIoU=True, scale=True)
+ #if type(iou) is tuple:
+ # if len(iou) == 2:
+ # loss_iou = (iou[1].detach() * (1 - iou[0]))
+ # iou = iou[0]
+ # else:
+ # loss_iou = (iou[0] * iou[1])
+ # iou = iou[-1]
+ #else:
+ # loss_iou = (1.0 - iou) # iou loss
+
+ loss_iou *= bbox_weight
+ loss_iou = loss_iou.sum() / target_scores_sum
+ # loss_iou = loss_iou.mean()
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
+ loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = torch.tensor(0.0).to(pred_dist.device)
+
+ return loss_iou, loss_dfl, iou
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
+ reduction="none").view(target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, use_dfl=True, overlap=True):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h["fl_gamma"] # focal loss gamma
+ if g > 0:
+ BCEcls = FocalLoss(BCEcls, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.BCEcls = BCEcls
+ self.hyp = h
+ self.stride = m.stride # model strides
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.no = m.no
+ self.nm = m.nm
+ self.overlap = overlap
+ self.reg_max = m.reg_max
+ self.device = device
+
+ self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
+ self.use_dfl = use_dfl
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ if targets.shape[0] == 0:
+ out = torch.zeros(batch_size, 0, 5, device=self.device)
+ else:
+ i = targets[:, 0] # image index
+ _, counts = i.unique(return_counts=True)
+ out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
+ for j in range(batch_size):
+ matches = i == j
+ n = matches.sum()
+ if n:
+ out[j, :n] = targets[matches, 1:]
+ out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
+ return out
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ b, a, c = pred_dist.shape # batch, anchors, channels
+ pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
+ return dist2bbox(pred_dist, anchor_points, xywh=False)
+
+ def __call__(self, p, targets, masks, semasks, img=None, epoch=0):
+ loss = torch.zeros(6, device=self.device) # box, cls, dfl
+ feats, pred_masks, proto, psemasks = p if len(p) == 4 else p[1]
+ batch_size, _, mask_h, mask_w = proto.shape
+ pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores = pred_scores.permute(0, 2, 1).contiguous()
+ pred_distri = pred_distri.permute(0, 2, 1).contiguous()
+ pred_masks = pred_masks.permute(0, 2, 1).contiguous()
+
+ dtype = pred_scores.dtype
+ batch_size, grid_size = pred_scores.shape[:2]
+ imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
+ anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
+
+ # targets
+ try:
+ batch_idx = targets[:, 0].view(-1, 1)
+ targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
+ gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
+ mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
+ except RuntimeError as e:
+ raise TypeError('ERROR.') from e
+
+
+ # pboxes
+ pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
+
+ target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
+ pred_scores.detach().sigmoid(),
+ (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_scores_sum = target_scores.sum()
+
+ # cls loss
+ # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
+ loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+
+ # bbox loss
+ if fg_mask.sum():
+ loss[0], loss[3], _ = self.bbox_loss(pred_distri,
+ pred_bboxes,
+ anchor_points,
+ target_bboxes / stride_tensor,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+
+ # masks loss
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
+
+ for i in range(batch_size):
+ if fg_mask[i].sum():
+ mask_idx = target_gt_idx[i][fg_mask[i]]
+ if self.overlap:
+ gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
+ else:
+ gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
+ xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
+ marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
+ mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
+ loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
+ marea) # seg loss
+ # Semantic Segmentation
+ # focal loss
+ pt = torch.flatten(psemasks, start_dim = 2).permute(0, 2, 1)
+ gt = torch.flatten(semasks, start_dim = 2).permute(0, 2, 1)
+
+ bs, _, _ = gt.shape
+ #torch.clamp(torch.sigmoid(logits), min=eps, max= 1 - eps)
+ #total_loss = (sigmoid_focal_loss(pt.float(), gt.float(), alpha = .25, gamma = 2., reduction = 'mean')) / 2.
+ #total_loss = (sigmoid_focal_loss(pt.clamp(-16., 16.), gt, alpha = .25, gamma = 2., reduction = 'mean')) / 2.
+ total_loss = (sigmoid_focal_loss(pt, gt, alpha = .25, gamma = 2., reduction = 'mean')) / 2.
+ loss[4] += total_loss * 20.
+
+ # dice loss
+ pt = torch.flatten(psemasks.softmax(dim = 1))
+ gt = torch.flatten(semasks)
+
+ inter_mask = torch.sum(torch.mul(pt, gt))
+ union_mask = torch.sum(torch.add(pt, gt))
+ dice_coef = (2. * inter_mask + 1.) / (union_mask + 1.)
+ loss[5] += (1. - dice_coef) / 2.
+
+ loss[0] *= 7.5 # box gain
+ loss[1] *= 2.5 / batch_size
+ loss[2] *= 0.5 # cls gain
+ loss[3] *= 1.5 # dfl gain
+ loss[4] *= 2.5 #/ batch_size
+ loss[5] *= 2.5 #/ batch_size
+
+ return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
+
+ def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
+ # Mask loss for one image
+ pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
+ loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
+ return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/metrics.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..dcb8bc2d6df780a961ff1473de7d1e5f630d3e8d
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/metrics.py
@@ -0,0 +1,272 @@
+import numpy as np
+import torch
+
+from ..metrics import ap_per_class
+
+
+def fitness(x):
+ # Model fitness as a weighted combination of metrics
+ w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9, 0.1, 0.9]
+ return (x[:, :len(w)] * w).sum(1)
+
+
+def ap_per_class_box_and_mask(
+ tp_m,
+ tp_b,
+ conf,
+ pred_cls,
+ target_cls,
+ plot=False,
+ save_dir=".",
+ names=(),
+):
+ """
+ Args:
+ tp_b: tp of boxes.
+ tp_m: tp of masks.
+ other arguments see `func: ap_per_class`.
+ """
+ results_boxes = ap_per_class(tp_b,
+ conf,
+ pred_cls,
+ target_cls,
+ plot=plot,
+ save_dir=save_dir,
+ names=names,
+ prefix="Box")[2:]
+ results_masks = ap_per_class(tp_m,
+ conf,
+ pred_cls,
+ target_cls,
+ plot=plot,
+ save_dir=save_dir,
+ names=names,
+ prefix="Mask")[2:]
+
+ results = {
+ "boxes": {
+ "p": results_boxes[0],
+ "r": results_boxes[1],
+ "ap": results_boxes[3],
+ "f1": results_boxes[2],
+ "ap_class": results_boxes[4]},
+ "masks": {
+ "p": results_masks[0],
+ "r": results_masks[1],
+ "ap": results_masks[3],
+ "f1": results_masks[2],
+ "ap_class": results_masks[4]}}
+ return results
+
+
+class Metric:
+
+ def __init__(self) -> None:
+ self.p = [] # (nc, )
+ self.r = [] # (nc, )
+ self.f1 = [] # (nc, )
+ self.all_ap = [] # (nc, 10)
+ self.ap_class_index = [] # (nc, )
+
+ @property
+ def ap50(self):
+ """AP@0.5 of all classes.
+ Return:
+ (nc, ) or [].
+ """
+ return self.all_ap[:, 0] if len(self.all_ap) else []
+
+ @property
+ def ap(self):
+ """AP@0.5:0.95
+ Return:
+ (nc, ) or [].
+ """
+ return self.all_ap.mean(1) if len(self.all_ap) else []
+
+ @property
+ def mp(self):
+ """mean precision of all classes.
+ Return:
+ float.
+ """
+ return self.p.mean() if len(self.p) else 0.0
+
+ @property
+ def mr(self):
+ """mean recall of all classes.
+ Return:
+ float.
+ """
+ return self.r.mean() if len(self.r) else 0.0
+
+ @property
+ def map50(self):
+ """Mean AP@0.5 of all classes.
+ Return:
+ float.
+ """
+ return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
+
+ @property
+ def map(self):
+ """Mean AP@0.5:0.95 of all classes.
+ Return:
+ float.
+ """
+ return self.all_ap.mean() if len(self.all_ap) else 0.0
+
+ def mean_results(self):
+ """Mean of results, return mp, mr, map50, map"""
+ return (self.mp, self.mr, self.map50, self.map)
+
+ def class_result(self, i):
+ """class-aware result, return p[i], r[i], ap50[i], ap[i]"""
+ return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
+
+ def get_maps(self, nc):
+ maps = np.zeros(nc) + self.map
+ for i, c in enumerate(self.ap_class_index):
+ maps[c] = self.ap[i]
+ return maps
+
+ def update(self, results):
+ """
+ Args:
+ results: tuple(p, r, ap, f1, ap_class)
+ """
+ p, r, all_ap, f1, ap_class_index = results
+ self.p = p
+ self.r = r
+ self.all_ap = all_ap
+ self.f1 = f1
+ self.ap_class_index = ap_class_index
+
+
+class Metrics:
+ """Metric for boxes and masks."""
+
+ def __init__(self) -> None:
+ self.metric_box = Metric()
+ self.metric_mask = Metric()
+
+ def update(self, results):
+ """
+ Args:
+ results: Dict{'boxes': Dict{}, 'masks': Dict{}}
+ """
+ self.metric_box.update(list(results["boxes"].values()))
+ self.metric_mask.update(list(results["masks"].values()))
+
+ def mean_results(self):
+ return self.metric_box.mean_results() + self.metric_mask.mean_results()
+
+ def class_result(self, i):
+ return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
+
+ def get_maps(self, nc):
+ return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
+
+ @property
+ def ap_class_index(self):
+ # boxes and masks have the same ap_class_index
+ return self.metric_box.ap_class_index
+
+
+class Semantic_Metrics:
+ def __init__(self, nc, device):
+ self.nc = nc # number of classes
+ self.device = device
+ self.iou = []
+ self.c_bit_counts = torch.zeros(nc, dtype = torch.long).to(device)
+ self.c_intersection_counts = torch.zeros(nc, dtype = torch.long).to(device)
+ self.c_union_counts = torch.zeros(nc, dtype = torch.long).to(device)
+
+ def update(self, pred_masks, target_masks):
+ nb, nc, h, w = pred_masks.shape
+ device = pred_masks.device
+
+ for b in range(nb):
+ onehot_mask = pred_masks[b].to(device)
+ # convert predict mask to one hot
+ semantic_mask = torch.flatten(onehot_mask, start_dim = 1).permute(1, 0) # class x h x w -> (h x w) x class
+ max_idx = semantic_mask.argmax(1)
+ output_masks = (torch.zeros(semantic_mask.shape).to(self.device)).scatter(1, max_idx.unsqueeze(1), 1.0) # one hot: (h x w) x class
+ output_masks = torch.reshape(output_masks.permute(1, 0), (nc, h, w)) # (h x w) x class -> class x h x w
+ onehot_mask = output_masks.int()
+
+ for c in range(self.nc):
+ pred_mask = onehot_mask[c].to(device)
+ target_mask = target_masks[b, c].to(device)
+
+ # calculate IoU
+ intersection = (torch.logical_and(pred_mask, target_mask).sum()).item()
+ union = (torch.logical_or(pred_mask, target_mask).sum()).item()
+ iou = 0. if (0 == union) else (intersection / union)
+
+ # record class pixel counts, intersection counts, union counts
+ self.c_bit_counts[c] += target_mask.int().sum()
+ self.c_intersection_counts[c] += intersection
+ self.c_union_counts[c] += union
+
+ self.iou.append(iou)
+
+ def results(self):
+ # Mean IoU
+ miou = 0. if (0 == len(self.iou)) else np.sum(self.iou) / (len(self.iou) * self.nc)
+
+ # Frequency Weighted IoU
+ c_iou = self.c_intersection_counts / (self.c_union_counts + 1) # add smooth
+ # c_bit_counts = self.c_bit_counts.astype(int)
+ total_c_bit_counts = self.c_bit_counts.sum()
+ freq_ious = torch.zeros(1, dtype = torch.long).to(self.device) if (0 == total_c_bit_counts) else (self.c_bit_counts / total_c_bit_counts) * c_iou
+ fwiou = (freq_ious.sum()).item()
+
+ return (miou, fwiou)
+
+ def reset(self):
+ self.iou = []
+ self.c_bit_counts = torch.zeros(self.nc, dtype = torch.long).to(self.device)
+ self.c_intersection_counts = torch.zeros(self.nc, dtype = torch.long).to(self.device)
+ self.c_union_counts = torch.zeros(self.nc, dtype = torch.long).to(self.device)
+
+
+KEYS = [
+ "train/box_loss",
+ "train/seg_loss", # train loss
+ "train/cls_loss",
+ "train/dfl_loss",
+ "train/fcl_loss",
+ "train/dic_loss",
+ "metrics/precision(B)",
+ "metrics/recall(B)",
+ "metrics/mAP_0.5(B)",
+ "metrics/mAP_0.5:0.95(B)", # metrics
+ "metrics/precision(M)",
+ "metrics/recall(M)",
+ "metrics/mAP_0.5(M)",
+ "metrics/mAP_0.5:0.95(M)", # metrics
+ "metrics/MIOUS(S)",
+ "metrics/FWIOUS(S)", # metrics
+ "val/box_loss",
+ "val/seg_loss", # val loss
+ "val/cls_loss",
+ "val/dfl_loss",
+ "val/fcl_loss",
+ "val/dic_loss",
+ "x/lr0",
+ "x/lr1",
+ "x/lr2",]
+
+BEST_KEYS = [
+ "best/epoch",
+ "best/precision(B)",
+ "best/recall(B)",
+ "best/mAP_0.5(B)",
+ "best/mAP_0.5:0.95(B)",
+ "best/precision(M)",
+ "best/recall(M)",
+ "best/mAP_0.5(M)",
+ "best/mAP_0.5:0.95(M)",
+ "best/MIOUS(S)",
+ "best/FWIOUS(S)",]
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/plots.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..55d87b7950554aa803d160ad8d20205aef37dc9c
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/plots.py
@@ -0,0 +1,164 @@
+import contextlib
+import math
+from pathlib import Path
+
+import cv2
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import torch
+from torchvision.utils import draw_segmentation_masks, save_image
+
+from .. import threaded
+from ..general import xywh2xyxy
+from ..plots import Annotator, colors
+
+
+@threaded
+def plot_images_and_masks(images, targets, masks, semasks, paths=None, fname='images.jpg', names=None):
+
+ try:
+ if images.shape[-2:] != semasks.shape[-2:]:
+ m = torch.nn.Upsample(scale_factor=4, mode='nearest')
+ semasks = m(semasks)
+
+ for idx in range(images.shape[0]):
+ output_img = draw_segmentation_masks(
+ image = images[idx, :, :, :].cpu().to(dtype = torch.uint8),
+ masks = semasks[idx, :, :, :].cpu().to(dtype = torch.bool),
+ alpha = 1)
+ cv2.imwrite(
+ '{}_{}.jpg'.format(fname, idx),
+ torch.permute(output_img, (1, 2, 0)).numpy()
+ )
+ except:
+ pass
+
+ # Plot image grid with labels
+ if isinstance(images, torch.Tensor):
+ images = images.cpu().float().numpy()
+ if isinstance(targets, torch.Tensor):
+ targets = targets.cpu().numpy()
+ if isinstance(masks, torch.Tensor):
+ masks = masks.cpu().numpy().astype(int)
+ if isinstance(semasks, torch.Tensor):
+ semasks = semasks.cpu().numpy().astype(int)
+
+ max_size = 1920 # max image size
+ max_subplots = 16 # max image subplots, i.e. 4x4
+ bs, _, h, w = images.shape # batch size, _, height, width
+ bs = min(bs, max_subplots) # limit plot images
+ ns = np.ceil(bs ** 0.5) # number of subplots (square)
+ if np.max(images[0]) <= 1:
+ images *= 255 # de-normalise (optional)
+
+ # Build Image
+ mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
+ for i, im in enumerate(images):
+ if i == max_subplots: # if last batch has fewer images than we expect
+ break
+ x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
+ im = im.transpose(1, 2, 0)
+ mosaic[y:y + h, x:x + w, :] = im
+
+ # Resize (optional)
+ scale = max_size / ns / max(h, w)
+ if scale < 1:
+ h = math.ceil(scale * h)
+ w = math.ceil(scale * w)
+ mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+ # Annotate
+ fs = int((h + w) * ns * 0.01) # font size
+ annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+ for i in range(i + 1):
+ x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
+ annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
+ if paths:
+ annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
+ if len(targets) > 0:
+ idx = targets[:, 0] == i
+ ti = targets[idx] # image targets
+
+ boxes = xywh2xyxy(ti[:, 2:6]).T
+ classes = ti[:, 1].astype('int')
+ labels = ti.shape[1] == 6 # labels if no conf column
+ conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
+
+ if boxes.shape[1]:
+ if boxes.max() <= 1.01: # if normalized with tolerance 0.01
+ boxes[[0, 2]] *= w # scale to pixels
+ boxes[[1, 3]] *= h
+ elif scale < 1: # absolute coords need scale if image scales
+ boxes *= scale
+ boxes[[0, 2]] += x
+ boxes[[1, 3]] += y
+ for j, box in enumerate(boxes.T.tolist()):
+ cls = classes[j]
+ color = colors(cls)
+ cls = names[cls] if names else cls
+ if labels or conf[j] > 0.25: # 0.25 conf thresh
+ label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
+ annotator.box_label(box, label, color=color)
+
+ # Plot masks
+ if len(masks):
+ if masks.max() > 1.0: # mean that masks are overlap
+ image_masks = masks[[i]] # (1, 640, 640)
+ nl = len(ti)
+ index = np.arange(nl).reshape(nl, 1, 1) + 1
+ image_masks = np.repeat(image_masks, nl, axis=0)
+ image_masks = np.where(image_masks == index, 1.0, 0.0)
+ else:
+ image_masks = masks[idx]
+
+ im = np.asarray(annotator.im).copy()
+ for j, box in enumerate(boxes.T.tolist()):
+ if labels or conf[j] > 0.25: # 0.25 conf thresh
+ color = colors(classes[j])
+ mh, mw = image_masks[j].shape
+ if mh != h or mw != w:
+ mask = image_masks[j].astype(np.uint8)
+ mask = cv2.resize(mask, (w, h))
+ mask = mask.astype(bool)
+ else:
+ mask = image_masks[j].astype(bool)
+ with contextlib.suppress(Exception):
+ im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
+ annotator.fromarray(im)
+ annotator.im.save(fname) # save
+
+
+def plot_results_with_masks(file="path/to/results.csv", dir="", best=True):
+ # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
+ save_dir = Path(file).parent if file else Path(dir)
+ fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
+ ax = ax.ravel()
+ files = list(save_dir.glob("results*.csv"))
+ assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
+ for f in files:
+ try:
+ data = pd.read_csv(f)
+ index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
+ 0.1 * data.values[:, 11])
+ s = [x.strip() for x in data.columns]
+ x = data.values[:, 0]
+ for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
+ y = data.values[:, j]
+ # y[y == 0] = np.nan # don't show zero values
+ ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2)
+ if best:
+ # best
+ ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3)
+ ax[i].set_title(s[j] + f"\n{round(y[index], 5)}")
+ else:
+ # last
+ ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3)
+ ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}")
+ # if j in [8, 9, 10]: # share train and val loss y axes
+ # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+ except Exception as e:
+ print(f"Warning: Plotting error for {f}: {e}")
+ ax[1].legend()
+ fig.savefig(save_dir / "results.png", dpi=200)
+ plt.close()
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/tal/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/tal/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/tal/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/tal/anchor_generator.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/tal/anchor_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..0de163651e21225445097f90e05a6c6d8ff10092
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/tal/anchor_generator.py
@@ -0,0 +1,38 @@
+import torch
+
+from utils.general import check_version
+
+TORCH_1_10 = check_version(torch.__version__, '1.10.0')
+
+
+def make_anchors(feats, strides, grid_cell_offset=0.5):
+ """Generate anchors from features."""
+ anchor_points, stride_tensor = [], []
+ assert feats is not None
+ dtype, device = feats[0].dtype, feats[0].device
+ for i, stride in enumerate(strides):
+ _, _, h, w = feats[i].shape
+ sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset # shift x
+ sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset # shift y
+ sy, sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx)
+ anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2))
+ stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device))
+ return torch.cat(anchor_points), torch.cat(stride_tensor)
+
+
+def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
+ """Transform distance(ltrb) to box(xywh or xyxy)."""
+ lt, rb = torch.split(distance, 2, dim)
+ x1y1 = anchor_points - lt
+ x2y2 = anchor_points + rb
+ if xywh:
+ c_xy = (x1y1 + x2y2) / 2
+ wh = x2y2 - x1y1
+ return torch.cat((c_xy, wh), dim) # xywh bbox
+ return torch.cat((x1y1, x2y2), dim) # xyxy bbox
+
+
+def bbox2dist(anchor_points, bbox, reg_max):
+ """Transform bbox(xyxy) to dist(ltrb)."""
+ x1y1, x2y2 = torch.split(bbox, 2, -1)
+ return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp(0, reg_max - 0.01) # dist (lt, rb)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/panoptic/tal/assigner.py b/cv/3d_detection/yolov9/pytorch/utils/panoptic/tal/assigner.py
new file mode 100644
index 0000000000000000000000000000000000000000..8c61f5c0508b87522eb4cf048bbe72973dbb4be4
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/panoptic/tal/assigner.py
@@ -0,0 +1,181 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.metrics import bbox_iou
+
+
+def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
+ """select the positive anchor center in gt
+
+ Args:
+ xy_centers (Tensor): shape(h*w, 4)
+ gt_bboxes (Tensor): shape(b, n_boxes, 4)
+ Return:
+ (Tensor): shape(b, n_boxes, h*w)
+ """
+ n_anchors = xy_centers.shape[0]
+ bs, n_boxes, _ = gt_bboxes.shape
+ lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom
+ bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
+ # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)
+ return bbox_deltas.amin(3).gt_(eps)
+
+
+def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
+ """if an anchor box is assigned to multiple gts,
+ the one with the highest iou will be selected.
+
+ Args:
+ mask_pos (Tensor): shape(b, n_max_boxes, h*w)
+ overlaps (Tensor): shape(b, n_max_boxes, h*w)
+ Return:
+ target_gt_idx (Tensor): shape(b, h*w)
+ fg_mask (Tensor): shape(b, h*w)
+ mask_pos (Tensor): shape(b, n_max_boxes, h*w)
+ """
+ # (b, n_max_boxes, h*w) -> (b, h*w)
+ fg_mask = mask_pos.sum(-2)
+ if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
+ mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1]) # (b, n_max_boxes, h*w)
+ max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
+ is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes) # (b, h*w, n_max_boxes)
+ is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype) # (b, n_max_boxes, h*w)
+ mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos) # (b, n_max_boxes, h*w)
+ fg_mask = mask_pos.sum(-2)
+ # find each grid serve which gt(index)
+ target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
+ return target_gt_idx, fg_mask, mask_pos
+
+
+class TaskAlignedAssigner(nn.Module):
+ def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):
+ super().__init__()
+ self.topk = topk
+ self.num_classes = num_classes
+ self.bg_idx = num_classes
+ self.alpha = alpha
+ self.beta = beta
+ self.eps = eps
+
+ @torch.no_grad()
+ def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
+ """This code referenced to
+ https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py
+
+ Args:
+ pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
+ pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
+ anc_points (Tensor): shape(num_total_anchors, 2)
+ gt_labels (Tensor): shape(bs, n_max_boxes, 1)
+ gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
+ mask_gt (Tensor): shape(bs, n_max_boxes, 1)
+ Returns:
+ target_labels (Tensor): shape(bs, num_total_anchors)
+ target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
+ target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
+ fg_mask (Tensor): shape(bs, num_total_anchors)
+ """
+ self.bs = pd_scores.size(0)
+ self.n_max_boxes = gt_bboxes.size(1)
+
+ if self.n_max_boxes == 0:
+ device = gt_bboxes.device
+ return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device),
+ torch.zeros_like(pd_bboxes).to(device),
+ torch.zeros_like(pd_scores).to(device),
+ torch.zeros_like(pd_scores[..., 0]).to(device),
+ torch.zeros_like(pd_scores[..., 0]).to(device))
+
+ mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points,
+ mask_gt)
+
+ target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)
+
+ # assigned target
+ target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)
+
+ # normalize
+ align_metric *= mask_pos
+ pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj
+ pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj
+ norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
+ target_scores = target_scores * norm_align_metric
+
+ return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
+
+ def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
+
+ # get anchor_align metric, (b, max_num_obj, h*w)
+ align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes)
+ # get in_gts mask, (b, max_num_obj, h*w)
+ mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
+ # get topk_metric mask, (b, max_num_obj, h*w)
+ mask_topk = self.select_topk_candidates(align_metric * mask_in_gts,
+ topk_mask=mask_gt.repeat([1, 1, self.topk]).bool())
+ # merge all mask to a final mask, (b, max_num_obj, h*w)
+ mask_pos = mask_topk * mask_in_gts * mask_gt
+
+ return mask_pos, align_metric, overlaps
+
+ def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes):
+
+ gt_labels = gt_labels.to(torch.long) # b, max_num_obj, 1
+ ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
+ ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes) # b, max_num_obj
+ ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
+ # get the scores of each grid for each gt cls
+ bbox_scores = pd_scores[ind[0], :, ind[1]] # b, max_num_obj, h*w
+
+ overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False, CIoU=True).squeeze(3).clamp(0)
+ #overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False, WIoU=True, scale=True)[-1].squeeze(3).clamp(0)
+ align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
+ return align_metric, overlaps
+
+ def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
+ """
+ Args:
+ metrics: (b, max_num_obj, h*w).
+ topk_mask: (b, max_num_obj, topk) or None
+ """
+
+ num_anchors = metrics.shape[-1] # h*w
+ # (b, max_num_obj, topk)
+ topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)
+ if topk_mask is None:
+ topk_mask = (topk_metrics.max(-1, keepdim=True) > self.eps).tile([1, 1, self.topk])
+ # (b, max_num_obj, topk)
+ topk_idxs = torch.where(topk_mask, topk_idxs, 0)
+ # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
+ is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2)
+ # filter invalid bboxes
+ # assigned topk should be unique, this is for dealing with empty labels
+ # since empty labels will generate index `0` through `F.one_hot`
+ # NOTE: but what if the topk_idxs include `0`?
+ is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk)
+ return is_in_topk.to(metrics.dtype)
+
+ def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
+ """
+ Args:
+ gt_labels: (b, max_num_obj, 1)
+ gt_bboxes: (b, max_num_obj, 4)
+ target_gt_idx: (b, h*w)
+ fg_mask: (b, h*w)
+ """
+
+ # assigned target labels, (b, 1)
+ batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
+ target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
+ target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
+
+ # assigned target boxes, (b, max_num_obj, 4) -> (b, h*w)
+ target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
+
+ # assigned target scores
+ target_labels.clamp(0)
+ target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80)
+ fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
+ target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
+
+ return target_labels, target_bboxes, target_scores
diff --git a/cv/3d_detection/yolov9/pytorch/utils/plots.py b/cv/3d_detection/yolov9/pytorch/utils/plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa49dc19d7f4b445a76de1e2ee135defa95778e3
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/plots.py
@@ -0,0 +1,570 @@
+import contextlib
+import math
+import os
+from copy import copy
+from pathlib import Path
+from urllib.error import URLError
+
+import cv2
+import matplotlib
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import seaborn as sn
+import torch
+from PIL import Image, ImageDraw, ImageFont
+
+from utils import TryExcept, threaded
+from utils.general import (CONFIG_DIR, FONT, LOGGER, check_font, check_requirements, clip_boxes, increment_path,
+ is_ascii, xywh2xyxy, xyxy2xywh)
+from utils.metrics import fitness
+from utils.segment.general import scale_image
+
+# Settings
+RANK = int(os.getenv('RANK', -1))
+matplotlib.rc('font', **{'size': 11})
+matplotlib.use('Agg') # for writing to files only
+
+
+class Colors:
+ # Ultralytics color palette https://ultralytics.com/
+ def __init__(self):
+ # hex = matplotlib.colors.TABLEAU_COLORS.values()
+ hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
+ '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
+ self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
+ self.n = len(self.palette)
+
+ def __call__(self, i, bgr=False):
+ c = self.palette[int(i) % self.n]
+ return (c[2], c[1], c[0]) if bgr else c
+
+ @staticmethod
+ def hex2rgb(h): # rgb order (PIL)
+ return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
+
+
+colors = Colors() # create instance for 'from utils.plots import colors'
+
+
+def check_pil_font(font=FONT, size=10):
+ # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
+ font = Path(font)
+ font = font if font.exists() else (CONFIG_DIR / font.name)
+ try:
+ return ImageFont.truetype(str(font) if font.exists() else font.name, size)
+ except Exception: # download if missing
+ try:
+ check_font(font)
+ return ImageFont.truetype(str(font), size)
+ except TypeError:
+ check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374
+ except URLError: # not online
+ return ImageFont.load_default()
+
+
+class Annotator:
+ # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
+ def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
+ assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
+ non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
+ self.pil = pil or non_ascii
+ if self.pil: # use PIL
+ self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
+ self.draw = ImageDraw.Draw(self.im)
+ self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
+ size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
+ else: # use cv2
+ self.im = im
+ self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
+
+ def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
+ # Add one xyxy box to image with label
+ if self.pil or not is_ascii(label):
+ self.draw.rectangle(box, width=self.lw, outline=color) # box
+ if label:
+ w, h = self.font.getsize(label) # text width, height
+ outside = box[1] - h >= 0 # label fits outside box
+ self.draw.rectangle(
+ (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
+ box[1] + 1 if outside else box[1] + h + 1),
+ fill=color,
+ )
+ # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
+ self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
+ else: # cv2
+ p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
+ cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
+ if label:
+ tf = max(self.lw - 1, 1) # font thickness
+ w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
+ outside = p1[1] - h >= 3
+ p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
+ cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
+ cv2.putText(self.im,
+ label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
+ 0,
+ self.lw / 3,
+ txt_color,
+ thickness=tf,
+ lineType=cv2.LINE_AA)
+
+ def masks(self, masks, colors, im_gpu=None, alpha=0.5):
+ """Plot masks at once.
+ Args:
+ masks (tensor): predicted masks on cuda, shape: [n, h, w]
+ colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
+ im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
+ alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
+ """
+ if self.pil:
+ # convert to numpy first
+ self.im = np.asarray(self.im).copy()
+ if im_gpu is None:
+ # Add multiple masks of shape(h,w,n) with colors list([r,g,b], [r,g,b], ...)
+ if len(masks) == 0:
+ return
+ if isinstance(masks, torch.Tensor):
+ masks = torch.as_tensor(masks, dtype=torch.uint8)
+ masks = masks.permute(1, 2, 0).contiguous()
+ masks = masks.cpu().numpy()
+ # masks = np.ascontiguousarray(masks.transpose(1, 2, 0))
+ masks = scale_image(masks.shape[:2], masks, self.im.shape)
+ masks = np.asarray(masks, dtype=np.float32)
+ colors = np.asarray(colors, dtype=np.float32) # shape(n,3)
+ s = masks.sum(2, keepdims=True).clip(0, 1) # add all masks together
+ masks = (masks @ colors).clip(0, 255) # (h,w,n) @ (n,3) = (h,w,3)
+ self.im[:] = masks * alpha + self.im * (1 - s * alpha)
+ else:
+ if len(masks) == 0:
+ self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
+ colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
+ colors = colors[:, None, None] # shape(n,1,1,3)
+ masks = masks.unsqueeze(3) # shape(n,h,w,1)
+ masks_color = masks * (colors * alpha) # shape(n,h,w,3)
+
+ inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
+ mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
+
+ im_gpu = im_gpu.flip(dims=[0]) # flip channel
+ im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
+ im_gpu = im_gpu * inv_alph_masks[-1] + mcs
+ im_mask = (im_gpu * 255).byte().cpu().numpy()
+ self.im[:] = scale_image(im_gpu.shape, im_mask, self.im.shape)
+ if self.pil:
+ # convert im back to PIL and update draw
+ self.fromarray(self.im)
+
+ def rectangle(self, xy, fill=None, outline=None, width=1):
+ # Add rectangle to image (PIL-only)
+ self.draw.rectangle(xy, fill, outline, width)
+
+ def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
+ # Add text to image (PIL-only)
+ if anchor == 'bottom': # start y from font bottom
+ w, h = self.font.getsize(text) # text width, height
+ xy[1] += 1 - h
+ self.draw.text(xy, text, fill=txt_color, font=self.font)
+
+ def fromarray(self, im):
+ # Update self.im from a numpy array
+ self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
+ self.draw = ImageDraw.Draw(self.im)
+
+ def result(self):
+ # Return annotated image as array
+ return np.asarray(self.im)
+
+
+def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
+ """
+ x: Features to be visualized
+ module_type: Module type
+ stage: Module stage within model
+ n: Maximum number of feature maps to plot
+ save_dir: Directory to save results
+ """
+ if 'Detect' not in module_type:
+ batch, channels, height, width = x.shape # batch, channels, height, width
+ if height > 1 and width > 1:
+ f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
+
+ blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
+ n = min(n, channels) # number of plots
+ fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
+ ax = ax.ravel()
+ plt.subplots_adjust(wspace=0.05, hspace=0.05)
+ for i in range(n):
+ ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
+ ax[i].axis('off')
+
+ LOGGER.info(f'Saving {f}... ({n}/{channels})')
+ plt.savefig(f, dpi=300, bbox_inches='tight')
+ plt.close()
+ np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
+
+
+def hist2d(x, y, n=100):
+ # 2d histogram used in labels.png and evolve.png
+ xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
+ hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
+ xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
+ yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
+ return np.log(hist[xidx, yidx])
+
+
+def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
+ from scipy.signal import butter, filtfilt
+
+ # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
+ def butter_lowpass(cutoff, fs, order):
+ nyq = 0.5 * fs
+ normal_cutoff = cutoff / nyq
+ return butter(order, normal_cutoff, btype='low', analog=False)
+
+ b, a = butter_lowpass(cutoff, fs, order=order)
+ return filtfilt(b, a, data) # forward-backward filter
+
+
+def output_to_target(output, max_det=300):
+ # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
+ targets = []
+ for i, o in enumerate(output):
+ box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
+ j = torch.full((conf.shape[0], 1), i)
+ targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
+ return torch.cat(targets, 0).numpy()
+
+
+@threaded
+def plot_images(images, targets, paths=None, fname='images.jpg', names=None):
+ # Plot image grid with labels
+ if isinstance(images, torch.Tensor):
+ images = images.cpu().float().numpy()
+ if isinstance(targets, torch.Tensor):
+ targets = targets.cpu().numpy()
+
+ max_size = 1920 # max image size
+ max_subplots = 16 # max image subplots, i.e. 4x4
+ bs, _, h, w = images.shape # batch size, _, height, width
+ bs = min(bs, max_subplots) # limit plot images
+ ns = np.ceil(bs ** 0.5) # number of subplots (square)
+ if np.max(images[0]) <= 1:
+ images *= 255 # de-normalise (optional)
+
+ # Build Image
+ mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
+ for i, im in enumerate(images):
+ if i == max_subplots: # if last batch has fewer images than we expect
+ break
+ x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
+ im = im.transpose(1, 2, 0)
+ mosaic[y:y + h, x:x + w, :] = im
+
+ # Resize (optional)
+ scale = max_size / ns / max(h, w)
+ if scale < 1:
+ h = math.ceil(scale * h)
+ w = math.ceil(scale * w)
+ mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+ # Annotate
+ fs = int((h + w) * ns * 0.01) # font size
+ annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+ for i in range(i + 1):
+ x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
+ annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
+ if paths:
+ annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
+ if len(targets) > 0:
+ ti = targets[targets[:, 0] == i] # image targets
+ boxes = xywh2xyxy(ti[:, 2:6]).T
+ classes = ti[:, 1].astype('int')
+ labels = ti.shape[1] == 6 # labels if no conf column
+ conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
+
+ if boxes.shape[1]:
+ if boxes.max() <= 1.01: # if normalized with tolerance 0.01
+ boxes[[0, 2]] *= w # scale to pixels
+ boxes[[1, 3]] *= h
+ elif scale < 1: # absolute coords need scale if image scales
+ boxes *= scale
+ boxes[[0, 2]] += x
+ boxes[[1, 3]] += y
+ for j, box in enumerate(boxes.T.tolist()):
+ cls = classes[j]
+ color = colors(cls)
+ cls = names[cls] if names else cls
+ if labels or conf[j] > 0.25: # 0.25 conf thresh
+ label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
+ annotator.box_label(box, label, color=color)
+ annotator.im.save(fname) # save
+
+
+def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
+ # Plot LR simulating training for full epochs
+ optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
+ y = []
+ for _ in range(epochs):
+ scheduler.step()
+ y.append(optimizer.param_groups[0]['lr'])
+ plt.plot(y, '.-', label='LR')
+ plt.xlabel('epoch')
+ plt.ylabel('LR')
+ plt.grid()
+ plt.xlim(0, epochs)
+ plt.ylim(0)
+ plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
+ plt.close()
+
+
+def plot_val_txt(): # from utils.plots import *; plot_val()
+ # Plot val.txt histograms
+ x = np.loadtxt('val.txt', dtype=np.float32)
+ box = xyxy2xywh(x[:, :4])
+ cx, cy = box[:, 0], box[:, 1]
+
+ fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
+ ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
+ ax.set_aspect('equal')
+ plt.savefig('hist2d.png', dpi=300)
+
+ fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
+ ax[0].hist(cx, bins=600)
+ ax[1].hist(cy, bins=600)
+ plt.savefig('hist1d.png', dpi=200)
+
+
+def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
+ # Plot targets.txt histograms
+ x = np.loadtxt('targets.txt', dtype=np.float32).T
+ s = ['x targets', 'y targets', 'width targets', 'height targets']
+ fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
+ ax = ax.ravel()
+ for i in range(4):
+ ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
+ ax[i].legend()
+ ax[i].set_title(s[i])
+ plt.savefig('targets.jpg', dpi=200)
+
+
+def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study()
+ # Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
+ save_dir = Path(file).parent if file else Path(dir)
+ plot2 = False # plot additional results
+ if plot2:
+ ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
+
+ fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
+ # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
+ for f in sorted(save_dir.glob('study*.txt')):
+ y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
+ x = np.arange(y.shape[1]) if x is None else np.array(x)
+ if plot2:
+ s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
+ for i in range(7):
+ ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
+ ax[i].set_title(s[i])
+
+ j = y[3].argmax() + 1
+ ax2.plot(y[5, 1:j],
+ y[3, 1:j] * 1E2,
+ '.-',
+ linewidth=2,
+ markersize=8,
+ label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
+
+ ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
+ 'k.-',
+ linewidth=2,
+ markersize=8,
+ alpha=.25,
+ label='EfficientDet')
+
+ ax2.grid(alpha=0.2)
+ ax2.set_yticks(np.arange(20, 60, 5))
+ ax2.set_xlim(0, 57)
+ ax2.set_ylim(25, 55)
+ ax2.set_xlabel('GPU Speed (ms/img)')
+ ax2.set_ylabel('COCO AP val')
+ ax2.legend(loc='lower right')
+ f = save_dir / 'study.png'
+ print(f'Saving {f}...')
+ plt.savefig(f, dpi=300)
+
+
+@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
+def plot_labels(labels, names=(), save_dir=Path('')):
+ # plot dataset labels
+ LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
+ c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
+ nc = int(c.max() + 1) # number of classes
+ x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
+
+ # seaborn correlogram
+ sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
+ plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
+ plt.close()
+
+ # matplotlib labels
+ matplotlib.use('svg') # faster
+ ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
+ y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
+ with contextlib.suppress(Exception): # color histogram bars by class
+ [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
+ ax[0].set_ylabel('instances')
+ if 0 < len(names) < 30:
+ ax[0].set_xticks(range(len(names)))
+ ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
+ else:
+ ax[0].set_xlabel('classes')
+ sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
+ sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
+
+ # rectangles
+ labels[:, 1:3] = 0.5 # center
+ labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
+ img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
+ for cls, *box in labels[:1000]:
+ ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
+ ax[1].imshow(img)
+ ax[1].axis('off')
+
+ for a in [0, 1, 2, 3]:
+ for s in ['top', 'right', 'left', 'bottom']:
+ ax[a].spines[s].set_visible(False)
+
+ plt.savefig(save_dir / 'labels.jpg', dpi=200)
+ matplotlib.use('Agg')
+ plt.close()
+
+
+def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')):
+ # Show classification image grid with labels (optional) and predictions (optional)
+ from utils.augmentations import denormalize
+
+ names = names or [f'class{i}' for i in range(1000)]
+ blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im),
+ dim=0) # select batch index 0, block by channels
+ n = min(len(blocks), nmax) # number of plots
+ m = min(8, round(n ** 0.5)) # 8 x 8 default
+ fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols
+ ax = ax.ravel() if m > 1 else [ax]
+ # plt.subplots_adjust(wspace=0.05, hspace=0.05)
+ for i in range(n):
+ ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
+ ax[i].axis('off')
+ if labels is not None:
+ s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '')
+ ax[i].set_title(s, fontsize=8, verticalalignment='top')
+ plt.savefig(f, dpi=300, bbox_inches='tight')
+ plt.close()
+ if verbose:
+ LOGGER.info(f"Saving {f}")
+ if labels is not None:
+ LOGGER.info('True: ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax]))
+ if pred is not None:
+ LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax]))
+ return f
+
+
+def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
+ # Plot evolve.csv hyp evolution results
+ evolve_csv = Path(evolve_csv)
+ data = pd.read_csv(evolve_csv)
+ keys = [x.strip() for x in data.columns]
+ x = data.values
+ f = fitness(x)
+ j = np.argmax(f) # max fitness index
+ plt.figure(figsize=(10, 12), tight_layout=True)
+ matplotlib.rc('font', **{'size': 8})
+ print(f'Best results from row {j} of {evolve_csv}:')
+ for i, k in enumerate(keys[7:]):
+ v = x[:, 7 + i]
+ mu = v[j] # best single result
+ plt.subplot(6, 5, i + 1)
+ plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
+ plt.plot(mu, f.max(), 'k+', markersize=15)
+ plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
+ if i % 5 != 0:
+ plt.yticks([])
+ print(f'{k:>15}: {mu:.3g}')
+ f = evolve_csv.with_suffix('.png') # filename
+ plt.savefig(f, dpi=200)
+ plt.close()
+ print(f'Saved {f}')
+
+
+def plot_results(file='path/to/results.csv', dir=''):
+ # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
+ save_dir = Path(file).parent if file else Path(dir)
+ fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
+ ax = ax.ravel()
+ files = list(save_dir.glob('results*.csv'))
+ assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
+ for f in files:
+ try:
+ data = pd.read_csv(f)
+ s = [x.strip() for x in data.columns]
+ x = data.values[:, 0]
+ for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
+ y = data.values[:, j].astype('float')
+ # y[y == 0] = np.nan # don't show zero values
+ ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
+ ax[i].set_title(s[j], fontsize=12)
+ # if j in [8, 9, 10]: # share train and val loss y axes
+ # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+ except Exception as e:
+ LOGGER.info(f'Warning: Plotting error for {f}: {e}')
+ ax[1].legend()
+ fig.savefig(save_dir / 'results.png', dpi=200)
+ plt.close()
+
+
+def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
+ # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
+ ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
+ s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
+ files = list(Path(save_dir).glob('frames*.txt'))
+ for fi, f in enumerate(files):
+ try:
+ results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
+ n = results.shape[1] # number of rows
+ x = np.arange(start, min(stop, n) if stop else n)
+ results = results[:, x]
+ t = (results[0] - results[0].min()) # set t0=0s
+ results[0] = x
+ for i, a in enumerate(ax):
+ if i < len(results):
+ label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
+ a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
+ a.set_title(s[i])
+ a.set_xlabel('time (s)')
+ # if fi == len(files) - 1:
+ # a.set_ylim(bottom=0)
+ for side in ['top', 'right']:
+ a.spines[side].set_visible(False)
+ else:
+ a.remove()
+ except Exception as e:
+ print(f'Warning: Plotting error for {f}; {e}')
+ ax[1].legend()
+ plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
+
+
+def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
+ # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
+ xyxy = torch.tensor(xyxy).view(-1, 4)
+ b = xyxy2xywh(xyxy) # boxes
+ if square:
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
+ b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
+ xyxy = xywh2xyxy(b).long()
+ clip_boxes(xyxy, im.shape)
+ crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
+ if save:
+ file.parent.mkdir(parents=True, exist_ok=True) # make directory
+ f = str(increment_path(file).with_suffix('.jpg'))
+ # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
+ Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
+ return crop
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/segment/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/augmentations.py b/cv/3d_detection/yolov9/pytorch/utils/segment/augmentations.py
new file mode 100644
index 0000000000000000000000000000000000000000..34b5bf75f9feb860270ff8502360609408c64b72
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/augmentations.py
@@ -0,0 +1,99 @@
+import math
+import random
+
+import cv2
+import numpy as np
+
+from ..augmentations import box_candidates
+from ..general import resample_segments, segment2box
+
+
+def mixup(im, labels, segments, im2, labels2, segments2):
+ # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
+ r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
+ im = (im * r + im2 * (1 - r)).astype(np.uint8)
+ labels = np.concatenate((labels, labels2), 0)
+ segments = np.concatenate((segments, segments2), 0)
+ return im, labels, segments
+
+
+def random_perspective(im,
+ targets=(),
+ segments=(),
+ degrees=10,
+ translate=.1,
+ scale=.1,
+ shear=10,
+ perspective=0.0,
+ border=(0, 0)):
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
+ # targets = [cls, xyxy]
+
+ height = im.shape[0] + border[0] * 2 # shape(h,w,c)
+ width = im.shape[1] + border[1] * 2
+
+ # Center
+ C = np.eye(3)
+ C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
+ C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
+
+ # Perspective
+ P = np.eye(3)
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
+
+ # Rotation and Scale
+ R = np.eye(3)
+ a = random.uniform(-degrees, degrees)
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
+ s = random.uniform(1 - scale, 1 + scale)
+ # s = 2 ** random.uniform(-scale, scale)
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+ # Shear
+ S = np.eye(3)
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
+
+ # Translation
+ T = np.eye(3)
+ T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width) # x translation (pixels)
+ T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height) # y translation (pixels)
+
+ # Combined rotation matrix
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
+ if perspective:
+ im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
+ else: # affine
+ im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+ # Visualize
+ # import matplotlib.pyplot as plt
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+ # ax[0].imshow(im[:, :, ::-1]) # base
+ # ax[1].imshow(im2[:, :, ::-1]) # warped
+
+ # Transform label coordinates
+ n = len(targets)
+ new_segments = []
+ if n:
+ new = np.zeros((n, 4))
+ segments = resample_segments(segments) # upsample
+ for i, segment in enumerate(segments):
+ xy = np.ones((len(segment), 3))
+ xy[:, :2] = segment
+ xy = xy @ M.T # transform
+ xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine
+
+ # clip
+ new[i] = segment2box(xy, width, height)
+ new_segments.append(xy)
+
+ # filter candidates
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
+ targets = targets[i]
+ targets[:, 1:5] = new[i]
+ new_segments = np.array(new_segments)[i]
+
+ return im, targets, new_segments
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/dataloaders.py b/cv/3d_detection/yolov9/pytorch/utils/segment/dataloaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..335570a63d330696612d87b51d2bd8ae0541c37b
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/dataloaders.py
@@ -0,0 +1,328 @@
+import os
+import random
+
+import cv2
+import numpy as np
+import torch
+from torch.utils.data import DataLoader, distributed
+
+from ..augmentations import augment_hsv, copy_paste, letterbox
+from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, seed_worker
+from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
+from ..torch_utils import torch_distributed_zero_first
+from .augmentations import mixup, random_perspective
+
+RANK = int(os.getenv('RANK', -1))
+
+
+def create_dataloader(path,
+ imgsz,
+ batch_size,
+ stride,
+ single_cls=False,
+ hyp=None,
+ augment=False,
+ cache=False,
+ pad=0.0,
+ rect=False,
+ rank=-1,
+ workers=8,
+ image_weights=False,
+ close_mosaic=False,
+ quad=False,
+ prefix='',
+ shuffle=False,
+ mask_downsample_ratio=1,
+ overlap_mask=False):
+ if rect and shuffle:
+ LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
+ shuffle = False
+ with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
+ dataset = LoadImagesAndLabelsAndMasks(
+ path,
+ imgsz,
+ batch_size,
+ augment=augment, # augmentation
+ hyp=hyp, # hyperparameters
+ rect=rect, # rectangular batches
+ cache_images=cache,
+ single_cls=single_cls,
+ stride=int(stride),
+ pad=pad,
+ image_weights=image_weights,
+ prefix=prefix,
+ downsample_ratio=mask_downsample_ratio,
+ overlap=overlap_mask)
+
+ batch_size = min(batch_size, len(dataset))
+ nd = torch.cuda.device_count() # number of CUDA devices
+ nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
+ sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+ #loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
+ loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader
+ generator = torch.Generator()
+ generator.manual_seed(6148914691236517205 + RANK)
+ return loader(
+ dataset,
+ batch_size=batch_size,
+ shuffle=shuffle and sampler is None,
+ num_workers=nw,
+ sampler=sampler,
+ pin_memory=True,
+ collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
+ worker_init_fn=seed_worker,
+ generator=generator,
+ ), dataset
+
+
+class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): # for training/testing
+
+ def __init__(
+ self,
+ path,
+ img_size=640,
+ batch_size=16,
+ augment=False,
+ hyp=None,
+ rect=False,
+ image_weights=False,
+ cache_images=False,
+ single_cls=False,
+ stride=32,
+ pad=0,
+ min_items=0,
+ prefix="",
+ downsample_ratio=1,
+ overlap=False,
+ ):
+ super().__init__(path, img_size, batch_size, augment, hyp, rect, image_weights, cache_images, single_cls,
+ stride, pad, min_items, prefix)
+ self.downsample_ratio = downsample_ratio
+ self.overlap = overlap
+
+ def __getitem__(self, index):
+ index = self.indices[index] # linear, shuffled, or image_weights
+
+ hyp = self.hyp
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
+ masks = []
+ if mosaic:
+ # Load mosaic
+ img, labels, segments = self.load_mosaic(index)
+ shapes = None
+
+ # MixUp augmentation
+ if random.random() < hyp["mixup"]:
+ img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1)))
+
+ else:
+ # Load image
+ img, (h0, w0), (h, w) = self.load_image(index)
+
+ # Letterbox
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
+
+ labels = self.labels[index].copy()
+ # [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
+ segments = self.segments[index].copy()
+ if len(segments):
+ for i_s in range(len(segments)):
+ segments[i_s] = xyn2xy(
+ segments[i_s],
+ ratio[0] * w,
+ ratio[1] * h,
+ padw=pad[0],
+ padh=pad[1],
+ )
+ if labels.size: # normalized xywh to pixel xyxy format
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+ if self.augment:
+ img, labels, segments = random_perspective(img,
+ labels,
+ segments=segments,
+ degrees=hyp["degrees"],
+ translate=hyp["translate"],
+ scale=hyp["scale"],
+ shear=hyp["shear"],
+ perspective=hyp["perspective"])
+
+ nl = len(labels) # number of labels
+ if nl:
+ labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
+ if self.overlap:
+ masks, sorted_idx = polygons2masks_overlap(img.shape[:2],
+ segments,
+ downsample_ratio=self.downsample_ratio)
+ masks = masks[None] # (640, 640) -> (1, 640, 640)
+ labels = labels[sorted_idx]
+ else:
+ masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
+
+ masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] //
+ self.downsample_ratio, img.shape[1] //
+ self.downsample_ratio))
+ # TODO: albumentations support
+ if self.augment:
+ # Albumentations
+ # there are some augmentation that won't change boxes and masks,
+ # so just be it for now.
+ img, labels = self.albumentations(img, labels)
+ nl = len(labels) # update after albumentations
+
+ # HSV color-space
+ augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
+
+ # Flip up-down
+ if random.random() < hyp["flipud"]:
+ img = np.flipud(img)
+ if nl:
+ labels[:, 2] = 1 - labels[:, 2]
+ masks = torch.flip(masks, dims=[1])
+
+ # Flip left-right
+ if random.random() < hyp["fliplr"]:
+ img = np.fliplr(img)
+ if nl:
+ labels[:, 1] = 1 - labels[:, 1]
+ masks = torch.flip(masks, dims=[2])
+
+ # Cutouts # labels = cutout(img, labels, p=0.5)
+
+ labels_out = torch.zeros((nl, 6))
+ if nl:
+ labels_out[:, 1:] = torch.from_numpy(labels)
+
+ # Convert
+ img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
+ img = np.ascontiguousarray(img)
+
+ return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks)
+
+ def load_mosaic(self, index):
+ # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
+ labels4, segments4 = [], []
+ s = self.img_size
+ yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
+
+ # 3 additional image indices
+ indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = self.load_image(index)
+
+ # place img in img4
+ if i == 0: # top left
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
+ elif i == 1: # top right
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+ elif i == 2: # bottom left
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+ elif i == 3: # bottom right
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ padw = x1a - x1b
+ padh = y1a - y1b
+
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
+
+ if labels.size:
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
+ segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+ labels4.append(labels)
+ segments4.extend(segments)
+
+ # Concat/clip labels
+ labels4 = np.concatenate(labels4, 0)
+ for x in (labels4[:, 1:], *segments4):
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
+ # img4, labels4 = replicate(img4, labels4) # replicate
+
+ # Augment
+ img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp["copy_paste"])
+ img4, labels4, segments4 = random_perspective(img4,
+ labels4,
+ segments4,
+ degrees=self.hyp["degrees"],
+ translate=self.hyp["translate"],
+ scale=self.hyp["scale"],
+ shear=self.hyp["shear"],
+ perspective=self.hyp["perspective"],
+ border=self.mosaic_border) # border to remove
+ return img4, labels4, segments4
+
+ @staticmethod
+ def collate_fn(batch):
+ img, label, path, shapes, masks = zip(*batch) # transposed
+ batched_masks = torch.cat(masks, 0)
+ for i, l in enumerate(label):
+ l[:, 0] = i # add target image index for build_targets()
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks
+
+
+def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
+ """
+ Args:
+ img_size (tuple): The image size.
+ polygons (np.ndarray): [N, M], N is the number of polygons,
+ M is the number of points(Be divided by 2).
+ """
+ mask = np.zeros(img_size, dtype=np.uint8)
+ polygons = np.asarray(polygons)
+ polygons = polygons.astype(np.int32)
+ shape = polygons.shape
+ polygons = polygons.reshape(shape[0], -1, 2)
+ cv2.fillPoly(mask, polygons, color=color)
+ nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
+ # NOTE: fillPoly firstly then resize is trying the keep the same way
+ # of loss calculation when mask-ratio=1.
+ mask = cv2.resize(mask, (nw, nh))
+ return mask
+
+
+def polygons2masks(img_size, polygons, color, downsample_ratio=1):
+ """
+ Args:
+ img_size (tuple): The image size.
+ polygons (list[np.ndarray]): each polygon is [N, M],
+ N is the number of polygons,
+ M is the number of points(Be divided by 2).
+ """
+ masks = []
+ for si in range(len(polygons)):
+ mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
+ masks.append(mask)
+ return np.array(masks)
+
+
+def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
+ """Return a (640, 640) overlap mask."""
+ masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
+ dtype=np.int32 if len(segments) > 255 else np.uint8)
+ areas = []
+ ms = []
+ for si in range(len(segments)):
+ mask = polygon2mask(
+ img_size,
+ [segments[si].reshape(-1)],
+ downsample_ratio=downsample_ratio,
+ color=1,
+ )
+ ms.append(mask)
+ areas.append(mask.sum())
+ areas = np.asarray(areas)
+ index = np.argsort(-areas)
+ ms = np.array(ms)[index]
+ for i in range(len(segments)):
+ mask = ms[i] * (i + 1)
+ masks = masks + mask
+ masks = np.clip(masks, a_min=0, a_max=i + 1)
+ return masks, index
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/general.py b/cv/3d_detection/yolov9/pytorch/utils/segment/general.py
new file mode 100644
index 0000000000000000000000000000000000000000..b526333dc5a1b8625d7e6a51ee6ba41818c62adb
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/general.py
@@ -0,0 +1,137 @@
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+
+def crop_mask(masks, boxes):
+ """
+ "Crop" predicted masks by zeroing out everything not in the predicted bbox.
+ Vectorized by Chong (thanks Chong).
+
+ Args:
+ - masks should be a size [h, w, n] tensor of masks
+ - boxes should be a size [n, 4] tensor of bbox coords in relative point form
+ """
+
+ n, h, w = masks.shape
+ x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
+ r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
+ c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
+
+ return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
+
+
+def process_mask_upsample(protos, masks_in, bboxes, shape):
+ """
+ Crop after upsample.
+ proto_out: [mask_dim, mask_h, mask_w]
+ out_masks: [n, mask_dim], n is number of masks after nms
+ bboxes: [n, 4], n is number of masks after nms
+ shape:input_image_size, (h, w)
+
+ return: h, w, n
+ """
+
+ c, mh, mw = protos.shape # CHW
+ masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
+ masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
+ masks = crop_mask(masks, bboxes) # CHW
+ return masks.gt_(0.5)
+
+
+def process_mask(protos, masks_in, bboxes, shape, upsample=False):
+ """
+ Crop before upsample.
+ proto_out: [mask_dim, mask_h, mask_w]
+ out_masks: [n, mask_dim], n is number of masks after nms
+ bboxes: [n, 4], n is number of masks after nms
+ shape:input_image_size, (h, w)
+
+ return: h, w, n
+ """
+
+ c, mh, mw = protos.shape # CHW
+ ih, iw = shape
+ masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
+
+ downsampled_bboxes = bboxes.clone()
+ downsampled_bboxes[:, 0] *= mw / iw
+ downsampled_bboxes[:, 2] *= mw / iw
+ downsampled_bboxes[:, 3] *= mh / ih
+ downsampled_bboxes[:, 1] *= mh / ih
+
+ masks = crop_mask(masks, downsampled_bboxes) # CHW
+ if upsample:
+ masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
+ return masks.gt_(0.5)
+
+
+def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
+ """
+ img1_shape: model input shape, [h, w]
+ img0_shape: origin pic shape, [h, w, 3]
+ masks: [h, w, num]
+ """
+ # Rescale coordinates (xyxy) from im1_shape to im0_shape
+ if ratio_pad is None: # calculate from im0_shape
+ gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
+ pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
+ else:
+ pad = ratio_pad[1]
+ top, left = int(pad[1]), int(pad[0]) # y, x
+ bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
+
+ if len(masks.shape) < 2:
+ raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
+ masks = masks[top:bottom, left:right]
+ # masks = masks.permute(2, 0, 1).contiguous()
+ # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
+ # masks = masks.permute(1, 2, 0).contiguous()
+ masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
+
+ if len(masks.shape) == 2:
+ masks = masks[:, :, None]
+ return masks
+
+
+def mask_iou(mask1, mask2, eps=1e-7):
+ """
+ mask1: [N, n] m1 means number of predicted objects
+ mask2: [M, n] m2 means number of gt objects
+ Note: n means image_w x image_h
+
+ return: masks iou, [N, M]
+ """
+ intersection = torch.matmul(mask1, mask2.t()).clamp(0)
+ union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
+ return intersection / (union + eps)
+
+
+def masks_iou(mask1, mask2, eps=1e-7):
+ """
+ mask1: [N, n] m1 means number of predicted objects
+ mask2: [N, n] m2 means number of gt objects
+ Note: n means image_w x image_h
+
+ return: masks iou, (N, )
+ """
+ intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
+ union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
+ return intersection / (union + eps)
+
+
+def masks2segments(masks, strategy='largest'):
+ # Convert masks(n,160,160) into segments(n,xy)
+ segments = []
+ for x in masks.int().cpu().numpy().astype('uint8'):
+ c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
+ if c:
+ if strategy == 'concat': # concatenate all segments
+ c = np.concatenate([x.reshape(-1, 2) for x in c])
+ elif strategy == 'largest': # select largest segment
+ c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
+ else:
+ c = np.zeros((0, 2)) # no segments found
+ segments.append(c.astype('float32'))
+ return segments
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/loss.py b/cv/3d_detection/yolov9/pytorch/utils/segment/loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..b45b2c27e0a05c275cbc50064288aece3ae3e856
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/loss.py
@@ -0,0 +1,186 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ..general import xywh2xyxy
+from ..loss import FocalLoss, smooth_BCE
+from ..metrics import bbox_iou
+from ..torch_utils import de_parallel
+from .general import crop_mask
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, autobalance=False, overlap=False):
+ self.sort_obj_iou = False
+ self.overlap = overlap
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+ self.device = device
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h['fl_gamma'] # focal loss gamma
+ if g > 0:
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
+ self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+ self.na = m.na # number of anchors
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.nm = m.nm # number of masks
+ self.anchors = m.anchors
+ self.device = device
+
+ def __call__(self, preds, targets, masks): # predictions, targets, model
+ p, proto = preds
+ bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
+ lcls = torch.zeros(1, device=self.device)
+ lbox = torch.zeros(1, device=self.device)
+ lobj = torch.zeros(1, device=self.device)
+ lseg = torch.zeros(1, device=self.device)
+ tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets) # targets
+
+ # Losses
+ for i, pi in enumerate(p): # layer index, layer predictions
+ b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
+ tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
+
+ n = b.shape[0] # number of targets
+ if n:
+ pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1) # subset of predictions
+
+ # Box regression
+ pxy = pxy.sigmoid() * 2 - 0.5
+ pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
+ pbox = torch.cat((pxy, pwh), 1) # predicted box
+ iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
+ lbox += (1.0 - iou).mean() # iou loss
+
+ # Objectness
+ iou = iou.detach().clamp(0).type(tobj.dtype)
+ if self.sort_obj_iou:
+ j = iou.argsort()
+ b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
+ if self.gr < 1:
+ iou = (1.0 - self.gr) + self.gr * iou
+ tobj[b, a, gj, gi] = iou # iou ratio
+
+ # Classification
+ if self.nc > 1: # cls loss (only if multiple classes)
+ t = torch.full_like(pcls, self.cn, device=self.device) # targets
+ t[range(n), tcls[i]] = self.cp
+ lcls += self.BCEcls(pcls, t) # BCE
+
+ # Mask regression
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
+ marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized
+ mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
+ for bi in b.unique():
+ j = b == bi # matching index
+ if self.overlap:
+ mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
+ else:
+ mask_gti = masks[tidxs[i]][j]
+ lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
+
+ obji = self.BCEobj(pi[..., 4], tobj)
+ lobj += obji * self.balance[i] # obj loss
+ if self.autobalance:
+ self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+ if self.autobalance:
+ self.balance = [x / self.balance[self.ssi] for x in self.balance]
+ lbox *= self.hyp["box"]
+ lobj *= self.hyp["obj"]
+ lcls *= self.hyp["cls"]
+ lseg *= self.hyp["box"] / bs
+
+ loss = lbox + lobj + lcls + lseg
+ return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
+
+ def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
+ # Mask loss for one image
+ pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
+ loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
+ return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
+
+ def build_targets(self, p, targets):
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+ na, nt = self.na, targets.shape[0] # number of anchors, targets
+ tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
+ gain = torch.ones(8, device=self.device) # normalized to gridspace gain
+ ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
+ if self.overlap:
+ batch = p[0].shape[0]
+ ti = []
+ for i in range(batch):
+ num = (targets[:, 0] == i).sum() # find number of targets of each image
+ ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num)
+ ti = torch.cat(ti, 1) # (na, nt)
+ else:
+ ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
+ targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices
+
+ g = 0.5 # bias
+ off = torch.tensor(
+ [
+ [0, 0],
+ [1, 0],
+ [0, 1],
+ [-1, 0],
+ [0, -1], # j,k,l,m
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
+ ],
+ device=self.device).float() * g # offsets
+
+ for i in range(self.nl):
+ anchors, shape = self.anchors[i], p[i].shape
+ gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
+
+ # Match targets to anchors
+ t = targets * gain # shape(3,n,7)
+ if nt:
+ # Matches
+ r = t[..., 4:6] / anchors[:, None] # wh ratio
+ j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+ t = t[j] # filter
+
+ # Offsets
+ gxy = t[:, 2:4] # grid xy
+ gxi = gain[[2, 3]] - gxy # inverse
+ j, k = ((gxy % 1 < g) & (gxy > 1)).T
+ l, m = ((gxi % 1 < g) & (gxi > 1)).T
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
+ t = t.repeat((5, 1, 1))[j]
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+ else:
+ t = targets[0]
+ offsets = 0
+
+ # Define
+ bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
+ (a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class
+ gij = (gxy - offsets).long()
+ gi, gj = gij.T # grid indices
+
+ # Append
+ indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
+ tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
+ anch.append(anchors[a]) # anchors
+ tcls.append(c) # class
+ tidxs.append(tidx)
+ xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized
+
+ return tcls, tbox, indices, anch, tidxs, xywhn
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/loss_tal.py b/cv/3d_detection/yolov9/pytorch/utils/segment/loss_tal.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f90b27ef7c25df65e072f1d26aaaa4305e83460
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/loss_tal.py
@@ -0,0 +1,261 @@
+import os
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from torchvision.ops import sigmoid_focal_loss
+
+from utils.general import xywh2xyxy, xyxy2xywh
+from utils.metrics import bbox_iou
+from utils.segment.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
+from utils.segment.tal.assigner import TaskAlignedAssigner
+from utils.torch_utils import de_parallel
+from utils.segment.general import crop_mask
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class VarifocalLoss(nn.Module):
+ # Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
+ weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
+ reduction="none") * weight).sum()
+ return loss
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super().__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = "none" # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == "mean":
+ return loss.mean()
+ elif self.reduction == "sum":
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, reg_max, use_dfl=False):
+ super().__init__()
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
+ pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
+ target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
+ bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
+
+ iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
+ loss_iou = 1.0 - iou
+
+ loss_iou *= bbox_weight
+ loss_iou = loss_iou.sum() / target_scores_sum
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
+ loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = torch.tensor(0.0).to(pred_dist.device)
+
+ return loss_iou, loss_dfl, iou
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
+ reduction="none").view(target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, use_dfl=True, overlap=True):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h["fl_gamma"] # focal loss gamma
+ if g > 0:
+ BCEcls = FocalLoss(BCEcls, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.BCEcls = BCEcls
+ self.hyp = h
+ self.stride = m.stride # model strides
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.no = m.no
+ self.nm = m.nm
+ self.overlap = overlap
+ self.reg_max = m.reg_max
+ self.device = device
+
+ self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
+ self.use_dfl = use_dfl
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ if targets.shape[0] == 0:
+ out = torch.zeros(batch_size, 0, 5, device=self.device)
+ else:
+ i = targets[:, 0] # image index
+ _, counts = i.unique(return_counts=True)
+ out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
+ for j in range(batch_size):
+ matches = i == j
+ n = matches.sum()
+ if n:
+ out[j, :n] = targets[matches, 1:]
+ out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
+ return out
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ b, a, c = pred_dist.shape # batch, anchors, channels
+ pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
+ return dist2bbox(pred_dist, anchor_points, xywh=False)
+
+ def __call__(self, p, targets, masks, img=None, epoch=0):
+ loss = torch.zeros(4, device=self.device) # box, cls, dfl
+ feats, pred_masks, proto = p if len(p) == 3 else p[1]
+ batch_size, _, mask_h, mask_w = proto.shape
+ pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores = pred_scores.permute(0, 2, 1).contiguous()
+ pred_distri = pred_distri.permute(0, 2, 1).contiguous()
+ pred_masks = pred_masks.permute(0, 2, 1).contiguous()
+
+ dtype = pred_scores.dtype
+ batch_size, grid_size = pred_scores.shape[:2]
+ imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
+ anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
+
+ # targets
+ try:
+ batch_idx = targets[:, 0].view(-1, 1)
+ targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
+ gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
+ mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
+ except RuntimeError as e:
+ raise TypeError('ERROR.') from e
+
+
+ # pboxes
+ pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
+
+ target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
+ pred_scores.detach().sigmoid(),
+ (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_scores_sum = target_scores.sum()
+
+ # cls loss
+ # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
+ loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+
+ # bbox loss
+ if fg_mask.sum():
+ loss[0], loss[3], _ = self.bbox_loss(pred_distri,
+ pred_bboxes,
+ anchor_points,
+ target_bboxes / stride_tensor,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+
+ # masks loss
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
+
+ for i in range(batch_size):
+ if fg_mask[i].sum():
+ mask_idx = target_gt_idx[i][fg_mask[i]]
+ if self.overlap:
+ gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
+ else:
+ gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
+ xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
+ marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
+ mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
+ loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
+ marea) # seg loss
+
+ loss[0] *= 7.5 # box gain
+ loss[1] *= 2.5 / batch_size
+ loss[2] *= 0.5 # cls gain
+ loss[3] *= 1.5 # dfl gain
+
+ return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
+
+ def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
+ # Mask loss for one image
+ pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
+ loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
+ #loss = sigmoid_focal_loss(pred_mask, gt_mask, alpha = .25, gamma = 2., reduction = 'none')
+
+ return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
+
+ #p_m = torch.flatten(pred_mask.sigmoid())
+ #p_m = torch.flatten(pred_mask.softmax(dim = 1))
+ #g_m = torch.flatten(gt_mask)
+ #i_m = torch.sum(torch.mul(p_m, g_m))
+ #u_m = torch.sum(torch.add(p_m, g_m))
+ #d_c = (2. * i_m + 1.) / (u_m + 1.)
+ #d_l = (1. - d_c)
+ #return d_l
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/loss_tal_dual.py b/cv/3d_detection/yolov9/pytorch/utils/segment/loss_tal_dual.py
new file mode 100644
index 0000000000000000000000000000000000000000..87bb8ebfb3008ec4dc37b981e8fa559a7e90b68d
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/loss_tal_dual.py
@@ -0,0 +1,727 @@
+import os
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from torchvision.ops import sigmoid_focal_loss
+
+from utils.general import xywh2xyxy, xyxy2xywh
+from utils.metrics import bbox_iou
+from utils.segment.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
+from utils.segment.tal.assigner import TaskAlignedAssigner
+from utils.torch_utils import de_parallel
+from utils.segment.general import crop_mask
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class VarifocalLoss(nn.Module):
+ # Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
+ weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
+ with torch.cuda.amp.autocast(enabled=False):
+ loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
+ reduction="none") * weight).sum()
+ return loss
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super().__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = "none" # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == "mean":
+ return loss.mean()
+ elif self.reduction == "sum":
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class BboxLoss(nn.Module):
+ def __init__(self, reg_max, use_dfl=False):
+ super().__init__()
+ self.reg_max = reg_max
+ self.use_dfl = use_dfl
+
+ def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
+ # iou loss
+ bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
+ pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
+ target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
+ bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
+
+ iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
+ loss_iou = 1.0 - iou
+
+ loss_iou *= bbox_weight
+ loss_iou = loss_iou.sum() / target_scores_sum
+
+ # dfl loss
+ if self.use_dfl:
+ dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
+ pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
+ target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
+ target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
+ loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
+ loss_dfl = loss_dfl.sum() / target_scores_sum
+ else:
+ loss_dfl = torch.tensor(0.0).to(pred_dist.device)
+
+ return loss_iou, loss_dfl, iou
+
+ def _df_loss(self, pred_dist, target):
+ target_left = target.to(torch.long)
+ target_right = target_left + 1
+ weight_left = target_right.to(torch.float) - target
+ weight_right = 1 - weight_left
+ loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
+ target_left.shape) * weight_left
+ loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
+ reduction="none").view(target_left.shape) * weight_right
+ return (loss_left + loss_right).mean(-1, keepdim=True)
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, use_dfl=True, overlap=True):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h["fl_gamma"] # focal loss gamma
+ if g > 0:
+ BCEcls = FocalLoss(BCEcls, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.BCEcls = BCEcls
+ self.hyp = h
+ self.stride = m.stride # model strides
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.no = m.no
+ self.nm = m.nm
+ self.overlap = overlap
+ self.reg_max = m.reg_max
+ self.device = device
+
+ self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.assigner2 = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.bbox_loss2 = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
+ self.use_dfl = use_dfl
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ if targets.shape[0] == 0:
+ out = torch.zeros(batch_size, 0, 5, device=self.device)
+ else:
+ i = targets[:, 0] # image index
+ _, counts = i.unique(return_counts=True)
+ out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
+ for j in range(batch_size):
+ matches = i == j
+ n = matches.sum()
+ if n:
+ out[j, :n] = targets[matches, 1:]
+ out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
+ return out
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ b, a, c = pred_dist.shape # batch, anchors, channels
+ pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
+ return dist2bbox(pred_dist, anchor_points, xywh=False)
+
+ def __call__(self, p, targets, masks, img=None, epoch=0):
+ loss = torch.zeros(4, device=self.device) # box, cls, dfl
+
+ feats_, pred_masks_, proto_ = p if len(p) == 3 else p[1]
+
+ feats, pred_masks, proto = feats_[0], pred_masks_[0], proto_[0]
+ feats2, pred_masks2, proto2 = feats_[1], pred_masks_[1], proto_[1]
+
+ batch_size, _, mask_h, mask_w = proto.shape
+
+ pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores = pred_scores.permute(0, 2, 1).contiguous()
+ pred_distri = pred_distri.permute(0, 2, 1).contiguous()
+ pred_masks = pred_masks.permute(0, 2, 1).contiguous()
+
+ pred_distri2, pred_scores2 = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats2], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
+ pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
+ pred_masks2 = pred_masks2.permute(0, 2, 1).contiguous()
+
+ dtype = pred_scores.dtype
+ batch_size, grid_size = pred_scores.shape[:2]
+ imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
+ anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
+
+ # targets
+ try:
+ batch_idx = targets[:, 0].view(-1, 1)
+ targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
+ gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
+ mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
+ except RuntimeError as e:
+ raise TypeError('ERROR.') from e
+
+
+ # pboxes
+ pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
+
+ pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2) # xyxy, (b, h*w, 4)
+
+ target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
+ pred_scores.detach().sigmoid(),
+ (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_labels2, target_bboxes2, target_scores2, fg_mask2, target_gt_idx2 = self.assigner2(
+ pred_scores2.detach().sigmoid(),
+ (pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_scores_sum = target_scores.sum()
+
+ target_scores_sum2 = target_scores2.sum()
+
+ # cls loss
+ # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
+ loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+ loss[2] *= 0.25
+ loss[2] += self.BCEcls(pred_scores2, target_scores2.to(dtype)).sum() / target_scores_sum2 # BCE
+
+ # bbox loss
+ if fg_mask.sum():
+ loss[0], loss[3], _ = self.bbox_loss(pred_distri,
+ pred_bboxes,
+ anchor_points,
+ target_bboxes / stride_tensor,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+
+ # masks loss
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
+
+ for i in range(batch_size):
+ if fg_mask[i].sum():
+ mask_idx = target_gt_idx[i][fg_mask[i]]
+ if self.overlap:
+ gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
+ else:
+ gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
+ xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
+ marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
+ mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
+ loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
+ marea) # seg loss
+
+ loss[0] *= 0.25
+ loss[3] *= 0.25
+ loss[1] *= 0.25
+
+ # bbox loss
+ if fg_mask2.sum():
+ loss0_, loss3_, _ = self.bbox_loss2(pred_distri2,
+ pred_bboxes2,
+ anchor_points,
+ target_bboxes2 / stride_tensor,
+ target_scores2,
+ target_scores_sum2,
+ fg_mask2)
+
+ # masks loss
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
+
+ for i in range(batch_size):
+ if fg_mask2[i].sum():
+ mask_idx = target_gt_idx2[i][fg_mask2[i]]
+ if self.overlap:
+ gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
+ else:
+ gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
+ xyxyn = target_bboxes2[i][fg_mask2[i]] / imgsz[[1, 0, 1, 0]]
+ marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
+ mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
+ loss[1] += self.single_mask_loss(gt_mask, pred_masks2[i][fg_mask2[i]], proto2[i], mxyxy,
+ marea) # seg loss
+
+ loss[0] += loss0_
+ loss[3] += loss3_
+
+ loss[0] *= 7.5 # box gain
+ loss[1] *= 2.5 / batch_size
+ loss[2] *= 0.5 # cls gain
+ loss[3] *= 1.5 # dfl gain
+
+ return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
+
+ def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
+ # Mask loss for one image
+ pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
+ loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
+ #loss = sigmoid_focal_loss(pred_mask, gt_mask, alpha = .25, gamma = 2., reduction = 'none')
+
+ #p_m = torch.flatten(pred_mask.softmax(dim = 1))
+ #g_m = torch.flatten(gt_mask)
+ #i_m = torch.sum(torch.mul(p_m, g_m))
+ #u_m = torch.sum(torch.add(p_m, g_m))
+ #dice_coef = (2. * i_m + 1.) / (u_m + 1.)
+ #dice_loss = (1. - dice_coef)
+ return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
+
+
+class ComputeLossLH:
+ # Compute losses
+ def __init__(self, model, use_dfl=True, overlap=True):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h["fl_gamma"] # focal loss gamma
+ if g > 0:
+ BCEcls = FocalLoss(BCEcls, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.BCEcls = BCEcls
+ self.hyp = h
+ self.stride = m.stride # model strides
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.no = m.no
+ self.nm = m.nm
+ self.overlap = overlap
+ self.reg_max = m.reg_max
+ self.device = device
+
+ self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
+ self.use_dfl = use_dfl
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ if targets.shape[0] == 0:
+ out = torch.zeros(batch_size, 0, 5, device=self.device)
+ else:
+ i = targets[:, 0] # image index
+ _, counts = i.unique(return_counts=True)
+ out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
+ for j in range(batch_size):
+ matches = i == j
+ n = matches.sum()
+ if n:
+ out[j, :n] = targets[matches, 1:]
+ out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
+ return out
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ b, a, c = pred_dist.shape # batch, anchors, channels
+ pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
+ return dist2bbox(pred_dist, anchor_points, xywh=False)
+
+ def __call__(self, p, targets, masks, img=None, epoch=0):
+ loss = torch.zeros(4, device=self.device) # box, cls, dfl
+
+ feats_, pred_masks_, proto_ = p if len(p) == 3 else p[1]
+
+ feats, pred_masks, proto = feats_[0], pred_masks_[0], proto_[0]
+ feats2, pred_masks2, proto2 = feats_[1], pred_masks_[1], proto_[1]
+
+ batch_size, _, mask_h, mask_w = proto.shape
+
+ pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores = pred_scores.permute(0, 2, 1).contiguous()
+ pred_distri = pred_distri.permute(0, 2, 1).contiguous()
+ pred_masks = pred_masks.permute(0, 2, 1).contiguous()
+
+ pred_distri2, pred_scores2 = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats2], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
+ pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
+ pred_masks2 = pred_masks2.permute(0, 2, 1).contiguous()
+
+ dtype = pred_scores.dtype
+ batch_size, grid_size = pred_scores.shape[:2]
+ imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
+ anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
+
+ # targets
+ try:
+ batch_idx = targets[:, 0].view(-1, 1)
+ targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
+ gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
+ mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
+ except RuntimeError as e:
+ raise TypeError('ERROR.') from e
+
+
+ # pboxes
+ pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
+
+ pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2) # xyxy, (b, h*w, 4)
+
+ target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
+ pred_scores2.detach().sigmoid(),
+ (pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_scores_sum = target_scores.sum()
+
+ # cls loss
+ # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
+ loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+ loss[2] *= 0.25
+ loss[2] += self.BCEcls(pred_scores2, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+
+ # bbox loss
+ if fg_mask.sum():
+ loss[0], loss[3], _ = self.bbox_loss(pred_distri,
+ pred_bboxes,
+ anchor_points,
+ target_bboxes / stride_tensor,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+
+ # masks loss
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
+
+ for i in range(batch_size):
+ if fg_mask[i].sum():
+ mask_idx = target_gt_idx[i][fg_mask[i]]
+ if self.overlap:
+ gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
+ else:
+ gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
+ xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
+ marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
+ mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
+ loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
+ marea) # seg loss
+
+ loss[0] *= 0.25
+ loss[3] *= 0.25
+ loss[1] *= 0.25
+
+ # bbox loss
+ if fg_mask.sum():
+ loss0_, loss3_, _ = self.bbox_loss(pred_distri2,
+ pred_bboxes2,
+ anchor_points,
+ target_bboxes / stride_tensor,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+
+ # masks loss
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
+
+ for i in range(batch_size):
+ if fg_mask[i].sum():
+ mask_idx = target_gt_idx[i][fg_mask[i]]
+ if self.overlap:
+ gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
+ else:
+ gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
+ xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
+ marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
+ mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
+ loss[1] += self.single_mask_loss(gt_mask, pred_masks2[i][fg_mask[i]], proto2[i], mxyxy,
+ marea) # seg loss
+
+ loss[0] += loss0_
+ loss[3] += loss3_
+
+ loss[0] *= 7.5 # box gain
+ loss[1] *= 2.5 / batch_size
+ loss[2] *= 0.5 # cls gain
+ loss[3] *= 1.5 # dfl gain
+
+ return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
+
+ def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
+ # Mask loss for one image
+ pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
+ loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
+ #loss = sigmoid_focal_loss(pred_mask, gt_mask, alpha = .25, gamma = 2., reduction = 'none')
+
+ #p_m = torch.flatten(pred_mask.softmax(dim = 1))
+ #g_m = torch.flatten(gt_mask)
+ #i_m = torch.sum(torch.mul(p_m, g_m))
+ #u_m = torch.sum(torch.add(p_m, g_m))
+ #dice_coef = (2. * i_m + 1.) / (u_m + 1.)
+ #dice_loss = (1. - dice_coef)
+ return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
+
+
+class ComputeLossLH0:
+ # Compute losses
+ def __init__(self, model, use_dfl=True, overlap=True):
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h["fl_gamma"] # focal loss gamma
+ if g > 0:
+ BCEcls = FocalLoss(BCEcls, g)
+
+ m = de_parallel(model).model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
+ self.BCEcls = BCEcls
+ self.hyp = h
+ self.stride = m.stride # model strides
+ self.nc = m.nc # number of classes
+ self.nl = m.nl # number of layers
+ self.no = m.no
+ self.nm = m.nm
+ self.overlap = overlap
+ self.reg_max = m.reg_max
+ self.device = device
+
+ self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
+ num_classes=self.nc,
+ alpha=float(os.getenv('YOLOA', 0.5)),
+ beta=float(os.getenv('YOLOB', 6.0)))
+ self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
+ self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
+ self.use_dfl = use_dfl
+
+ def preprocess(self, targets, batch_size, scale_tensor):
+ if targets.shape[0] == 0:
+ out = torch.zeros(batch_size, 0, 5, device=self.device)
+ else:
+ i = targets[:, 0] # image index
+ _, counts = i.unique(return_counts=True)
+ out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
+ for j in range(batch_size):
+ matches = i == j
+ n = matches.sum()
+ if n:
+ out[j, :n] = targets[matches, 1:]
+ out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
+ return out
+
+ def bbox_decode(self, anchor_points, pred_dist):
+ if self.use_dfl:
+ b, a, c = pred_dist.shape # batch, anchors, channels
+ pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
+ # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
+ return dist2bbox(pred_dist, anchor_points, xywh=False)
+
+ def __call__(self, p, targets, masks, img=None, epoch=0):
+ loss = torch.zeros(4, device=self.device) # box, cls, dfl
+
+ feats_, pred_masks_, proto_ = p if len(p) == 3 else p[1]
+
+ feats, pred_masks, proto = feats_[0], pred_masks_[0], proto_[0]
+ feats2, pred_masks2, proto2 = feats_[1], pred_masks_[1], proto_[1]
+
+ batch_size, _, mask_h, mask_w = proto.shape
+
+ pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores = pred_scores.permute(0, 2, 1).contiguous()
+ pred_distri = pred_distri.permute(0, 2, 1).contiguous()
+ pred_masks = pred_masks.permute(0, 2, 1).contiguous()
+
+ pred_distri2, pred_scores2 = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats2], 2).split(
+ (self.reg_max * 4, self.nc), 1)
+ pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
+ pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
+ pred_masks2 = pred_masks2.permute(0, 2, 1).contiguous()
+
+ dtype = pred_scores.dtype
+ batch_size, grid_size = pred_scores.shape[:2]
+ imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
+ anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
+
+ # targets
+ try:
+ batch_idx = targets[:, 0].view(-1, 1)
+ targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
+ gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
+ mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
+ except RuntimeError as e:
+ raise TypeError('ERROR.') from e
+
+
+ # pboxes
+ pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
+
+ pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2) # xyxy, (b, h*w, 4)
+
+ target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
+ pred_scores2.detach().sigmoid(),
+ (pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
+ anchor_points * stride_tensor,
+ gt_labels,
+ gt_bboxes,
+ mask_gt)
+
+ target_scores_sum = target_scores.sum()
+
+ # cls loss
+ # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
+ loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+ loss[2] *= 0.25
+ loss[2] += self.BCEcls(pred_scores2, target_scores.to(dtype)).sum() / target_scores_sum # BCE
+
+ # bbox loss
+ if fg_mask.sum():
+ loss[0], loss[3], _ = self.bbox_loss(pred_distri,
+ pred_bboxes,
+ anchor_points,
+ target_bboxes / stride_tensor,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+
+ # masks loss
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
+
+ for i in range(batch_size):
+ if fg_mask[i].sum():
+ mask_idx = target_gt_idx[i][fg_mask[i]]
+ if self.overlap:
+ gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
+ else:
+ gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
+ xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
+ marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
+ mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
+ loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
+ marea) # seg loss
+
+ loss[0] *= 0.25
+ loss[3] *= 0.25
+ loss[1] *= 0.25
+
+ # bbox loss
+ if fg_mask.sum():
+ loss0_, loss3_, _ = self.bbox_loss(pred_distri2,
+ pred_bboxes2,
+ anchor_points,
+ target_bboxes / stride_tensor,
+ target_scores,
+ target_scores_sum,
+ fg_mask)
+
+ # masks loss
+ if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
+ masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
+
+ for i in range(batch_size):
+ if fg_mask[i].sum():
+ mask_idx = target_gt_idx[i][fg_mask[i]]
+ if self.overlap:
+ gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
+ else:
+ gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
+ xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
+ marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
+ mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
+ loss[1] += 0. * self.single_mask_loss(gt_mask, pred_masks2[i][fg_mask[i]], proto2[i], mxyxy,
+ marea) # seg loss
+
+ loss[0] += loss0_
+ loss[3] += loss3_
+
+ loss[0] *= 7.5 # box gain
+ loss[1] *= 2.5 / batch_size
+ loss[2] *= 0.5 # cls gain
+ loss[3] *= 1.5 # dfl gain
+
+ return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
+
+ def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
+ # Mask loss for one image
+ pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
+ loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
+ #loss = sigmoid_focal_loss(pred_mask, gt_mask, alpha = .25, gamma = 2., reduction = 'none')
+
+ #p_m = torch.flatten(pred_mask.softmax(dim = 1))
+ #g_m = torch.flatten(gt_mask)
+ #i_m = torch.sum(torch.mul(p_m, g_m))
+ #u_m = torch.sum(torch.add(p_m, g_m))
+ #dice_coef = (2. * i_m + 1.) / (u_m + 1.)
+ #dice_loss = (1. - dice_coef)
+ return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/metrics.py b/cv/3d_detection/yolov9/pytorch/utils/segment/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..e6e5a0ad37ef3dad84cb2a247271efcaee752f11
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/metrics.py
@@ -0,0 +1,205 @@
+import numpy as np
+
+from ..metrics import ap_per_class
+
+
+def fitness(x):
+ # Model fitness as a weighted combination of metrics
+ w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
+ return (x[:, :8] * w).sum(1)
+
+
+def ap_per_class_box_and_mask(
+ tp_m,
+ tp_b,
+ conf,
+ pred_cls,
+ target_cls,
+ plot=False,
+ save_dir=".",
+ names=(),
+):
+ """
+ Args:
+ tp_b: tp of boxes.
+ tp_m: tp of masks.
+ other arguments see `func: ap_per_class`.
+ """
+ results_boxes = ap_per_class(tp_b,
+ conf,
+ pred_cls,
+ target_cls,
+ plot=plot,
+ save_dir=save_dir,
+ names=names,
+ prefix="Box")[2:]
+ results_masks = ap_per_class(tp_m,
+ conf,
+ pred_cls,
+ target_cls,
+ plot=plot,
+ save_dir=save_dir,
+ names=names,
+ prefix="Mask")[2:]
+
+ results = {
+ "boxes": {
+ "p": results_boxes[0],
+ "r": results_boxes[1],
+ "ap": results_boxes[3],
+ "f1": results_boxes[2],
+ "ap_class": results_boxes[4]},
+ "masks": {
+ "p": results_masks[0],
+ "r": results_masks[1],
+ "ap": results_masks[3],
+ "f1": results_masks[2],
+ "ap_class": results_masks[4]}}
+ return results
+
+
+class Metric:
+
+ def __init__(self) -> None:
+ self.p = [] # (nc, )
+ self.r = [] # (nc, )
+ self.f1 = [] # (nc, )
+ self.all_ap = [] # (nc, 10)
+ self.ap_class_index = [] # (nc, )
+
+ @property
+ def ap50(self):
+ """AP@0.5 of all classes.
+ Return:
+ (nc, ) or [].
+ """
+ return self.all_ap[:, 0] if len(self.all_ap) else []
+
+ @property
+ def ap(self):
+ """AP@0.5:0.95
+ Return:
+ (nc, ) or [].
+ """
+ return self.all_ap.mean(1) if len(self.all_ap) else []
+
+ @property
+ def mp(self):
+ """mean precision of all classes.
+ Return:
+ float.
+ """
+ return self.p.mean() if len(self.p) else 0.0
+
+ @property
+ def mr(self):
+ """mean recall of all classes.
+ Return:
+ float.
+ """
+ return self.r.mean() if len(self.r) else 0.0
+
+ @property
+ def map50(self):
+ """Mean AP@0.5 of all classes.
+ Return:
+ float.
+ """
+ return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
+
+ @property
+ def map(self):
+ """Mean AP@0.5:0.95 of all classes.
+ Return:
+ float.
+ """
+ return self.all_ap.mean() if len(self.all_ap) else 0.0
+
+ def mean_results(self):
+ """Mean of results, return mp, mr, map50, map"""
+ return (self.mp, self.mr, self.map50, self.map)
+
+ def class_result(self, i):
+ """class-aware result, return p[i], r[i], ap50[i], ap[i]"""
+ return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
+
+ def get_maps(self, nc):
+ maps = np.zeros(nc) + self.map
+ for i, c in enumerate(self.ap_class_index):
+ maps[c] = self.ap[i]
+ return maps
+
+ def update(self, results):
+ """
+ Args:
+ results: tuple(p, r, ap, f1, ap_class)
+ """
+ p, r, all_ap, f1, ap_class_index = results
+ self.p = p
+ self.r = r
+ self.all_ap = all_ap
+ self.f1 = f1
+ self.ap_class_index = ap_class_index
+
+
+class Metrics:
+ """Metric for boxes and masks."""
+
+ def __init__(self) -> None:
+ self.metric_box = Metric()
+ self.metric_mask = Metric()
+
+ def update(self, results):
+ """
+ Args:
+ results: Dict{'boxes': Dict{}, 'masks': Dict{}}
+ """
+ self.metric_box.update(list(results["boxes"].values()))
+ self.metric_mask.update(list(results["masks"].values()))
+
+ def mean_results(self):
+ return self.metric_box.mean_results() + self.metric_mask.mean_results()
+
+ def class_result(self, i):
+ return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
+
+ def get_maps(self, nc):
+ return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
+
+ @property
+ def ap_class_index(self):
+ # boxes and masks have the same ap_class_index
+ return self.metric_box.ap_class_index
+
+
+KEYS = [
+ "train/box_loss",
+ "train/seg_loss", # train loss
+ "train/obj_loss",
+ "train/cls_loss",
+ "metrics/precision(B)",
+ "metrics/recall(B)",
+ "metrics/mAP_0.5(B)",
+ "metrics/mAP_0.5:0.95(B)", # metrics
+ "metrics/precision(M)",
+ "metrics/recall(M)",
+ "metrics/mAP_0.5(M)",
+ "metrics/mAP_0.5:0.95(M)", # metrics
+ "val/box_loss",
+ "val/seg_loss", # val loss
+ "val/obj_loss",
+ "val/cls_loss",
+ "x/lr0",
+ "x/lr1",
+ "x/lr2",]
+
+BEST_KEYS = [
+ "best/epoch",
+ "best/precision(B)",
+ "best/recall(B)",
+ "best/mAP_0.5(B)",
+ "best/mAP_0.5:0.95(B)",
+ "best/precision(M)",
+ "best/recall(M)",
+ "best/mAP_0.5(M)",
+ "best/mAP_0.5:0.95(M)",]
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/plots.py b/cv/3d_detection/yolov9/pytorch/utils/segment/plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b90900b3772fe23dbd57deb64221f98e563b069
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/plots.py
@@ -0,0 +1,143 @@
+import contextlib
+import math
+from pathlib import Path
+
+import cv2
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import torch
+
+from .. import threaded
+from ..general import xywh2xyxy
+from ..plots import Annotator, colors
+
+
+@threaded
+def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg', names=None):
+ # Plot image grid with labels
+ if isinstance(images, torch.Tensor):
+ images = images.cpu().float().numpy()
+ if isinstance(targets, torch.Tensor):
+ targets = targets.cpu().numpy()
+ if isinstance(masks, torch.Tensor):
+ masks = masks.cpu().numpy().astype(int)
+
+ max_size = 1920 # max image size
+ max_subplots = 16 # max image subplots, i.e. 4x4
+ bs, _, h, w = images.shape # batch size, _, height, width
+ bs = min(bs, max_subplots) # limit plot images
+ ns = np.ceil(bs ** 0.5) # number of subplots (square)
+ if np.max(images[0]) <= 1:
+ images *= 255 # de-normalise (optional)
+
+ # Build Image
+ mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
+ for i, im in enumerate(images):
+ if i == max_subplots: # if last batch has fewer images than we expect
+ break
+ x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
+ im = im.transpose(1, 2, 0)
+ mosaic[y:y + h, x:x + w, :] = im
+
+ # Resize (optional)
+ scale = max_size / ns / max(h, w)
+ if scale < 1:
+ h = math.ceil(scale * h)
+ w = math.ceil(scale * w)
+ mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+ # Annotate
+ fs = int((h + w) * ns * 0.01) # font size
+ annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+ for i in range(i + 1):
+ x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
+ annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
+ if paths:
+ annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
+ if len(targets) > 0:
+ idx = targets[:, 0] == i
+ ti = targets[idx] # image targets
+
+ boxes = xywh2xyxy(ti[:, 2:6]).T
+ classes = ti[:, 1].astype('int')
+ labels = ti.shape[1] == 6 # labels if no conf column
+ conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
+
+ if boxes.shape[1]:
+ if boxes.max() <= 1.01: # if normalized with tolerance 0.01
+ boxes[[0, 2]] *= w # scale to pixels
+ boxes[[1, 3]] *= h
+ elif scale < 1: # absolute coords need scale if image scales
+ boxes *= scale
+ boxes[[0, 2]] += x
+ boxes[[1, 3]] += y
+ for j, box in enumerate(boxes.T.tolist()):
+ cls = classes[j]
+ color = colors(cls)
+ cls = names[cls] if names else cls
+ if labels or conf[j] > 0.25: # 0.25 conf thresh
+ label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
+ annotator.box_label(box, label, color=color)
+
+ # Plot masks
+ if len(masks):
+ if masks.max() > 1.0: # mean that masks are overlap
+ image_masks = masks[[i]] # (1, 640, 640)
+ nl = len(ti)
+ index = np.arange(nl).reshape(nl, 1, 1) + 1
+ image_masks = np.repeat(image_masks, nl, axis=0)
+ image_masks = np.where(image_masks == index, 1.0, 0.0)
+ else:
+ image_masks = masks[idx]
+
+ im = np.asarray(annotator.im).copy()
+ for j, box in enumerate(boxes.T.tolist()):
+ if labels or conf[j] > 0.25: # 0.25 conf thresh
+ color = colors(classes[j])
+ mh, mw = image_masks[j].shape
+ if mh != h or mw != w:
+ mask = image_masks[j].astype(np.uint8)
+ mask = cv2.resize(mask, (w, h))
+ mask = mask.astype(bool)
+ else:
+ mask = image_masks[j].astype(bool)
+ with contextlib.suppress(Exception):
+ im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
+ annotator.fromarray(im)
+ annotator.im.save(fname) # save
+
+
+def plot_results_with_masks(file="path/to/results.csv", dir="", best=True):
+ # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
+ save_dir = Path(file).parent if file else Path(dir)
+ fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
+ ax = ax.ravel()
+ files = list(save_dir.glob("results*.csv"))
+ assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
+ for f in files:
+ try:
+ data = pd.read_csv(f)
+ index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
+ 0.1 * data.values[:, 11])
+ s = [x.strip() for x in data.columns]
+ x = data.values[:, 0]
+ for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
+ y = data.values[:, j]
+ # y[y == 0] = np.nan # don't show zero values
+ ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2)
+ if best:
+ # best
+ ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3)
+ ax[i].set_title(s[j] + f"\n{round(y[index], 5)}")
+ else:
+ # last
+ ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3)
+ ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}")
+ # if j in [8, 9, 10]: # share train and val loss y axes
+ # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+ except Exception as e:
+ print(f"Warning: Plotting error for {f}: {e}")
+ ax[1].legend()
+ fig.savefig(save_dir / "results.png", dpi=200)
+ plt.close()
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/tal/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/segment/tal/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/tal/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/tal/anchor_generator.py b/cv/3d_detection/yolov9/pytorch/utils/segment/tal/anchor_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..0de163651e21225445097f90e05a6c6d8ff10092
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/tal/anchor_generator.py
@@ -0,0 +1,38 @@
+import torch
+
+from utils.general import check_version
+
+TORCH_1_10 = check_version(torch.__version__, '1.10.0')
+
+
+def make_anchors(feats, strides, grid_cell_offset=0.5):
+ """Generate anchors from features."""
+ anchor_points, stride_tensor = [], []
+ assert feats is not None
+ dtype, device = feats[0].dtype, feats[0].device
+ for i, stride in enumerate(strides):
+ _, _, h, w = feats[i].shape
+ sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset # shift x
+ sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset # shift y
+ sy, sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx)
+ anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2))
+ stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device))
+ return torch.cat(anchor_points), torch.cat(stride_tensor)
+
+
+def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
+ """Transform distance(ltrb) to box(xywh or xyxy)."""
+ lt, rb = torch.split(distance, 2, dim)
+ x1y1 = anchor_points - lt
+ x2y2 = anchor_points + rb
+ if xywh:
+ c_xy = (x1y1 + x2y2) / 2
+ wh = x2y2 - x1y1
+ return torch.cat((c_xy, wh), dim) # xywh bbox
+ return torch.cat((x1y1, x2y2), dim) # xyxy bbox
+
+
+def bbox2dist(anchor_points, bbox, reg_max):
+ """Transform bbox(xyxy) to dist(ltrb)."""
+ x1y1, x2y2 = torch.split(bbox, 2, -1)
+ return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp(0, reg_max - 0.01) # dist (lt, rb)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/segment/tal/assigner.py b/cv/3d_detection/yolov9/pytorch/utils/segment/tal/assigner.py
new file mode 100644
index 0000000000000000000000000000000000000000..598b3575f83a0ec45449910bc2c5fde18dbaa054
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/segment/tal/assigner.py
@@ -0,0 +1,180 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.metrics import bbox_iou
+
+
+def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
+ """select the positive anchor center in gt
+
+ Args:
+ xy_centers (Tensor): shape(h*w, 4)
+ gt_bboxes (Tensor): shape(b, n_boxes, 4)
+ Return:
+ (Tensor): shape(b, n_boxes, h*w)
+ """
+ n_anchors = xy_centers.shape[0]
+ bs, n_boxes, _ = gt_bboxes.shape
+ lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom
+ bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
+ # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)
+ return bbox_deltas.amin(3).gt_(eps)
+
+
+def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
+ """if an anchor box is assigned to multiple gts,
+ the one with the highest iou will be selected.
+
+ Args:
+ mask_pos (Tensor): shape(b, n_max_boxes, h*w)
+ overlaps (Tensor): shape(b, n_max_boxes, h*w)
+ Return:
+ target_gt_idx (Tensor): shape(b, h*w)
+ fg_mask (Tensor): shape(b, h*w)
+ mask_pos (Tensor): shape(b, n_max_boxes, h*w)
+ """
+ # (b, n_max_boxes, h*w) -> (b, h*w)
+ fg_mask = mask_pos.sum(-2)
+ if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
+ mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1]) # (b, n_max_boxes, h*w)
+ max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
+ is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes) # (b, h*w, n_max_boxes)
+ is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype) # (b, n_max_boxes, h*w)
+ mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos) # (b, n_max_boxes, h*w)
+ fg_mask = mask_pos.sum(-2)
+ # find each grid serve which gt(index)
+ target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
+ return target_gt_idx, fg_mask, mask_pos
+
+
+class TaskAlignedAssigner(nn.Module):
+ def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):
+ super().__init__()
+ self.topk = topk
+ self.num_classes = num_classes
+ self.bg_idx = num_classes
+ self.alpha = alpha
+ self.beta = beta
+ self.eps = eps
+
+ @torch.no_grad()
+ def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
+ """This code referenced to
+ https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py
+
+ Args:
+ pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
+ pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
+ anc_points (Tensor): shape(num_total_anchors, 2)
+ gt_labels (Tensor): shape(bs, n_max_boxes, 1)
+ gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
+ mask_gt (Tensor): shape(bs, n_max_boxes, 1)
+ Returns:
+ target_labels (Tensor): shape(bs, num_total_anchors)
+ target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
+ target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
+ fg_mask (Tensor): shape(bs, num_total_anchors)
+ """
+ self.bs = pd_scores.size(0)
+ self.n_max_boxes = gt_bboxes.size(1)
+
+ if self.n_max_boxes == 0:
+ device = gt_bboxes.device
+ return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device),
+ torch.zeros_like(pd_bboxes).to(device),
+ torch.zeros_like(pd_scores).to(device),
+ torch.zeros_like(pd_scores[..., 0]).to(device),
+ torch.zeros_like(pd_scores[..., 0]).to(device))
+
+ mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points,
+ mask_gt)
+
+ target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)
+
+ # assigned target
+ target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)
+
+ # normalize
+ align_metric *= mask_pos
+ pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj
+ pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj
+ norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
+ target_scores = target_scores * norm_align_metric
+
+ return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
+
+ def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
+
+ # get anchor_align metric, (b, max_num_obj, h*w)
+ align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes)
+ # get in_gts mask, (b, max_num_obj, h*w)
+ mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
+ # get topk_metric mask, (b, max_num_obj, h*w)
+ mask_topk = self.select_topk_candidates(align_metric * mask_in_gts,
+ topk_mask=mask_gt.repeat([1, 1, self.topk]).bool())
+ # merge all mask to a final mask, (b, max_num_obj, h*w)
+ mask_pos = mask_topk * mask_in_gts * mask_gt
+
+ return mask_pos, align_metric, overlaps
+
+ def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes):
+
+ gt_labels = gt_labels.to(torch.long) # b, max_num_obj, 1
+ ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
+ ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes) # b, max_num_obj
+ ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
+ # get the scores of each grid for each gt cls
+ bbox_scores = pd_scores[ind[0], :, ind[1]] # b, max_num_obj, h*w
+
+ overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False, CIoU=True).squeeze(3).clamp(0)
+ align_metric = bbox_scores.pow(self.alpha) * (overlaps).pow(self.beta)
+ return align_metric, overlaps
+
+ def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
+ """
+ Args:
+ metrics: (b, max_num_obj, h*w).
+ topk_mask: (b, max_num_obj, topk) or None
+ """
+
+ num_anchors = metrics.shape[-1] # h*w
+ # (b, max_num_obj, topk)
+ topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)
+ if topk_mask is None:
+ topk_mask = (topk_metrics.max(-1, keepdim=True) > self.eps).tile([1, 1, self.topk])
+ # (b, max_num_obj, topk)
+ topk_idxs = torch.where(topk_mask, topk_idxs, 0)
+ # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
+ is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2)
+ # filter invalid bboxes
+ # assigned topk should be unique, this is for dealing with empty labels
+ # since empty labels will generate index `0` through `F.one_hot`
+ # NOTE: but what if the topk_idxs include `0`?
+ is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk)
+ return is_in_topk.to(metrics.dtype)
+
+ def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
+ """
+ Args:
+ gt_labels: (b, max_num_obj, 1)
+ gt_bboxes: (b, max_num_obj, 4)
+ target_gt_idx: (b, h*w)
+ fg_mask: (b, h*w)
+ """
+
+ # assigned target labels, (b, 1)
+ batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
+ target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
+ target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
+
+ # assigned target boxes, (b, max_num_obj, 4) -> (b, h*w)
+ target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
+
+ # assigned target scores
+ target_labels.clamp(0)
+ target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80)
+ fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
+ target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
+
+ return target_labels, target_bboxes, target_scores
diff --git a/cv/3d_detection/yolov9/pytorch/utils/tal/__init__.py b/cv/3d_detection/yolov9/pytorch/utils/tal/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..84952a8167bc2975913a6def6b4f027d566552a9
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/tal/__init__.py
@@ -0,0 +1 @@
+# init
\ No newline at end of file
diff --git a/cv/3d_detection/yolov9/pytorch/utils/tal/anchor_generator.py b/cv/3d_detection/yolov9/pytorch/utils/tal/anchor_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..0de163651e21225445097f90e05a6c6d8ff10092
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/tal/anchor_generator.py
@@ -0,0 +1,38 @@
+import torch
+
+from utils.general import check_version
+
+TORCH_1_10 = check_version(torch.__version__, '1.10.0')
+
+
+def make_anchors(feats, strides, grid_cell_offset=0.5):
+ """Generate anchors from features."""
+ anchor_points, stride_tensor = [], []
+ assert feats is not None
+ dtype, device = feats[0].dtype, feats[0].device
+ for i, stride in enumerate(strides):
+ _, _, h, w = feats[i].shape
+ sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset # shift x
+ sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset # shift y
+ sy, sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx)
+ anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2))
+ stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device))
+ return torch.cat(anchor_points), torch.cat(stride_tensor)
+
+
+def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
+ """Transform distance(ltrb) to box(xywh or xyxy)."""
+ lt, rb = torch.split(distance, 2, dim)
+ x1y1 = anchor_points - lt
+ x2y2 = anchor_points + rb
+ if xywh:
+ c_xy = (x1y1 + x2y2) / 2
+ wh = x2y2 - x1y1
+ return torch.cat((c_xy, wh), dim) # xywh bbox
+ return torch.cat((x1y1, x2y2), dim) # xyxy bbox
+
+
+def bbox2dist(anchor_points, bbox, reg_max):
+ """Transform bbox(xyxy) to dist(ltrb)."""
+ x1y1, x2y2 = torch.split(bbox, 2, -1)
+ return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp(0, reg_max - 0.01) # dist (lt, rb)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/tal/assigner.py b/cv/3d_detection/yolov9/pytorch/utils/tal/assigner.py
new file mode 100644
index 0000000000000000000000000000000000000000..ac4bdb8c83837d3bee11ae7996e34f1e87ba3b65
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/tal/assigner.py
@@ -0,0 +1,179 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.metrics import bbox_iou
+
+
+def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
+ """select the positive anchor center in gt
+
+ Args:
+ xy_centers (Tensor): shape(h*w, 4)
+ gt_bboxes (Tensor): shape(b, n_boxes, 4)
+ Return:
+ (Tensor): shape(b, n_boxes, h*w)
+ """
+ n_anchors = xy_centers.shape[0]
+ bs, n_boxes, _ = gt_bboxes.shape
+ lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom
+ bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
+ # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)
+ return bbox_deltas.amin(3).gt_(eps)
+
+
+def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
+ """if an anchor box is assigned to multiple gts,
+ the one with the highest iou will be selected.
+
+ Args:
+ mask_pos (Tensor): shape(b, n_max_boxes, h*w)
+ overlaps (Tensor): shape(b, n_max_boxes, h*w)
+ Return:
+ target_gt_idx (Tensor): shape(b, h*w)
+ fg_mask (Tensor): shape(b, h*w)
+ mask_pos (Tensor): shape(b, n_max_boxes, h*w)
+ """
+ # (b, n_max_boxes, h*w) -> (b, h*w)
+ fg_mask = mask_pos.sum(-2)
+ if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
+ mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1]) # (b, n_max_boxes, h*w)
+ max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
+ is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes) # (b, h*w, n_max_boxes)
+ is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype) # (b, n_max_boxes, h*w)
+ mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos) # (b, n_max_boxes, h*w)
+ fg_mask = mask_pos.sum(-2)
+ # find each grid serve which gt(index)
+ target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
+ return target_gt_idx, fg_mask, mask_pos
+
+
+class TaskAlignedAssigner(nn.Module):
+ def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):
+ super().__init__()
+ self.topk = topk
+ self.num_classes = num_classes
+ self.bg_idx = num_classes
+ self.alpha = alpha
+ self.beta = beta
+ self.eps = eps
+
+ @torch.no_grad()
+ def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
+ """This code referenced to
+ https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py
+
+ Args:
+ pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
+ pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
+ anc_points (Tensor): shape(num_total_anchors, 2)
+ gt_labels (Tensor): shape(bs, n_max_boxes, 1)
+ gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
+ mask_gt (Tensor): shape(bs, n_max_boxes, 1)
+ Returns:
+ target_labels (Tensor): shape(bs, num_total_anchors)
+ target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
+ target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
+ fg_mask (Tensor): shape(bs, num_total_anchors)
+ """
+ self.bs = pd_scores.size(0)
+ self.n_max_boxes = gt_bboxes.size(1)
+
+ if self.n_max_boxes == 0:
+ device = gt_bboxes.device
+ return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device),
+ torch.zeros_like(pd_bboxes).to(device),
+ torch.zeros_like(pd_scores).to(device),
+ torch.zeros_like(pd_scores[..., 0]).to(device))
+
+ mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points,
+ mask_gt)
+
+ target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)
+
+ # assigned target
+ target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)
+
+ # normalize
+ align_metric *= mask_pos
+ pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj
+ pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj
+ norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
+ target_scores = target_scores * norm_align_metric
+
+ return target_labels, target_bboxes, target_scores, fg_mask.bool()
+
+ def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
+
+ # get anchor_align metric, (b, max_num_obj, h*w)
+ align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes)
+ # get in_gts mask, (b, max_num_obj, h*w)
+ mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
+ # get topk_metric mask, (b, max_num_obj, h*w)
+ mask_topk = self.select_topk_candidates(align_metric * mask_in_gts,
+ topk_mask=mask_gt.repeat([1, 1, self.topk]).bool())
+ # merge all mask to a final mask, (b, max_num_obj, h*w)
+ mask_pos = mask_topk * mask_in_gts * mask_gt
+
+ return mask_pos, align_metric, overlaps
+
+ def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes):
+
+ gt_labels = gt_labels.to(torch.long) # b, max_num_obj, 1
+ ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
+ ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes) # b, max_num_obj
+ ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
+ # get the scores of each grid for each gt cls
+ bbox_scores = pd_scores[ind[0], :, ind[1]] # b, max_num_obj, h*w
+
+ overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False, CIoU=True).squeeze(3).clamp(0)
+ align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
+ return align_metric, overlaps
+
+ def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
+ """
+ Args:
+ metrics: (b, max_num_obj, h*w).
+ topk_mask: (b, max_num_obj, topk) or None
+ """
+
+ num_anchors = metrics.shape[-1] # h*w
+ # (b, max_num_obj, topk)
+ topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)
+ if topk_mask is None:
+ topk_mask = (topk_metrics.max(-1, keepdim=True) > self.eps).tile([1, 1, self.topk])
+ # (b, max_num_obj, topk)
+ topk_idxs = torch.where(topk_mask, topk_idxs, 0)
+ # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
+ is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2)
+ # filter invalid bboxes
+ # assigned topk should be unique, this is for dealing with empty labels
+ # since empty labels will generate index `0` through `F.one_hot`
+ # NOTE: but what if the topk_idxs include `0`?
+ is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk)
+ return is_in_topk.to(metrics.dtype)
+
+ def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
+ """
+ Args:
+ gt_labels: (b, max_num_obj, 1)
+ gt_bboxes: (b, max_num_obj, 4)
+ target_gt_idx: (b, h*w)
+ fg_mask: (b, h*w)
+ """
+
+ # assigned target labels, (b, 1)
+ batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
+ target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
+ target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
+
+ # assigned target boxes, (b, max_num_obj, 4) -> (b, h*w)
+ target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
+
+ # assigned target scores
+ target_labels.clamp(0)
+ target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80)
+ fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
+ target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
+
+ return target_labels, target_bboxes, target_scores
diff --git a/cv/3d_detection/yolov9/pytorch/utils/torch_utils.py b/cv/3d_detection/yolov9/pytorch/utils/torch_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f1ce2d25251090aef94b4bbccab5ec78795ed98
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/torch_utils.py
@@ -0,0 +1,529 @@
+import math
+import os
+import platform
+import subprocess
+import time
+import warnings
+from contextlib import contextmanager
+from copy import deepcopy
+from pathlib import Path
+
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn.parallel import DistributedDataParallel as DDP
+
+from utils.general import LOGGER, check_version, colorstr, file_date, git_describe
+from utils.lion import Lion
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+
+try:
+ import thop # for FLOPs computation
+except ImportError:
+ thop = None
+
+# Suppress PyTorch warnings
+warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
+warnings.filterwarnings('ignore', category=UserWarning)
+
+
+def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
+ # Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
+ def decorate(fn):
+ return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
+
+ return decorate
+
+
+def smartCrossEntropyLoss(label_smoothing=0.0):
+ # Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0
+ if check_version(torch.__version__, '1.10.0'):
+ return nn.CrossEntropyLoss(label_smoothing=label_smoothing)
+ if label_smoothing > 0:
+ LOGGER.warning(f'WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0')
+ return nn.CrossEntropyLoss()
+
+
+def smart_DDP(model):
+ # Model DDP creation with checks
+ assert not check_version(torch.__version__, '1.12.0', pinned=True), \
+ 'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
+ 'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
+ if check_version(torch.__version__, '1.11.0'):
+ return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
+ else:
+ return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
+
+
+def reshape_classifier_output(model, n=1000):
+ # Update a TorchVision classification model to class count 'n' if required
+ from models.common import Classify
+ name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
+ if isinstance(m, Classify): # YOLOv5 Classify() head
+ if m.linear.out_features != n:
+ m.linear = nn.Linear(m.linear.in_features, n)
+ elif isinstance(m, nn.Linear): # ResNet, EfficientNet
+ if m.out_features != n:
+ setattr(model, name, nn.Linear(m.in_features, n))
+ elif isinstance(m, nn.Sequential):
+ types = [type(x) for x in m]
+ if nn.Linear in types:
+ i = types.index(nn.Linear) # nn.Linear index
+ if m[i].out_features != n:
+ m[i] = nn.Linear(m[i].in_features, n)
+ elif nn.Conv2d in types:
+ i = types.index(nn.Conv2d) # nn.Conv2d index
+ if m[i].out_channels != n:
+ m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
+
+
+@contextmanager
+def torch_distributed_zero_first(local_rank: int):
+ # Decorator to make all processes in distributed training wait for each local_master to do something
+ if local_rank not in [-1, 0]:
+ dist.barrier(device_ids=[local_rank])
+ yield
+ if local_rank == 0:
+ dist.barrier(device_ids=[0])
+
+
+def device_count():
+ # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
+ assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
+ try:
+ cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows
+ return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
+ except Exception:
+ return 0
+
+
+def select_device(device='', batch_size=0, newline=True):
+ # device = None or 'cpu' or 0 or '0' or '0,1,2,3'
+ s = f'YOLO 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
+ device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
+ cpu = device == 'cpu'
+ mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
+ if cpu or mps:
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
+ elif device: # non-cpu device requested
+ os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
+ assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
+ f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
+
+ if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
+ devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
+ n = len(devices) # device count
+ if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
+ assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
+ space = ' ' * (len(s) + 1)
+ for i, d in enumerate(devices):
+ p = torch.cuda.get_device_properties(i)
+ s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
+ arg = 'cuda:0'
+ elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
+ s += 'MPS\n'
+ arg = 'mps'
+ else: # revert to CPU
+ s += 'CPU\n'
+ arg = 'cpu'
+
+ if not newline:
+ s = s.rstrip()
+ LOGGER.info(s)
+ return torch.device(arg)
+
+
+def time_sync():
+ # PyTorch-accurate time
+ if torch.cuda.is_available():
+ torch.cuda.synchronize()
+ return time.time()
+
+
+def profile(input, ops, n=10, device=None):
+ """ YOLOv5 speed/memory/FLOPs profiler
+ Usage:
+ input = torch.randn(16, 3, 640, 640)
+ m1 = lambda x: x * torch.sigmoid(x)
+ m2 = nn.SiLU()
+ profile(input, [m1, m2], n=100) # profile over 100 iterations
+ """
+ results = []
+ if not isinstance(device, torch.device):
+ device = select_device(device)
+ print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
+ f"{'input':>24s}{'output':>24s}")
+
+ for x in input if isinstance(input, list) else [input]:
+ x = x.to(device)
+ x.requires_grad = True
+ for m in ops if isinstance(ops, list) else [ops]:
+ m = m.to(device) if hasattr(m, 'to') else m # device
+ m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
+ tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
+ try:
+ flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
+ except Exception:
+ flops = 0
+
+ try:
+ for _ in range(n):
+ t[0] = time_sync()
+ y = m(x)
+ t[1] = time_sync()
+ try:
+ _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
+ t[2] = time_sync()
+ except Exception: # no backward method
+ # print(e) # for debug
+ t[2] = float('nan')
+ tf += (t[1] - t[0]) * 1000 / n # ms per op forward
+ tb += (t[2] - t[1]) * 1000 / n # ms per op backward
+ mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
+ s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
+ p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
+ print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
+ results.append([p, flops, mem, tf, tb, s_in, s_out])
+ except Exception as e:
+ print(e)
+ results.append(None)
+ torch.cuda.empty_cache()
+ return results
+
+
+def is_parallel(model):
+ # Returns True if model is of type DP or DDP
+ return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
+
+
+def de_parallel(model):
+ # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
+ return model.module if is_parallel(model) else model
+
+
+def initialize_weights(model):
+ for m in model.modules():
+ t = type(m)
+ if t is nn.Conv2d:
+ pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+ elif t is nn.BatchNorm2d:
+ m.eps = 1e-3
+ m.momentum = 0.03
+ elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
+ m.inplace = True
+
+
+def find_modules(model, mclass=nn.Conv2d):
+ # Finds layer indices matching module class 'mclass'
+ return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
+
+
+def sparsity(model):
+ # Return global model sparsity
+ a, b = 0, 0
+ for p in model.parameters():
+ a += p.numel()
+ b += (p == 0).sum()
+ return b / a
+
+
+def prune(model, amount=0.3):
+ # Prune model to requested global sparsity
+ import torch.nn.utils.prune as prune
+ for name, m in model.named_modules():
+ if isinstance(m, nn.Conv2d):
+ prune.l1_unstructured(m, name='weight', amount=amount) # prune
+ prune.remove(m, 'weight') # make permanent
+ LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity')
+
+
+def fuse_conv_and_bn(conv, bn):
+ # Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
+ fusedconv = nn.Conv2d(conv.in_channels,
+ conv.out_channels,
+ kernel_size=conv.kernel_size,
+ stride=conv.stride,
+ padding=conv.padding,
+ dilation=conv.dilation,
+ groups=conv.groups,
+ bias=True).requires_grad_(False).to(conv.weight.device)
+
+ # Prepare filters
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
+
+ # Prepare spatial bias
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
+
+ return fusedconv
+
+
+def model_info(model, verbose=False, imgsz=640):
+ # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
+ n_p = sum(x.numel() for x in model.parameters()) # number parameters
+ n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
+ if verbose:
+ print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
+ for i, (name, p) in enumerate(model.named_parameters()):
+ name = name.replace('module_list.', '')
+ print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
+ (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
+
+ try: # FLOPs
+ p = next(model.parameters())
+ stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
+ im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
+ flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
+ imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
+ fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs' # 640x640 GFLOPs
+ except Exception:
+ fs = ''
+
+ name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
+ LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
+
+
+def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
+ # Scales img(bs,3,y,x) by ratio constrained to gs-multiple
+ if ratio == 1.0:
+ return img
+ h, w = img.shape[2:]
+ s = (int(h * ratio), int(w * ratio)) # new size
+ img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
+ if not same_shape: # pad/crop img
+ h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
+ return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
+
+
+def copy_attr(a, b, include=(), exclude=()):
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
+ for k, v in b.__dict__.items():
+ if (len(include) and k not in include) or k.startswith('_') or k in exclude:
+ continue
+ else:
+ setattr(a, k, v)
+
+
+def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
+ # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
+ g = [], [], [] # optimizer parameter groups
+ bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
+ #for v in model.modules():
+ # for p_name, p in v.named_parameters(recurse=0):
+ # if p_name == 'bias': # bias (no decay)
+ # g[2].append(p)
+ # elif p_name == 'weight' and isinstance(v, bn): # weight (no decay)
+ # g[1].append(p)
+ # else:
+ # g[0].append(p) # weight (with decay)
+
+ for v in model.modules():
+ if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay)
+ g[2].append(v.bias)
+ if isinstance(v, bn): # weight (no decay)
+ g[1].append(v.weight)
+ elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
+ g[0].append(v.weight)
+
+ if hasattr(v, 'im'):
+ if hasattr(v.im, 'implicit'):
+ g[1].append(v.im.implicit)
+ else:
+ for iv in v.im:
+ g[1].append(iv.implicit)
+ if hasattr(v, 'ia'):
+ if hasattr(v.ia, 'implicit'):
+ g[1].append(v.ia.implicit)
+ else:
+ for iv in v.ia:
+ g[1].append(iv.implicit)
+
+ if hasattr(v, 'im2'):
+ if hasattr(v.im2, 'implicit'):
+ g[1].append(v.im2.implicit)
+ else:
+ for iv in v.im2:
+ g[1].append(iv.implicit)
+ if hasattr(v, 'ia2'):
+ if hasattr(v.ia2, 'implicit'):
+ g[1].append(v.ia2.implicit)
+ else:
+ for iv in v.ia2:
+ g[1].append(iv.implicit)
+
+ if hasattr(v, 'im3'):
+ if hasattr(v.im3, 'implicit'):
+ g[1].append(v.im3.implicit)
+ else:
+ for iv in v.im3:
+ g[1].append(iv.implicit)
+ if hasattr(v, 'ia3'):
+ if hasattr(v.ia3, 'implicit'):
+ g[1].append(v.ia3.implicit)
+ else:
+ for iv in v.ia3:
+ g[1].append(iv.implicit)
+
+ if hasattr(v, 'im4'):
+ if hasattr(v.im4, 'implicit'):
+ g[1].append(v.im4.implicit)
+ else:
+ for iv in v.im4:
+ g[1].append(iv.implicit)
+ if hasattr(v, 'ia4'):
+ if hasattr(v.ia4, 'implicit'):
+ g[1].append(v.ia4.implicit)
+ else:
+ for iv in v.ia4:
+ g[1].append(iv.implicit)
+
+ if hasattr(v, 'im5'):
+ if hasattr(v.im5, 'implicit'):
+ g[1].append(v.im5.implicit)
+ else:
+ for iv in v.im5:
+ g[1].append(iv.implicit)
+ if hasattr(v, 'ia5'):
+ if hasattr(v.ia5, 'implicit'):
+ g[1].append(v.ia5.implicit)
+ else:
+ for iv in v.ia5:
+ g[1].append(iv.implicit)
+
+ if hasattr(v, 'im6'):
+ if hasattr(v.im6, 'implicit'):
+ g[1].append(v.im6.implicit)
+ else:
+ for iv in v.im6:
+ g[1].append(iv.implicit)
+ if hasattr(v, 'ia6'):
+ if hasattr(v.ia6, 'implicit'):
+ g[1].append(v.ia6.implicit)
+ else:
+ for iv in v.ia6:
+ g[1].append(iv.implicit)
+
+ if hasattr(v, 'im7'):
+ if hasattr(v.im7, 'implicit'):
+ g[1].append(v.im7.implicit)
+ else:
+ for iv in v.im7:
+ g[1].append(iv.implicit)
+ if hasattr(v, 'ia7'):
+ if hasattr(v.ia7, 'implicit'):
+ g[1].append(v.ia7.implicit)
+ else:
+ for iv in v.ia7:
+ g[1].append(iv.implicit)
+
+ if name == 'Adam':
+ optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum
+ elif name == 'AdamW':
+ optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0, amsgrad=True)
+ elif name == 'RMSProp':
+ optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
+ elif name == 'SGD':
+ optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
+ elif name == 'LION':
+ optimizer = Lion(g[2], lr=lr, betas=(momentum, 0.99), weight_decay=0.0)
+ else:
+ raise NotImplementedError(f'Optimizer {name} not implemented.')
+
+ optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
+ optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
+ LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
+ f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
+ return optimizer
+
+
+def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs):
+ # YOLOv5 torch.hub.load() wrapper with smart error/issue handling
+ if check_version(torch.__version__, '1.9.1'):
+ kwargs['skip_validation'] = True # validation causes GitHub API rate limit errors
+ if check_version(torch.__version__, '1.12.0'):
+ kwargs['trust_repo'] = True # argument required starting in torch 0.12
+ try:
+ return torch.hub.load(repo, model, **kwargs)
+ except Exception:
+ return torch.hub.load(repo, model, force_reload=True, **kwargs)
+
+
+def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True):
+ # Resume training from a partially trained checkpoint
+ best_fitness = 0.0
+ start_epoch = ckpt['epoch'] + 1
+ if ckpt['optimizer'] is not None:
+ optimizer.load_state_dict(ckpt['optimizer']) # optimizer
+ best_fitness = ckpt['best_fitness']
+ if ema and ckpt.get('ema'):
+ ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA
+ ema.updates = ckpt['updates']
+ if resume:
+ assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \
+ f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'"
+ LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs')
+ if epochs < start_epoch:
+ LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
+ epochs += ckpt['epoch'] # finetune additional epochs
+ return best_fitness, start_epoch, epochs
+
+
+class EarlyStopping:
+ # YOLOv5 simple early stopper
+ def __init__(self, patience=30):
+ self.best_fitness = 0.0 # i.e. mAP
+ self.best_epoch = 0
+ self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
+ self.possible_stop = False # possible stop may occur next epoch
+
+ def __call__(self, epoch, fitness):
+ if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
+ self.best_epoch = epoch
+ self.best_fitness = fitness
+ delta = epoch - self.best_epoch # epochs without improvement
+ self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
+ stop = delta >= self.patience # stop training if patience exceeded
+ if stop:
+ LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
+ f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
+ f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
+ f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
+ return stop
+
+
+class ModelEMA:
+ """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
+ Keeps a moving average of everything in the model state_dict (parameters and buffers)
+ For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
+ """
+
+ def __init__(self, model, decay=0.9999, tau=2000, updates=0):
+ # Create EMA
+ self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
+ self.updates = updates # number of EMA updates
+ self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
+ for p in self.ema.parameters():
+ p.requires_grad_(False)
+
+ def update(self, model):
+ # Update EMA parameters
+ self.updates += 1
+ d = self.decay(self.updates)
+
+ msd = de_parallel(model).state_dict() # model state_dict
+ for k, v in self.ema.state_dict().items():
+ if v.dtype.is_floating_point: # true for FP16 and FP32
+ v *= d
+ v += (1 - d) * msd[k].detach()
+ # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
+
+ def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
+ # Update EMA attributes
+ copy_attr(self.ema, model, include, exclude)
diff --git a/cv/3d_detection/yolov9/pytorch/utils/triton.py b/cv/3d_detection/yolov9/pytorch/utils/triton.py
new file mode 100644
index 0000000000000000000000000000000000000000..bf09797cf02335e7bd6da7ac8c451979a6073f5d
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/utils/triton.py
@@ -0,0 +1,81 @@
+import typing
+from urllib.parse import urlparse
+
+import torch
+
+
+class TritonRemoteModel:
+ """ A wrapper over a model served by the Triton Inference Server. It can
+ be configured to communicate over GRPC or HTTP. It accepts Torch Tensors
+ as input and returns them as outputs.
+ """
+
+ def __init__(self, url: str):
+ """
+ Keyword arguments:
+ url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000
+ """
+
+ parsed_url = urlparse(url)
+ if parsed_url.scheme == "grpc":
+ from tritonclient.grpc import InferenceServerClient, InferInput
+
+ self.client = InferenceServerClient(parsed_url.netloc) # Triton GRPC client
+ model_repository = self.client.get_model_repository_index()
+ self.model_name = model_repository.models[0].name
+ self.metadata = self.client.get_model_metadata(self.model_name, as_json=True)
+
+ def create_input_placeholders() -> typing.List[InferInput]:
+ return [
+ InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]
+
+ else:
+ from tritonclient.http import InferenceServerClient, InferInput
+
+ self.client = InferenceServerClient(parsed_url.netloc) # Triton HTTP client
+ model_repository = self.client.get_model_repository_index()
+ self.model_name = model_repository[0]['name']
+ self.metadata = self.client.get_model_metadata(self.model_name)
+
+ def create_input_placeholders() -> typing.List[InferInput]:
+ return [
+ InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]
+
+ self._create_input_placeholders_fn = create_input_placeholders
+
+ @property
+ def runtime(self):
+ """Returns the model runtime"""
+ return self.metadata.get("backend", self.metadata.get("platform"))
+
+ def __call__(self, *args, **kwargs) -> typing.Union[torch.Tensor, typing.Tuple[torch.Tensor, ...]]:
+ """ Invokes the model. Parameters can be provided via args or kwargs.
+ args, if provided, are assumed to match the order of inputs of the model.
+ kwargs are matched with the model input names.
+ """
+ inputs = self._create_inputs(*args, **kwargs)
+ response = self.client.infer(model_name=self.model_name, inputs=inputs)
+ result = []
+ for output in self.metadata['outputs']:
+ tensor = torch.as_tensor(response.as_numpy(output['name']))
+ result.append(tensor)
+ return result[0] if len(result) == 1 else result
+
+ def _create_inputs(self, *args, **kwargs):
+ args_len, kwargs_len = len(args), len(kwargs)
+ if not args_len and not kwargs_len:
+ raise RuntimeError("No inputs provided.")
+ if args_len and kwargs_len:
+ raise RuntimeError("Cannot specify args and kwargs at the same time")
+
+ placeholders = self._create_input_placeholders_fn()
+ if args_len:
+ if args_len != len(placeholders):
+ raise RuntimeError(f"Expected {len(placeholders)} inputs, got {args_len}.")
+ for input, value in zip(placeholders, args):
+ input.set_data_from_numpy(value.cpu().numpy())
+ else:
+ for input in placeholders:
+ value = kwargs[input.name]
+ input.set_data_from_numpy(value.cpu().numpy())
+ return placeholders
diff --git a/cv/3d_detection/yolov9/pytorch/val.py b/cv/3d_detection/yolov9/pytorch/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..496b941f9cdce30a573e3ec96ddb8e1b3c3b0dfe
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/val.py
@@ -0,0 +1,389 @@
+import argparse
+import json
+import os
+import sys
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import DetectMultiBackend
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
+ check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
+ print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
+from utils.plots import output_to_target, plot_images, plot_val_study
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+ # Save one txt result
+ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
+ for *xyxy, conf, cls in predn.tolist():
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(file, 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map):
+ # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+ box = xyxy2xywh(predn[:, :4]) # xywh
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
+ for p, b in zip(predn.tolist(), box.tolist()):
+ jdict.append({
+ 'image_id': image_id,
+ 'category_id': class_map[int(p[5])],
+ 'bbox': [round(x, 3) for x in b],
+ 'score': round(p[4], 5)})
+
+
+def process_batch(detections, labels, iouv):
+ """
+ Return correct prediction matrix
+ Arguments:
+ detections (array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ correct (array[N, 10]), for 10 IoU levels
+ """
+ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+ iou = box_iou(labels[:, 1:], detections[:, :4])
+ correct_class = labels[:, 0:1] == detections[:, 5]
+ for i in range(len(iouv)):
+ x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ # matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ correct[matches[:, 1].astype(int), i] = True
+ return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+ data,
+ weights=None, # model.pt path(s)
+ batch_size=32, # batch size
+ imgsz=640, # inference size (pixels)
+ conf_thres=0.001, # confidence threshold
+ iou_thres=0.7, # NMS IoU threshold
+ max_det=300, # maximum detections per image
+ task='val', # train, val, test, speed or study
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ workers=8, # max dataloader workers (per RANK in DDP mode)
+ single_cls=False, # treat as single-class dataset
+ augment=False, # augmented inference
+ verbose=False, # verbose output
+ save_txt=False, # save results to *.txt
+ save_hybrid=False, # save label+prediction hybrid results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_json=False, # save a COCO-JSON results file
+ project=ROOT / 'runs/val', # save to project/name
+ name='exp', # save to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ half=True, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ min_items=0, # Experimental
+ model=None,
+ dataloader=None,
+ save_dir=Path(''),
+ plots=True,
+ callbacks=Callbacks(),
+ compute_loss=None,
+):
+ # Initialize/load model and set device
+ training = model is not None
+ if training: # called by train.py
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
+ half &= device.type != 'cpu' # half precision only supported on CUDA
+ model.half() if half else model.float()
+ else: # called directly
+ device = select_device(device, batch_size=batch_size)
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+ half = model.fp16 # FP16 supported on limited backends with CUDA
+ if engine:
+ batch_size = model.batch_size
+ else:
+ device = model.device
+ if not (pt or jit):
+ batch_size = 1 # export.py models default to batch-size 1
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+ # Data
+ data = check_dataset(data) # check
+
+ # Configure
+ model.eval()
+ cuda = device.type != 'cpu'
+ #is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
+ is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset
+ nc = 1 if single_cls else int(data['nc']) # number of classes
+ iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+
+ # Dataloader
+ if not training:
+ if pt and not single_cls: # check --weights are trained on --data
+ ncm = model.model.nc
+ assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+ f'classes). Pass correct combination of --weights and --data that are trained together.'
+ model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
+ pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
+ task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
+ dataloader = create_dataloader(data[task],
+ imgsz,
+ batch_size,
+ stride,
+ single_cls,
+ pad=pad,
+ rect=rect,
+ workers=workers,
+ min_items=opt.min_items,
+ prefix=colorstr(f'{task}: '))[0]
+
+ seen = 0
+ confusion_matrix = ConfusionMatrix(nc=nc)
+ names = model.names if hasattr(model, 'names') else model.module.names # get class names
+ if isinstance(names, (list, tuple)): # old format
+ names = dict(enumerate(names))
+ class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+ s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
+ tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
+ dt = Profile(), Profile(), Profile() # profiling times
+ loss = torch.zeros(3, device=device)
+ jdict, stats, ap, ap_class = [], [], [], []
+ callbacks.run('on_val_start')
+ pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
+ for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
+ callbacks.run('on_val_batch_start')
+ with dt[0]:
+ if cuda:
+ im = im.to(device, non_blocking=True)
+ targets = targets.to(device)
+ im = im.half() if half else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ nb, _, height, width = im.shape # batch size, channels, height, width
+
+ # Inference
+ with dt[1]:
+ preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
+
+ # Loss
+ if compute_loss:
+ loss += compute_loss(train_out, targets)[1] # box, obj, cls
+
+ # NMS
+ targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
+ with dt[2]:
+ preds = non_max_suppression(preds,
+ conf_thres,
+ iou_thres,
+ labels=lb,
+ multi_label=True,
+ agnostic=single_cls,
+ max_det=max_det)
+
+ # Metrics
+ for si, pred in enumerate(preds):
+ labels = targets[targets[:, 0] == si, 1:]
+ nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
+ path, shape = Path(paths[si]), shapes[si][0]
+ correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
+ seen += 1
+
+ if npr == 0:
+ if nl:
+ stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
+ if plots:
+ confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+ continue
+
+ # Predictions
+ if single_cls:
+ pred[:, 5] = 0
+ predn = pred.clone()
+ scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
+
+ # Evaluate
+ if nl:
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
+ scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
+ correct = process_batch(predn, labelsn, iouv)
+ if plots:
+ confusion_matrix.process_batch(predn, labelsn)
+ stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
+
+ # Save/log
+ if save_txt:
+ save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+ if save_json:
+ save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
+ callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+ # Plot images
+ if plots and batch_i < 3:
+ plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
+ plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
+
+ callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
+
+ # Compute metrics
+ stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+ tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+ nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
+
+ # Print results
+ pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
+ LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
+ if nt.sum() == 0:
+ LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+ # Print results per class
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+ for i, c in enumerate(ap_class):
+ LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+ # Print speeds
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ if not training:
+ shape = (batch_size, 3, imgsz, imgsz)
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+ # Plots
+ if plots:
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+ callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
+
+ # Save JSON
+ if save_json and len(jdict):
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
+ anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
+ LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+ with open(pred_json, 'w') as f:
+ json.dump(jdict, f)
+
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+ check_requirements('pycocotools')
+ from pycocotools.coco import COCO
+ from pycocotools.cocoeval import COCOeval
+
+ anno = COCO(anno_json) # init annotations api
+ pred = anno.loadRes(pred_json) # init predictions api
+ eval = COCOeval(anno, pred, 'bbox')
+ if is_coco:
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
+ eval.evaluate()
+ eval.accumulate()
+ eval.summarize()
+ map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
+ except Exception as e:
+ LOGGER.info(f'pycocotools unable to run: {e}')
+
+ # Return results
+ model.float() # for training
+ if not training:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ maps = np.zeros(nc) + map
+ for i, c in enumerate(ap_class):
+ maps[c] = ap[i]
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path(s)')
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.7, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+ parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ parser.add_argument('--min-items', type=int, default=0, help='Experimental')
+ opt = parser.parse_args()
+ opt.data = check_yaml(opt.data) # check YAML
+ opt.save_json |= opt.data.endswith('coco.yaml')
+ opt.save_txt |= opt.save_hybrid
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ #check_requirements(exclude=('tensorboard', 'thop'))
+
+ if opt.task in ('train', 'val', 'test'): # run normally
+ if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
+ LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+ if opt.save_hybrid:
+ LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
+ run(**vars(opt))
+
+ else:
+ weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+ opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
+ if opt.task == 'speed': # speed benchmarks
+ # python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
+ opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+ for opt.weights in weights:
+ run(**vars(opt), plots=False)
+
+ elif opt.task == 'study': # speed vs mAP benchmarks
+ # python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
+ for opt.weights in weights:
+ f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
+ x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
+ for opt.imgsz in x: # img-size
+ LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+ r, _, t = run(**vars(opt), plots=False)
+ y.append(r + t) # results and times
+ np.savetxt(f, y, fmt='%10.4g') # save
+ os.system('zip -r study.zip study_*.txt')
+ plot_val_study(x=x) # plot
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/val_dual.py b/cv/3d_detection/yolov9/pytorch/val_dual.py
new file mode 100644
index 0000000000000000000000000000000000000000..4f0af05bfca44a7031214f8041365477681dd1d6
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/val_dual.py
@@ -0,0 +1,393 @@
+import argparse
+import json
+import os
+import sys
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import DetectMultiBackend
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
+ check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
+ print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
+from utils.plots import output_to_target, plot_images, plot_val_study
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+ # Save one txt result
+ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
+ for *xyxy, conf, cls in predn.tolist():
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(file, 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map):
+ # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+ box = xyxy2xywh(predn[:, :4]) # xywh
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
+ for p, b in zip(predn.tolist(), box.tolist()):
+ jdict.append({
+ 'image_id': image_id,
+ 'category_id': class_map[int(p[5])],
+ 'bbox': [round(x, 3) for x in b],
+ 'score': round(p[4], 5)})
+
+
+def process_batch(detections, labels, iouv):
+ """
+ Return correct prediction matrix
+ Arguments:
+ detections (array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ correct (array[N, 10]), for 10 IoU levels
+ """
+ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+ iou = box_iou(labels[:, 1:], detections[:, :4])
+ correct_class = labels[:, 0:1] == detections[:, 5]
+ for i in range(len(iouv)):
+ x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ # matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ correct[matches[:, 1].astype(int), i] = True
+ return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+ data,
+ weights=None, # model.pt path(s)
+ batch_size=32, # batch size
+ imgsz=640, # inference size (pixels)
+ conf_thres=0.001, # confidence threshold
+ iou_thres=0.7, # NMS IoU threshold
+ max_det=300, # maximum detections per image
+ task='val', # train, val, test, speed or study
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ workers=8, # max dataloader workers (per RANK in DDP mode)
+ single_cls=False, # treat as single-class dataset
+ augment=False, # augmented inference
+ verbose=False, # verbose output
+ save_txt=False, # save results to *.txt
+ save_hybrid=False, # save label+prediction hybrid results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_json=False, # save a COCO-JSON results file
+ project=ROOT / 'runs/val', # save to project/name
+ name='exp', # save to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ half=True, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ min_items=0, # Experimental
+ model=None,
+ dataloader=None,
+ save_dir=Path(''),
+ plots=True,
+ callbacks=Callbacks(),
+ compute_loss=None,
+):
+ # Initialize/load model and set device
+ training = model is not None
+ if training: # called by train.py
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
+ half &= device.type != 'cpu' # half precision only supported on CUDA
+ model.half() if half else model.float()
+ else: # called directly
+ device = select_device(device, batch_size=batch_size)
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+ half = model.fp16 # FP16 supported on limited backends with CUDA
+ if engine:
+ batch_size = model.batch_size
+ else:
+ device = model.device
+ if not (pt or jit):
+ batch_size = 1 # export.py models default to batch-size 1
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+ # Data
+ data = check_dataset(data) # check
+
+ # Configure
+ model.eval()
+ cuda = device.type != 'cpu'
+ #is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
+ is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset
+ nc = 1 if single_cls else int(data['nc']) # number of classes
+ iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+
+ # Dataloader
+ if not training:
+ if pt and not single_cls: # check --weights are trained on --data
+ ncm = model.model.nc
+ assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+ f'classes). Pass correct combination of --weights and --data that are trained together.'
+ model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
+ pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
+ task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
+ dataloader = create_dataloader(data[task],
+ imgsz,
+ batch_size,
+ stride,
+ single_cls,
+ pad=pad,
+ rect=rect,
+ workers=workers,
+ min_items=opt.min_items,
+ prefix=colorstr(f'{task}: '))[0]
+
+ seen = 0
+ confusion_matrix = ConfusionMatrix(nc=nc)
+ names = model.names if hasattr(model, 'names') else model.module.names # get class names
+ if isinstance(names, (list, tuple)): # old format
+ names = dict(enumerate(names))
+ class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+ s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
+ tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
+ dt = Profile(), Profile(), Profile() # profiling times
+ loss = torch.zeros(3, device=device)
+ jdict, stats, ap, ap_class = [], [], [], []
+ callbacks.run('on_val_start')
+ pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
+ for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
+ callbacks.run('on_val_batch_start')
+ with dt[0]:
+ if cuda:
+ im = im.to(device, non_blocking=True)
+ targets = targets.to(device)
+ im = im.half() if half else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ nb, _, height, width = im.shape # batch size, channels, height, width
+
+ # Inference
+ with dt[1]:
+ preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
+
+ # Loss
+ if compute_loss:
+ preds = preds[1]
+ #train_out = train_out[1]
+ #loss += compute_loss(train_out, targets)[1] # box, obj, cls
+ else:
+ preds = preds[0][1]
+
+ # NMS
+ targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
+ with dt[2]:
+ preds = non_max_suppression(preds,
+ conf_thres,
+ iou_thres,
+ labels=lb,
+ multi_label=True,
+ agnostic=single_cls,
+ max_det=max_det)
+
+ # Metrics
+ for si, pred in enumerate(preds):
+ labels = targets[targets[:, 0] == si, 1:]
+ nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
+ path, shape = Path(paths[si]), shapes[si][0]
+ correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
+ seen += 1
+
+ if npr == 0:
+ if nl:
+ stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
+ if plots:
+ confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+ continue
+
+ # Predictions
+ if single_cls:
+ pred[:, 5] = 0
+ predn = pred.clone()
+ scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
+
+ # Evaluate
+ if nl:
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
+ scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
+ correct = process_batch(predn, labelsn, iouv)
+ if plots:
+ confusion_matrix.process_batch(predn, labelsn)
+ stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
+
+ # Save/log
+ if save_txt:
+ save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+ if save_json:
+ save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
+ callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+ # Plot images
+ if plots and batch_i < 3:
+ plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
+ plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
+
+ callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
+
+ # Compute metrics
+ stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+ tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+ nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
+
+ # Print results
+ pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
+ LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
+ if nt.sum() == 0:
+ LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+ # Print results per class
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+ for i, c in enumerate(ap_class):
+ LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+ # Print speeds
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ if not training:
+ shape = (batch_size, 3, imgsz, imgsz)
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+ # Plots
+ if plots:
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+ callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
+
+ # Save JSON
+ if save_json and len(jdict):
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
+ anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
+ LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+ with open(pred_json, 'w') as f:
+ json.dump(jdict, f)
+
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+ check_requirements('pycocotools')
+ from pycocotools.coco import COCO
+ from pycocotools.cocoeval import COCOeval
+
+ anno = COCO(anno_json) # init annotations api
+ pred = anno.loadRes(pred_json) # init predictions api
+ eval = COCOeval(anno, pred, 'bbox')
+ if is_coco:
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
+ eval.evaluate()
+ eval.accumulate()
+ eval.summarize()
+ map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
+ except Exception as e:
+ LOGGER.info(f'pycocotools unable to run: {e}')
+
+ # Return results
+ model.float() # for training
+ if not training:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ maps = np.zeros(nc) + map
+ for i, c in enumerate(ap_class):
+ maps[c] = ap[i]
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path(s)')
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.7, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+ parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ parser.add_argument('--min-items', type=int, default=0, help='Experimental')
+ opt = parser.parse_args()
+ opt.data = check_yaml(opt.data) # check YAML
+ opt.save_json |= opt.data.endswith('coco.yaml')
+ opt.save_txt |= opt.save_hybrid
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ #check_requirements(exclude=('tensorboard', 'thop'))
+
+ if opt.task in ('train', 'val', 'test'): # run normally
+ if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
+ LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+ if opt.save_hybrid:
+ LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
+ run(**vars(opt))
+
+ else:
+ weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+ opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
+ if opt.task == 'speed': # speed benchmarks
+ # python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
+ opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+ for opt.weights in weights:
+ run(**vars(opt), plots=False)
+
+ elif opt.task == 'study': # speed vs mAP benchmarks
+ # python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
+ for opt.weights in weights:
+ f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
+ x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
+ for opt.imgsz in x: # img-size
+ LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+ r, _, t = run(**vars(opt), plots=False)
+ y.append(r + t) # results and times
+ np.savetxt(f, y, fmt='%10.4g') # save
+ os.system('zip -r study.zip study_*.txt')
+ plot_val_study(x=x) # plot
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)
diff --git a/cv/3d_detection/yolov9/pytorch/val_triple.py b/cv/3d_detection/yolov9/pytorch/val_triple.py
new file mode 100644
index 0000000000000000000000000000000000000000..e8997a34ba8e3d542bbbe7bda9b0b3ef44f7e959
--- /dev/null
+++ b/cv/3d_detection/yolov9/pytorch/val_triple.py
@@ -0,0 +1,391 @@
+import argparse
+import json
+import os
+import sys
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0] # YOLO root directory
+if str(ROOT) not in sys.path:
+ sys.path.append(str(ROOT)) # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
+
+from models.common import DetectMultiBackend
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
+ check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
+ print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
+from utils.plots import output_to_target, plot_images, plot_val_study
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+ # Save one txt result
+ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
+ for *xyxy, conf, cls in predn.tolist():
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
+ with open(file, 'a') as f:
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map):
+ # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+ box = xyxy2xywh(predn[:, :4]) # xywh
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
+ for p, b in zip(predn.tolist(), box.tolist()):
+ jdict.append({
+ 'image_id': image_id,
+ 'category_id': class_map[int(p[5])],
+ 'bbox': [round(x, 3) for x in b],
+ 'score': round(p[4], 5)})
+
+
+def process_batch(detections, labels, iouv):
+ """
+ Return correct prediction matrix
+ Arguments:
+ detections (array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ correct (array[N, 10]), for 10 IoU levels
+ """
+ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+ iou = box_iou(labels[:, 1:], detections[:, :4])
+ correct_class = labels[:, 0:1] == detections[:, 5]
+ for i in range(len(iouv)):
+ x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ # matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ correct[matches[:, 1].astype(int), i] = True
+ return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+ data,
+ weights=None, # model.pt path(s)
+ batch_size=32, # batch size
+ imgsz=640, # inference size (pixels)
+ conf_thres=0.001, # confidence threshold
+ iou_thres=0.7, # NMS IoU threshold
+ max_det=300, # maximum detections per image
+ task='val', # train, val, test, speed or study
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
+ workers=8, # max dataloader workers (per RANK in DDP mode)
+ single_cls=False, # treat as single-class dataset
+ augment=False, # augmented inference
+ verbose=False, # verbose output
+ save_txt=False, # save results to *.txt
+ save_hybrid=False, # save label+prediction hybrid results to *.txt
+ save_conf=False, # save confidences in --save-txt labels
+ save_json=False, # save a COCO-JSON results file
+ project=ROOT / 'runs/val', # save to project/name
+ name='exp', # save to project/name
+ exist_ok=False, # existing project/name ok, do not increment
+ half=True, # use FP16 half-precision inference
+ dnn=False, # use OpenCV DNN for ONNX inference
+ min_items=0, # Experimental
+ model=None,
+ dataloader=None,
+ save_dir=Path(''),
+ plots=True,
+ callbacks=Callbacks(),
+ compute_loss=None,
+):
+ # Initialize/load model and set device
+ training = model is not None
+ if training: # called by train.py
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
+ half &= device.type != 'cpu' # half precision only supported on CUDA
+ model.half() if half else model.float()
+ else: # called directly
+ device = select_device(device, batch_size=batch_size)
+
+ # Directories
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
+
+ # Load model
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+ imgsz = check_img_size(imgsz, s=stride) # check image size
+ half = model.fp16 # FP16 supported on limited backends with CUDA
+ if engine:
+ batch_size = model.batch_size
+ else:
+ device = model.device
+ if not (pt or jit):
+ batch_size = 1 # export.py models default to batch-size 1
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+ # Data
+ data = check_dataset(data) # check
+
+ # Configure
+ model.eval()
+ cuda = device.type != 'cpu'
+ #is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
+ is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'val2017.txt') # COCO dataset
+ nc = 1 if single_cls else int(data['nc']) # number of classes
+ iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
+ niou = iouv.numel()
+
+ # Dataloader
+ if not training:
+ if pt and not single_cls: # check --weights are trained on --data
+ ncm = model.model.nc
+ assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+ f'classes). Pass correct combination of --weights and --data that are trained together.'
+ model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
+ pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
+ task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
+ dataloader = create_dataloader(data[task],
+ imgsz,
+ batch_size,
+ stride,
+ single_cls,
+ pad=pad,
+ rect=rect,
+ workers=workers,
+ min_items=opt.min_items,
+ prefix=colorstr(f'{task}: '))[0]
+
+ seen = 0
+ confusion_matrix = ConfusionMatrix(nc=nc)
+ names = model.names if hasattr(model, 'names') else model.module.names # get class names
+ if isinstance(names, (list, tuple)): # old format
+ names = dict(enumerate(names))
+ class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+ s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
+ tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
+ dt = Profile(), Profile(), Profile() # profiling times
+ loss = torch.zeros(3, device=device)
+ jdict, stats, ap, ap_class = [], [], [], []
+ callbacks.run('on_val_start')
+ pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
+ for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
+ callbacks.run('on_val_batch_start')
+ with dt[0]:
+ if cuda:
+ im = im.to(device, non_blocking=True)
+ targets = targets.to(device)
+ im = im.half() if half else im.float() # uint8 to fp16/32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
+ nb, _, height, width = im.shape # batch size, channels, height, width
+
+ # Inference
+ with dt[1]:
+ preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
+ preds = preds[2]
+ train_out = train_out[2]
+
+ # Loss
+ #if compute_loss:
+ # loss += compute_loss(train_out, targets)[2] # box, obj, cls
+
+ # NMS
+ targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
+ with dt[2]:
+ preds = non_max_suppression(preds,
+ conf_thres,
+ iou_thres,
+ labels=lb,
+ multi_label=True,
+ agnostic=single_cls,
+ max_det=max_det)
+
+ # Metrics
+ for si, pred in enumerate(preds):
+ labels = targets[targets[:, 0] == si, 1:]
+ nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
+ path, shape = Path(paths[si]), shapes[si][0]
+ correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
+ seen += 1
+
+ if npr == 0:
+ if nl:
+ stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
+ if plots:
+ confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+ continue
+
+ # Predictions
+ if single_cls:
+ pred[:, 5] = 0
+ predn = pred.clone()
+ scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
+
+ # Evaluate
+ if nl:
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
+ scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
+ correct = process_batch(predn, labelsn, iouv)
+ if plots:
+ confusion_matrix.process_batch(predn, labelsn)
+ stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
+
+ # Save/log
+ if save_txt:
+ save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+ if save_json:
+ save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
+ callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+ # Plot images
+ if plots and batch_i < 3:
+ plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
+ plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
+
+ callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
+
+ # Compute metrics
+ stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
+ if len(stats) and stats[0].any():
+ tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+ nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
+
+ # Print results
+ pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
+ LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
+ if nt.sum() == 0:
+ LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+ # Print results per class
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+ for i, c in enumerate(ap_class):
+ LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+ # Print speeds
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
+ if not training:
+ shape = (batch_size, 3, imgsz, imgsz)
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+ # Plots
+ if plots:
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+ callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
+
+ # Save JSON
+ if save_json and len(jdict):
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
+ anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
+ LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+ with open(pred_json, 'w') as f:
+ json.dump(jdict, f)
+
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+ check_requirements('pycocotools')
+ from pycocotools.coco import COCO
+ from pycocotools.cocoeval import COCOeval
+
+ anno = COCO(anno_json) # init annotations api
+ pred = anno.loadRes(pred_json) # init predictions api
+ eval = COCOeval(anno, pred, 'bbox')
+ if is_coco:
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
+ eval.evaluate()
+ eval.accumulate()
+ eval.summarize()
+ map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
+ except Exception as e:
+ LOGGER.info(f'pycocotools unable to run: {e}')
+
+ # Return results
+ model.float() # for training
+ if not training:
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+ maps = np.zeros(nc) + map
+ for i, c in enumerate(ap_class):
+ maps[c] = ap[i]
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+def parse_opt():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path(s)')
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+ parser.add_argument('--iou-thres', type=float, default=0.7, help='NMS IoU threshold')
+ parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+ parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+ parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
+ parser.add_argument('--name', default='exp', help='save to project/name')
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+ parser.add_argument('--min-items', type=int, default=0, help='Experimental')
+ opt = parser.parse_args()
+ opt.data = check_yaml(opt.data) # check YAML
+ opt.save_json |= opt.data.endswith('coco.yaml')
+ opt.save_txt |= opt.save_hybrid
+ print_args(vars(opt))
+ return opt
+
+
+def main(opt):
+ #check_requirements(exclude=('tensorboard', 'thop'))
+
+ if opt.task in ('train', 'val', 'test'): # run normally
+ if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
+ LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+ if opt.save_hybrid:
+ LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
+ run(**vars(opt))
+
+ else:
+ weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+ opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
+ if opt.task == 'speed': # speed benchmarks
+ # python val.py --task speed --data coco.yaml --batch 1 --weights yolo.pt...
+ opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+ for opt.weights in weights:
+ run(**vars(opt), plots=False)
+
+ elif opt.task == 'study': # speed vs mAP benchmarks
+ # python val.py --task study --data coco.yaml --iou 0.7 --weights yolo.pt...
+ for opt.weights in weights:
+ f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
+ x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
+ for opt.imgsz in x: # img-size
+ LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+ r, _, t = run(**vars(opt), plots=False)
+ y.append(r + t) # results and times
+ np.savetxt(f, y, fmt='%10.4g') # save
+ os.system('zip -r study.zip study_*.txt')
+ plot_val_study(x=x) # plot
+
+
+if __name__ == "__main__":
+ opt = parse_opt()
+ main(opt)