# DSRL **Repository Path**: dl-study/DSRL ## Basic Information - **Project Name**: DSRL - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-15 - **Last Updated**: 2024-06-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DSRL: Dual Super-Resolution Learning for Semantic Segmentation The code is inspired by [EdgeNet in pytorch](https://github.com/sacmehta/EdgeNets), you can follow the procedure in it to prepare the datasets and model directory files. # Unzip the repo folder ``` # first download and unzip the repo folder unzip dsrl_released-master.zip cd dsrl_released-master ``` # Testing * The first step aims to save the gray prediction mask * The second step aims to evaluate the mIoU with prediction mask and groundtruth ``` # To evaluate ESPNetv2_DSRL, use below command: sh run_eval_256x512.sh # sh run_eval_512x1024.sh ``` # Main results | Method | s | Image Size | FLOPs | Params | mIOU (class-wise) | Link | |---|---|---|---|---|---|---| | ESPNetv2 | 2.0 | 512x256 | 674.78M | 0.79M | 54.83% (val) | N/A | | ESPNetv2 + DSRL | 2.0 | 512x256 | 674.78M | 0.79M | 60.61% (val) | [here](ckpt-segmentation/espnetv2_dsrl/256x512/espnetv2_2.0_1024_best.pth) | | ESPNetv2 | 2.0 | 1024x512 | 2.7G | 0.79M | 64.44 (val) | N/A | | ESPNetv2 + DSRL | 2.0 | 1024x512 | 2.7G | 0.79M | 66.50% (val) | [here](ckpt-segmentation/espnetv2_dsrl/256x512/espnetv2_2.0_2048_best.pth) | # Citation If you find this repository helpful, please feel free to cite below work: ``` @InProceedings{Wang_2020_CVPR, author = {Wang, Li and Li, Dong and Zhu, Yousong and Tian, Lu and Shan, Yi}, title = {Dual Super-Resolution Learning for Semantic Segmentation}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2020} } ```