# imgclsmob **Repository Path**: deeplearningrepos/imgclsmob ## Basic Information - **Project Name**: imgclsmob - **Description**: Sandbox for training deep learning networks - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-30 - **Last Updated**: 2021-08-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep learning networks [![Build Status](https://travis-ci.org/osmr/imgclsmob.svg?branch=master)](https://travis-ci.org/osmr/imgclsmob) [![GitHub License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![Python Version](https://img.shields.io/badge/python-2.7%2C3.6%2C3.7-lightgrey.svg)](https://github.com/osmr/imgclsmob) This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (re)implementations of various classification, segmentation, detection, and pose estimation models and scripts for training/evaluating/converting. The following frameworks are used: - MXNet/Gluon ([info](https://mxnet.apache.org)), - PyTorch ([info](https://pytorch.org)), - Chainer ([info](https://chainer.org)), - Keras ([info](https://keras.io)), - TensorFlow 1.x/2.x ([info](https://www.tensorflow.org)). For each supported framework, there is a PIP-package containing pure models without auxiliary scripts. List of packages: - [gluoncv2](https://pypi.org/project/gluoncv2) for Gluon, - [pytorchcv](https://pypi.org/project/pytorchcv) for PyTorch, - [chainercv2](https://pypi.org/project/chainercv2) for Chainer, - [kerascv](https://pypi.org/project/kerascv) for Keras, - [tensorflowcv](https://pypi.org/project/tensorflowcv) for TensorFlow 1.x, - [tf2cv](https://pypi.org/project/tf2cv) for TensorFlow 2.x. Currently, models are mostly implemented on Gluon and then ported to other frameworks. Some models are pretrained on [ImageNet-1K](http://www.image-net.org), [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html), [SVHN](http://ufldl.stanford.edu/housenumbers), [CUB-200-2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html), [Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012), [ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K), [Cityscapes](https://www.cityscapes-dataset.com), and [COCO](http://cocodataset.org) datasets. All pretrained weights are loaded automatically during use. See examples of such automatic loading of weights in the corresponding sections of the documentation dedicated to a particular package: - [Gluon models](gluon/README.md), - [PyTorch models](pytorch/README.md), - [Chainer models](chainer_/README.md), - [Keras models](keras_/README.md), - [TensorFlow 1.x models](tensorflow_/README.md), - [TensorFlow 2.x models](tensorflow2/README.md). ## Installation To use training/evaluating scripts as well as all models, you need to clone the repository and install dependencies: ``` git clone git@github.com:osmr/imgclsmob.git pip install -r requirements.txt ``` ## Table of implemented classification models Some remarks: - `Repo` is an author repository, if it exists. - `a`, `b`, `c`, `d`, and `e` means the implementation of a model for ImageNet-1K, CIFAR-10, CIFAR-100, SVHN, and CUB-200-2011, respectively. - `A`, `B`, `C`, `D`, and `E` means having a pre-trained model for corresponding datasets. | Model | [Gluon](gluon/README.md) | [PyTorch](pytorch/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TF](tensorflow_/README.md) | [TF2](tensorflow2/README.md) | Paper | Repo | Year | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | AlexNet | A | A | A | A | A | A | [link](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) | [link](https://code.google.com/archive/p/cuda-convnet2) | 2012 | | ZFNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1311.2901) | - | 2013 | | VGG | A | A | A | A | A | A | [link](https://arxiv.org/abs/1409.1556) | - | 2014 | | BN-VGG | A | A | A | A | A | A | [link](https://arxiv.org/abs/1409.1556) | - | 2015 | | BN-Inception | A | A | A | - | - | A | [link](https://arxiv.org/abs/1502.03167) | - | 2015 | | ResNet | ABCDE | ABCDE | ABCDE | A | A | ABCDE | [link](https://arxiv.org/abs/1512.03385) | [link](https://github.com/KaimingHe/deep-residual-networks) | 2015 | | PreResNet | ABCD | ABCD | ABCD | A | A | ABCD | [link](https://arxiv.org/abs/1603.05027) | [link](https://github.com/facebook/fb.resnet.torch) | 2016 | | ResNeXt | ABCD | ABCD | ABCD | A | A | ABCD | [link](http://arxiv.org/abs/1611.05431) | [link](https://github.com/facebookresearch/ResNeXt) | 2016 | | SENet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1709.01507) | [link](https://github.com/hujie-frank/SENet) | 2017 | | SE-ResNet | ABCDE | ABCDE | ABCDE | A | A | ABCDE | [link](https://arxiv.org/abs/1709.01507) | [link](https://github.com/hujie-frank/SENet) | 2017 | | SE-PreResNet | ABCD | ABCD | ABCD | A | A | ABCD | [link](https://arxiv.org/abs/1709.01507) | [link](https://github.com/hujie-frank/SENet) | 2017 | | SE-ResNeXt | A | A | A | A | A | A | [link](https://arxiv.org/abs/1709.01507) | [link](https://github.com/hujie-frank/SENet) | 2017 | | ResNeSt(A) | A | A | A | - | - | A | [link](https://arxiv.org/abs/2004.08955) | [link](https://github.com/zhanghang1989/ResNeSt) | 2020 | | IBN-ResNet | A | A | - | - | - | A | [link](https://arxiv.org/abs/1807.09441) | [link](https://github.com/XingangPan/IBN-Net) | 2018 | | IBN-ResNeXt | A | A | - | - | - | A | [link](https://arxiv.org/abs/1807.09441) | [link](https://github.com/XingangPan/IBN-Net) | 2018 | | IBN-DenseNet | A | A | - | - | - | A | [link](https://arxiv.org/abs/1807.09441) | [link](https://github.com/XingangPan/IBN-Net) | 2018 | | AirNet | A | A | A | - | - | A | [link](https://ieeexplore.ieee.org/document/8510896) | [link](https://github.com/soeaver/AirNet-PyTorch) | 2018 | | AirNeXt | A | A | A | - | - | A | [link](https://ieeexplore.ieee.org/document/8510896) | [link](https://github.com/soeaver/AirNet-PyTorch) | 2018 | | BAM-ResNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1807.06514) | [link](https://github.com/Jongchan/attention-module) | 2018 | | CBAM-ResNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1807.06521) | [link](https://github.com/Jongchan/attention-module) | 2018 | | ResAttNet | a | a | a | - | - | - | [link](https://arxiv.org/abs/1704.06904) | [link](https://github.com/fwang91/residual-attention-network) | 2017 | | SKNet | a | a | a | - | - | - | [link](https://arxiv.org/abs/1903.06586) | [link](https://github.com/implus/SKNet) | 2019 | | SCNet | A | A | A | - | - | A | [link](http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf) | [link](https://github.com/MCG-NKU/SCNet) | 2020 | | RegNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/2003.13678) | [link](https://github.com/facebookresearch/pycls) | 2020 | | DIA-ResNet | aBCD | aBCD | aBCD | - | - | - | [link](https://arxiv.org/abs/1905.10671) | [link](https://github.com/gbup-group/DIANet) | 2019 | | DIA-PreResNet | aBCD | aBCD | aBCD | - | - | - | [link](https://arxiv.org/abs/1905.10671) | [link](https://github.com/gbup-group/DIANet) | 2019 | | PyramidNet | ABCD | ABCD | ABCD | - | - | ABCD | [link](https://arxiv.org/abs/1610.02915) | [link](https://github.com/jhkim89/PyramidNet) | 2016 | | DiracNetV2 | A | A | A | - | - | A | [link](https://arxiv.org/abs/1706.00388) | [link](https://github.com/szagoruyko/diracnets) | 2017 | | ShaResNet | a | a | a | - | - | - | [link](https://arxiv.org/abs/1702.08782) | [link](https://github.com/aboulch/sharesnet) | 2017 | | CRU-Net | A | - | - | - | - | - | [link](https://www.ijcai.org/proceedings/2018/88) | [link](https://github.com/cypw/CRU-Net) | 2018 | | DenseNet | ABCD | ABCD | ABCD | A | A | ABCD | [link](https://arxiv.org/abs/1608.06993) | [link](https://github.com/liuzhuang13/DenseNet) | 2016 | | CondenseNet | A | A | A | - | - | - | [link](https://arxiv.org/abs/1711.09224) | [link](https://github.com/ShichenLiu/CondenseNet) | 2017 | | SparseNet | a | a | a | - | - | - | [link](https://arxiv.org/abs/1801.05895) | [link](https://github.com/Lyken17/SparseNet) | 2018 | | PeleeNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1804.06882) | [link](https://github.com/Robert-JunWang/Pelee) | 2018 | | Oct-ResNet | abcd | a | a | - | - | - | [link](https://arxiv.org/abs/1904.05049) | - | 2019 | | Res2Net | a | - | - | - | - | - | [link](https://arxiv.org/abs/1904.01169) | - | 2019 | | WRN | ABCD | ABCD | ABCD | - | - | a | [link](https://arxiv.org/abs/1605.07146) | [link](https://github.com/szagoruyko/wide-residual-networks) | 2016 | | WRN-1bit | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1802.08530) | [link](https://github.com/McDonnell-Lab/1-bit-per-weight) | 2018 | | DRN-C | A | A | A | - | - | A | [link](https://arxiv.org/abs/1705.09914) | [link](https://github.com/fyu/drn) | 2017 | | DRN-D | A | A | A | - | - | A | [link](https://arxiv.org/abs/1705.09914) | [link](https://github.com/fyu/drn) | 2017 | | DPN | A | A | A | - | - | A | [link](https://arxiv.org/abs/1707.01629) | [link](https://github.com/cypw/DPNs) | 2017 | | DarkNet Ref | A | A | A | A | A | A | [link](https://github.com/pjreddie/darknet) | [link](https://github.com/pjreddie/darknet) | - | | DarkNet Tiny | A | A | A | A | A | A | [link](https://github.com/pjreddie/darknet) | [link](https://github.com/pjreddie/darknet) | - | | DarkNet-19 | a | a | a | a | a | a | [link](https://github.com/pjreddie/darknet) | [link](https://github.com/pjreddie/darknet) | - | | DarkNet-53 | A | A | A | A | A | A | [link](https://arxiv.org/abs/1804.02767) | [link](https://github.com/pjreddie/darknet) | 2018 | | ChannelNet | a | a | a | - | a | - | [link](https://arxiv.org/abs/1809.01330) | [link](https://github.com/HongyangGao/ChannelNets) | 2018 | | iSQRT-COV-ResNet | a | a | - | - | - | - | [link](https://arxiv.org/abs/1712.01034) | [link](https://github.com/jiangtaoxie/fast-MPN-COV) | 2017 | | RevNet | - | a | - | - | - | - | [link](https://arxiv.org/abs/1707.04585) | [link](https://github.com/renmengye/revnet-public) | 2017 | | i-RevNet | A | A | A | - | - | - | [link](https://arxiv.org/abs/1802.07088) | [link](https://github.com/jhjacobsen/pytorch-i-revnet) | 2018 | | BagNet | A | A | A | - | - | A | [link](https://openreview.net/pdf?id=SkfMWhAqYQ) | [link](https://github.com/wielandbrendel/bag-of-local-features-models) | 2019 | | DLA | A | A | A | - | - | A | [link](https://arxiv.org/abs/1707.06484) | [link](https://github.com/ucbdrive/dla) | 2017 | | MSDNet | a | ab | - | - | - | - | [link](https://arxiv.org/abs/1703.09844) | [link](https://github.com/gaohuang/MSDNet) | 2017 | | FishNet | A | A | A | - | - | - | [link](http://papers.nips.cc/paper/7356-fishnet-a-versatile-backbone-for-image-region-and-pixel-level-prediction.pdf) | [link](https://github.com/kevin-ssy/FishNet) | 2018 | | ESPNetv2 | A | A | A | - | - | - | [link](https://arxiv.org/abs/1811.11431) | [link](https://github.com/sacmehta/ESPNetv2) | 2018 | | DiCENet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1906.03516) | [link](https://github.com/sacmehta/EdgeNets) | 2019 | | HRNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1908.07919) | [link](https://github.com/HRNet/HRNet-Image-Classification) | 2019 | | VoVNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1904.09730) | [link](https://github.com/stigma0617/VoVNet.pytorch) | 2019 | | SelecSLS | A | A | A | - | - | A | [link](https://arxiv.org/abs/1907.00837) | [link](https://github.com/mehtadushy/SelecSLS-Pytorch) | 2019 | | HarDNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1909.00948) | [link](https://github.com/PingoLH/Pytorch-HarDNet) | 2019 | | X-DenseNet | aBCD | aBCD | aBCD | - | - | - | [link](https://arxiv.org/abs/1711.08757) | [link](https://github.com/DrImpossible/Deep-Expander-Networks) | 2017 | | SqueezeNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1602.07360) | [link](https://github.com/DeepScale/SqueezeNet) | 2016 | | SqueezeResNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1602.07360) | - | 2016 | | SqueezeNext | A | A | A | A | A | A | [link](https://arxiv.org/abs/1803.10615) | [link](https://github.com/amirgholami/SqueezeNext) | 2018 | | ShuffleNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1707.01083) | - | 2017 | | ShuffleNetV2 | A | A | A | A | A | A | [link](https://arxiv.org/abs/1807.11164) | - | 2018 | | MENet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1803.09127) | [link](https://github.com/clavichord93/MENet) | 2018 | | MobileNet | AE | AE | AE | A | A | AE | [link](https://arxiv.org/abs/1704.04861) | [link](https://github.com/tensorflow/models) | 2017 | | FD-MobileNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1802.03750) | [link](https://github.com/clavichord93/FD-MobileNet) | 2018 | | MobileNetV2 | A | A | A | A | A | A | [link](https://arxiv.org/abs/1801.04381) | [link](https://github.com/tensorflow/models) | 2018 | | MobileNetV3 | A | A | A | A | - | A | [link](https://arxiv.org/abs/1905.02244) | [link](https://github.com/tensorflow/models) | 2019 | | IGCV3 | A | A | A | A | A | A | [link](https://arxiv.org/abs/1806.00178) | [link](https://github.com/homles11/IGCV3) | 2018 | | GhostNet | a | a | a | - | - | a | [link](https://arxiv.org/abs/1911.11907) | [link](https://github.com/iamhankai/ghostnet) | 2019 | | MnasNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1807.11626) | - | 2018 | | DARTS | A | A | A | - | - | - | [link](https://arxiv.org/abs/1806.09055) | [link](https://github.com/quark0/darts) | 2018 | | ProxylessNAS | AE | AE | AE | - | - | AE | [link](https://arxiv.org/abs/1812.00332) | [link](https://github.com/mit-han-lab/ProxylessNAS) | 2018 | | FBNet-C | A | A | A | - | - | A | [link](https://arxiv.org/abs/1812.03443) | - | 2018 | | Xception | A | A | A | - | - | A | [link](https://arxiv.org/abs/1610.02357) | [link](https://github.com/fchollet/deep-learning-models) | 2016 | | InceptionV3 | A | A | A | - | - | A | [link](https://arxiv.org/abs/1512.00567) | [link](https://github.com/tensorflow/models) | 2015 | | InceptionV4 | A | A | A | - | - | A | [link](https://arxiv.org/abs/1602.07261) | [link](https://github.com/tensorflow/models) | 2016 | | InceptionResNetV2 | A | A | A | - | - | A | [link](https://arxiv.org/abs/1602.07261) | [link](https://github.com/tensorflow/models) | 2016 | | PolyNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1611.05725) | [link](https://github.com/open-mmlab/polynet) | 2016 | | NASNet-Large | A | A | A | - | - | A | [link](https://arxiv.org/abs/1707.07012) | [link](https://github.com/tensorflow/models) | 2017 | | NASNet-Mobile | A | A | A | - | - | A | [link](https://arxiv.org/abs/1707.07012) | [link](https://github.com/tensorflow/models) | 2017 | | PNASNet-Large | A | A | A | - | - | A | [link](https://arxiv.org/abs/1712.00559) | [link](https://github.com/tensorflow/models) | 2017 | | SPNASNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1904.02877) | [link](https://github.com/dstamoulis/single-path-nas) | 2019 | | EfficientNet | A | A | A | A | - | A | [link](https://arxiv.org/abs/1905.11946) | [link](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) | 2019 | | MixNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1907.09595) | [link](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet) | 2019 | | NIN | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1312.4400) | [link](https://gist.github.com/mavenlin/e56253735ef32c3c296d) | 2013 | | RoR-3 | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1608.02908) | - | 2016 | | RiR | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1603.08029) | - | 2016 | | ResDrop-ResNet | bcd | bcd | bcd | - | - | - | [link](https://arxiv.org/abs/1603.09382) | [link](https://github.com/yueatsprograms/Stochastic_Depth) | 2016 | | Shake-Shake-ResNet | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1705.07485) | [link](https://github.com/xgastaldi/shake-shake) | 2017 | | ShakeDrop-ResNet | bcd | bcd | bcd | - | - | - | [link](https://arxiv.org/abs/1802.02375) | - | 2018 | | FractalNet | bc | bc | - | - | - | - | [link](https://arxiv.org/abs/1605.07648) | [link](https://github.com/gustavla/fractalnet) | 2016 | | NTS-Net | E | E | E | - | - | - | [link](https://arxiv.org/abs/1809.00287) | [link](https://github.com/yangze0930/NTS-Net) | 2018 | ## Table of implemented segmentation models Some remarks: - `a/A` corresponds to Pascal VOC2012. - `b/B` corresponds to ADE20K. - `c/C` corresponds to Cityscapes. - `d/D` corresponds to COCO. - `e/E` corresponds to CelebAMask-HQ. | Model | [Gluon](gluon/README.md) | [PyTorch](pytorch/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TF](tensorflow_/README.md) | [TF2](tensorflow_/README.md) | Paper | Repo | Year | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | PSPNet | ABCD | ABCD | ABCD | - | - | ABCD | [link](https://arxiv.org/abs/1612.01105) | - | 2016 | | DeepLabv3 | ABcD | ABcD | ABcD | - | - | ABcD | [link](https://arxiv.org/abs/1706.05587) | - | 2017 | | FCN-8s(d) | ABcD | ABcD | ABcD | - | - | ABcD | [link](https://arxiv.org/abs/1411.4038) | - | 2014 | | ICNet | C | C | C | - | - | C | [link](https://arxiv.org/abs/1704.08545) | [link](https://github.com/hszhao/ICNet) | 2017 | | SINet | C | C | C | - | - | c | [link](https://arxiv.org/abs/1911.09099) | [link](https://github.com/clovaai/c3_sinet) | 2019 | | BiSeNet | e | e | e | - | - | e | [link](https://arxiv.org/abs/1808.00897) | - | 2018 | | DANet | C | C | C | - | - | C | [link](https://arxiv.org/abs/1809.02983) | [link](https://github.com/junfu1115/DANet) | 2018 | | Fast-SCNN | C | C | C | - | - | C | [link](https://arxiv.org/abs/1902.04502) | - | 2019 | | CGNet | c | c | c | - | - | c | [link](https://arxiv.org/abs/1811.08201) | [link](https://github.com/wutianyiRosun/CGNet) | 2018 | | DABNet | c | c | c | - | - | c | [link](https://arxiv.org/abs/1907.11357) | [link](https://github.com/Reagan1311/DABNet) | 2019 | | FPENet | c | c | c | - | - | c | [link](https://arxiv.org/abs/1909.08599) | - | 2019 | | ContextNet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1805.04554) | - | 2018 | | LEDNet | c | c | c | - | - | c | [link](https://arxiv.org/abs/1905.02423) | - | 2019 | | ESNet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1906.09826) | - | 2019 | | EDANet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1809.06323) | [link](https://github.com/shaoyuanlo/EDANet) | 2018 | | ENet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1606.02147) | - | 2016 | | ERFNet | - | c | - | - | - | - | [link](http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf) | - | 2017 | | LinkNet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1707.03718) | - | 2017 | | SegNet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1511.00561) | - | 2015 | | U-Net | - | c | - | - | - | - | [link](https://arxiv.org/abs/1505.04597) | - | 2015 | | SQNet | - | c | - | - | - | - | [link](https://openreview.net/pdf?id=S1uHiFyyg) | - | 2016 | ## Table of implemented object detection models Some remarks: - `a/A` corresponds to COCO. | Model | [Gluon](gluon/README.md) | [PyTorch](pytorch/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TF](tensorflow_/README.md) | [TF2](tensorflow_/README.md) | Paper | Repo | Year | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | CenterNet | a | a | a | - | - | a | [link](https://arxiv.org/abs/1904.07850) | [link](https://github.com/xingyizhou/CenterNet) | 2019 | ## Table of implemented human pose estimation models Some remarks: - `a/A` corresponds to COCO. | Model | [Gluon](gluon/README.md) | [PyTorch](pytorch/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TF](tensorflow_/README.md) | [TF2](tensorflow_/README.md) | Paper | Repo | Year | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | AlphaPose | A | A | A | - | - | A | [link](https://arxiv.org/abs/1612.00137) | [link](https://github.com/MVIG-SJTU/AlphaPose) | 2016 | | SimplePose | A | A | A | - | - | A | [link](https://arxiv.org/abs/1804.06208) | [link](https://github.com/microsoft/human-pose-estimation.pytorch) | 2018 | | SimplePose(Mobile) | A | A | A | - | - | A | [link](https://arxiv.org/abs/1804.06208) | - | 2018 | | Lightweight OpenPose | A | A | A | - | - | A | [link](https://arxiv.org/abs/1811.12004) | [link](https://github.com/Daniil-Osokin/lightweight-human-pose-estimation-3d-demo.pytorch) | 2018 | | IBPPose | A | A | A | - | - | A | [link](https://arxiv.org/abs/1911.10529) | [link](https://github.com/jialee93/Improved-Body-Parts) | 2019 |