diff --git a/cv/detection/maskrcnn/pytorch/README.md b/cv/detection/maskrcnn/pytorch/README.md index 08824d81647f2ec3ba5d6f0e650c954f537f5048..4c26992fb93a576b2b660e923de94f36e300e7c0 100644 --- a/cv/detection/maskrcnn/pytorch/README.md +++ b/cv/detection/maskrcnn/pytorch/README.md @@ -15,7 +15,9 @@ apt install -y libgl1-mesa-dev pip3 install -r requirements.txt ``` -## Step 2: Preparing datasets +## Step 2: Preparing datasets and model + +Download from https://download.pytorch.org/models/resnet50-0676ba61.pth and mv to /root/.cache/torch/hub/checkpoints/ Go to visit [COCO official website](https://cocodataset.org/#download), then select the COCO dataset you want to download. @@ -48,13 +50,13 @@ ln -s /path/to/coco2017 ./datasets/coco ## Step 3: Training ### Single Card -python train.py --data-path ./datasets/coco --dataset coco --model maskrcnn_resnet50_fpn --lr 0.001 --batch-size 4 +python3 train.py --data-path ./datasets/coco --dataset coco --model maskrcnn_resnet50_fpn --lr 0.001 --batch-size 4 ### AMP -python train.py --data-path ./datasets/coco --dataset coco --model maskrcnn_resnet50_fpn --lr 0.001 --batch-size 1 --amp +python3 train.py --data-path ./datasets/coco --dataset coco --model maskrcnn_resnet50_fpn --lr 0.001 --batch-size 1 --amp ### DDP ``` -python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ +python3 -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ --data-path ./datasets/coco --dataset coco --model maskrcnn_resnet50_fpn --wd 0.000001 --lr 0.001 --batch-size 4 ``` \ No newline at end of file diff --git a/cv/detection/maskrcnn/pytorch/requirements_aarch64.txt b/cv/detection/maskrcnn/pytorch/requirements.txt similarity index 100% rename from cv/detection/maskrcnn/pytorch/requirements_aarch64.txt rename to cv/detection/maskrcnn/pytorch/requirements.txt