diff --git a/models/nlp/language_model/deberta/ixrt/README.md b/models/nlp/language_model/deberta/ixrt/README.md index 56c3607e114fc5300eec0cd7e46c1a660ae7d430..1f9d1a28ac1938a170185fbe0d7d345b840d3952 100644 --- a/models/nlp/language_model/deberta/ixrt/README.md +++ b/models/nlp/language_model/deberta/ixrt/README.md @@ -38,8 +38,9 @@ bash scripts/prepare_model_and_dataset.sh ### Model Conversion ```bash -wget https://raw.githubusercontent.com/bytedance/ByteMLPerf/main/byte_infer_perf/general_perf/model_zoo/deberta-torch-fp32.json -python3 torch2onnx.py --model_path ./general_perf/model_zoo/popular/open_deberta/deberta-base-squad.pt --output_path deberta-torch-fp32.onnx +tar -xvf open_deberta.tar +wget +python3 torch2onnx.py --model_path deberta-base-squad.pt --output_path deberta-torch-fp32.onnx onnxsim deberta-torch-fp32.onnx deberta-torch-fp32-sim.onnx python3 remove_clip_and_cast.py @@ -62,36 +63,34 @@ bash scripts/infer_deberta_fp16_performance.sh ### Accuracy -If you want to evaluate the accuracy of this model, please visit the website: < >, which integrates inference and training of many models under this framework, supporting the ILUVATAR backend +If you want to evaluate the accuracy of this model, please visit here: , which integrates inference and training of many models under this framework, supporting the ILUVATAR backend -For detailed steps regarding this model, please refer to this document: < > Note: You need to modify the relevant paths in the code to your own correct paths. -```bash -# clone and install requirements -git clone https://github.com/yudefu/ByteMLPerf.git -b iluvatar_general_infer -pip3 install -r ./ByteMLPerf/byte_infer_perf/general_perf/requirements.txt -pip3 install -r ./ByteMLPerf/byte_infer_perf/general_perf/backends/ILUVATAR/requirements.txt - -# setup -mv perf_engine.py ./ByteMLPerf/byte_infer_perf/general_perf/core/perf_engine.py -cp ./datasets/open_squad/* ./ByteMLPerf/byte_infer_perf/general_perf/datasets/open_squad/ +For detailed steps regarding this model, please refer to this document: Note: You need to modify the relevant paths in the code to your own correct paths. mv ./deberta-sim-drop-clip-drop-invaild-cast.onnx general_perf/model_zoo/popular/open_deberta/ mv ./general_perf/model_zoo/popular/ ./ByteMLPerf/byte_infer_perf/general_perf/model_zoo/ -cd /ByteMLPerf/byte_infer_perf/general_perf -wget http://files.deepspark.org.cn:880/deepspark/Palak.tar +pip3 install -r toolbox/ByteMLPerf/blob/iluvatar_general_infer/byte_infer_perf/general_perf/requirements.txt +mv /ixrt/perf_engine.py toolbox/ByteMLPerf/byte_infer_perf/general_perf/core/perf_engine.py +sftp -P 29880 vipzjtd@iftp.iluvatar.com.cn 密码:123..com +get /upload/3-app/byteperf/Palak.tar +exit tar -zxvf Palak.tar -#接着修改代码:ByteMLPerf/byte_infer_perf/general_perf/datasets/open_squad/data_loader.py -AutoTokenizer.from_pretrained("Palak/microsoft_deberta-base_squad") => AutoTokenizer.from_pretrained("/Your/Path/Palak/microsoft_deberta-base_squad") +接着修改代码:toolbox/ByteMLPerf/byte_infer_perf/general_perf/datasets/open_squad/data_loader.py +AutoTokenizer.from_pretrained("Palak/microsoft_deberta-base_squad") => AutoTokenizer.from_pretrained("/Your/Path/Palak/microsoft_deberta-base_squad") -# run acc perf -sed -i 's/tensorrt_legacy/tensorrt/g' backends/ILUVATAR/common.py +mv deberta-sim-drop-clip-drop-invaild-cast.onnx general_perf/model_zoo/popular/open_deberta/ +cd toolbox/ByteMLPerf/byte_infer_perf/ +mv /general_perf/general_perf/model_zoo/popular/open_deberta /general_perf/model_zoo/popular/open_deberta +cd toolbox/ByteMLPerf/byte_infer_perf/general_perf python3 core/perf_engine.py --hardware_type ILUVATAR --task deberta-torch-fp32 ``` + ## Results -| Model | BatchSize | Precision | QPS | Exact Match | F1 Score | -| ------- | --------- | --------- | ----- | ----------- | -------- | -| DeBERTa | 1 | FP16 | 18.58 | 73.76 | 81.24 | +Model |BatchSize |Precision |QPS |Exact Match |F1 Score +--------|-----------|----------|----------|-------------|------------ +DeBerta | 16 | FP16 | 18.58 | 73.76 | 81.24