# seq2seq **Repository Path**: deeplearningrepos/seq2seq ## Basic Information - **Project Name**: seq2seq - **Description**: A general-purpose encoder-decoder framework for Tensorflow - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-30 - **Last Updated**: 2021-08-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![CircleCI](https://circleci.com/gh/google/seq2seq.svg?style=svg)](https://circleci.com/gh/google/seq2seq) --- **[READ THE DOCUMENTATION](https://google.github.io/seq2seq)** **[CONTRIBUTING](https://google.github.io/seq2seq/contributing/)** --- A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summarization, Conversational Modeling, Image Captioning, and more. ![Translation Model](https://3.bp.blogspot.com/-3Pbj_dvt0Vo/V-qe-Nl6P5I/AAAAAAAABQc/z0_6WtVWtvARtMk0i9_AtLeyyGyV6AI4wCLcB/s1600/nmt-model-fast.gif) --- The official code used for the [Massive Exploration of Neural Machine Translation Architectures](https://arxiv.org/abs/1703.03906) paper. If you use this code for academic purposes, please cite it as: ``` @ARTICLE{Britz:2017, author = {{Britz}, Denny and {Goldie}, Anna and {Luong}, Thang and {Le}, Quoc}, title = "{Massive Exploration of Neural Machine Translation Architectures}", journal = {ArXiv e-prints}, archivePrefix = "arXiv", eprinttype = {arxiv}, eprint = {1703.03906}, primaryClass = "cs.CL", keywords = {Computer Science - Computation and Language}, year = 2017, month = mar, } ``` This is not an official Google product.