# graphsage-age-prediction **Repository Path**: dl-study/graphsage-age-prediction ## Basic Information - **Project Name**: graphsage-age-prediction - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-30 - **Last Updated**: 2024-12-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### graphsage-age-prediction Simplified version of https://github.com/bkj/pytorch-graphsage w/ specific application to age prediction in the POKEC benchmark dataset, per [1] #### Installation Install `pytorch==0.2.0`, per instructions at: http://pytorch.org/ Then do ``` pip install -r requirements.txt ``` (Exact versions of many of these modules may not actually matter.) #### Usage ``` # Download datasets $ ./download.sh # Prep datasets $ python prep.py # Train model $ python ./train.py --problem-path ./data/pokec/problem.h5 {'epoch': 0, 'train_metric': 3.9663644, 'val_metric': 3.930341} {'epoch': 1, 'train_metric': 3.3253829, 'val_metric': 3.7660761} {'epoch': 2, 'train_metric': 2.9626684, 'val_metric': 3.7319703} ``` #### LICENSE MIT #### References [1] http://perozzi.net/publications/15_www_age.pdf