# Tensorflow-Tutorial
**Repository Path**: deeplearningrepos/Tensorflow-Tutorial
## Basic Information
- **Project Name**: Tensorflow-Tutorial
- **Description**: Tensorflow tutorial from basic to hard, 莫烦Python 中文AI教学
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-03-30
- **Last Updated**: 2021-08-31
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
### If you'd like to use **PyTorch**, no worries, I made a new **PyTorch Tutorial** just like Tensorflow. Here is the link: [https://github.com/MorvanZhou/PyTorch-Tutorial](https://github.com/MorvanZhou/PyTorch-Tutorial)
# Tensorflow 2017 Tutorials
**Tensorflow 2+ has been released, [here](https://github.com/MorvanZhou/Tensorflow2-Tutorial) is my quick TF2+ tutorial codes**
In these tutorials, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years.
All methods mentioned below have their video and text tutorial in Chinese. Visit [莫烦 Python](https://mofanpy.com) for more.
* Tensorflow basic
* [Session](tutorial-contents/201_session.py)
* [Placeholder](tutorial-contents/202_placeholder.py)
* [Variable](tutorial-contents/203_variable.py)
* [Activation](tutorial-contents/204_activation.py)
* Build your first network
* [Regression](tutorial-contents/301_simple_regression.py)
* [Classification](tutorial-contents/302_simple_classification.py)
* [Save and reload](tutorial-contents/303_save_reload.py)
* [Optimizers](tutorial-contents/304_optimizer.py)
* [Tensorboard](tutorial-contents/305_tensorboard.py)
* [Dataset](tutorial-contents/306_dataset.py)
* Advanced neural network
* [CNN](tutorial-contents/401_CNN.py)
* [RNN-Classification](tutorial-contents/402_RNN_classification.py)
* [RNN-Regression](tutorial-contents/403_RNN_regression.py)
* [AutoEncoder](tutorial-contents/404_AutoEncoder.py)
* [DQN Reinforcement Learning](tutorial-contents/405_DQN_reinforcement_learning.py)
* [GAN (Generative Adversarial Nets)](tutorial-contents/406_GAN.py) / [Conditional GAN](tutorial-contents/406_conditional_GAN.py)
* [Transfer Learning](tutorial-contents/407_transfer_learning.py)
* Others (WIP)
* [Dropout](tutorial-contents/501_dropout.py)
* [Batch Normalization](tutorial-contents/502_batch_normalization.py)
* [Visualize Gradient Descent](tutorial-contents/503_visualize_gradient_descent.py)
* [Distributed training](tutorial-contents/504_distributed_training.py)
### [Regression](tutorial-contents/301_simple_regression.py)
### [Classification](tutorial-contents/302_simple_classification.py)
### [CNN](tutorial-contents/401_CNN.py)
### [RNN](tutorial-contents/403_RNN_regression.py)
### [Autoencoder](tutorial-contents/404_AutoEncoder.py)
### [GAN (Generative Adversarial Nets)](tutorial-contents/406_GAN.py)
### [Dropout](tutorial-contents/501_dropout.py)
### [Batch Normalization](tutorial-contents/502_batch_normalization.py)
### [Visualize Gradient Descent](tutorial-contents/503_visualize_gradient_descent.py)
# Donation
*If this does help you, please consider donating to support me for better tutorials! Any contribution is greatly appreciated!*