代码拉取完成,页面将自动刷新
from torch.optim.lr_scheduler import _LRScheduler
class GradualWarmupScheduler(_LRScheduler):
def __init__(self, optimizer, multiplier, warm_epoch, after_scheduler = None, last_epoch = None):
self.multiplier = multiplier
self.total_epoch = warm_epoch
self.after_scheduler = after_scheduler
self.finished = False
self.last_epoch = last_epoch
self.base_lrs = None
super().__init__(optimizer)
def get_lr(self):
if self.last_epoch > self.total_epoch:
if self.after_scheduler:
if not self.finished:
self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
self.finished = True
return self.after_scheduler.get_last_lr()
return [base_lr * self.multiplier for base_lr in self.base_lrs]
return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]
def state_dict(self):
warmdict = {key:value for key, value in self.__dict__.items() if (key != 'optimizer' and key != 'after_scheduler')}
cosdict = {key:value for key, value in self.after_scheduler.__dict__.items() if key != 'optimizer'}
return {'warmup':warmdict, 'afterscheduler':cosdict}
def load_state_dict(self, state_dict: dict):
self.after_scheduler.__dict__.update(state_dict['afterscheduler'])
self.__dict__.update(state_dict['warmup'])
def step(self, epoch=None, metrics=None):
if self.finished and self.after_scheduler:
if epoch is None:
self.after_scheduler.step(None)
else:
self.after_scheduler.step(epoch - self.total_epoch)
else:
return super(GradualWarmupScheduler, self).step(epoch)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。